0

7
1

文字

分享

0
7
1

當科技介入感官體驗,人類的情感還是「自然」的嗎?——《再.創世》專題

再・創世 Cybernetic_96
・2021/11/05 ・5624字 ・閱讀時間約 11 分鐘

  • 作者/劉育成|東吳大學社會系副教授

後人類學者 Rosi Braidotti 在其著作中提出了一個問題:

「後人類主體的感官與知覺器官,看起來會像什麼樣子?(What is the sensory and perceptive apparatus of posthuman subjects like?)」(Braidotti & Hlavajova, 2018, p. 12)。

或者,換一個問法。人類所擁有的情感、情緒、知覺或感官體驗,都是「自然的」嗎?這樣的論述有多大程度是真實的?以及,科技如何可能改變這樣的真實性?Jordi Vallverdú 提出「後認知時代(Post-Cognitive Era)」一詞,藉此思考以下提問:「情緒或情感是自然的嗎?」「在科技介入後,情緒或情感如何變得不自然?」,或者「如何挑戰情緒或情感是自然的這條界線?」(Vallverdú, 2017)。

換句話說,他的提問是:人造感官如何影響或形塑我們對世界的認識?以及,最終而言,如何形塑我們對自身之認識,以及形塑自身與機器之關係的認識?當然,這也挑戰了自然與技術的關係,也包含了重塑兩者之間原本存在之界線的內涵。

自然與非自然之間的關係

自然與技術(人造物)的關係,從希臘時代便有所論述。在史丹佛哲學百科(SEP)中,Franssen 等人歸納出了四個主題:首先,技術是學習於自然,或是模仿於自然。例如建造房子是模仿自燕子築巢、編織則是模仿自蜘蛛結網等。第二,自然與人造物之間存在著根本上的區別。例如亞里斯多德認為,自然界事物的產生與動作乃是內生的,而人造物是依賴外在的原因。此外,不同於自然,人造物也無法再製自身。第三,亞里斯多德的四因說(物質、形式、效用、目的)對技術哲學的貢獻。第四,柏拉圖與亞里斯多德對技術圖像的大量使用。例如柏拉圖將世界描述為是工匠的作品(the work of an Artisan)以及兩者都認為技術圖像在表達「世界的理性設計」這個信念上是不可或缺的(Franssen, Lokhorst, & Poel, 2015)。

-----廣告,請繼續往下閱讀-----

在希臘神話中也經常見到技術如何借鏡於自然,以擴展人類的能力。例如伊卡洛斯與代達洛斯想要透過蠟製成的翅膀逃離克里特島的故事。對於自然與技術(人造物)之間的區別,以人造物無法再製自身為主要觀點,指出了某種對於自然與人造物之間似乎存在著一道無法跨越的鴻溝或高牆。無論是往下走到底或者往上爬,科技都尚未能帶領我們看到是否能成功跨越的終點。

許多技術模仿於自然,例如建造房子是模仿自燕子築巢。圖/Pixabay

從技術的角度來看,自然是可以被征服的。然而,自然卻從未想要征服技術。對人類與社會的演化而言,「自然」不過就是透過技術進行觀察與再現的產物。康德曾經提問,「自然如何可能(How is nature possible?)?」社會學家 Simmel 認為這樣的提問正指出所謂的自然,「只不過是對自然的再現而已(nothing else but the representation of nature)」(Simmel, 2009[1908], pp. 40-41)。此一對自然的再現,原本是透過感官、心智與意識的運作,綜合而來的主體經驗,例如味道、溫度、顏色、情緒等皆然。

對康德而言,自然「就是個特定種類的經驗,一個透過且在我們的知識範疇中所發展出來的圖像」(Ibid.)。Simmel 對康德有關自然的討論,原本是想要回答「社會如何可能?」的這個問題,但將它自身的問題類比於康德的提問,正好提出了當前關於科技與人類發展的重要議題,也就是:在多大程度上,人類其實是技術的產物,且徹頭徹尾就是技術的?以及,隨著科技的介入,人類—身體與心智—在多大程度上仍(會)是自然的?

自然(Nature)可以是資料(Data)嗎?

馬克思在《資本論》第一卷中說道:「人自身作為一種自然力,與自然物質對立。為了在對自己的生活有用的形式上佔有自然物質,人使自身的自然力——手臂和腿、頭和手運動起來。當人透過這種運動,對外在於自身的自然施加作用並改變自然時,也就同時改變他自己的自然/性質(Nature)」(引自,萬毓澤, 2018, p. 56)。

這似乎是說,人透過其原本作為自然界之一部分的自然之力,在改變自然的同時,也改變了自身的屬於自然的那一部分。科技不僅在這個運動過程中給予人的自然力大大的協助,甚至不斷地擴增其力量,更透過大腦的延伸——網際網路以及人工智能等——欲將人類身體的自然性質消除殆盡。儘管可以想見的是,這為人類的日常生活帶來更多的便利與效能,但與此同時,自然卻也成了一個再也回不去的想像。

-----廣告,請繼續往下閱讀-----

「是不是自然的?」這件事重要嗎?在自然與技術(非自然或人造物)這兩個端點上,我們很少譴責自然是一個不好或不健康的東西,但是跟技術有關的,卻經常象徵了不健康的事物。當現代社會中出現越來越多諸如「吃得健康」、「吃原型食物」、「回歸自然」等論述,或許也指出了前述馬克思所論述的矛盾。

在科技發展上,將自然——透過各種感測器或演算法等——化約為「資料(data)」並且對透過這些資料以模擬、再現或理解自然的肯定,讓自然離人類越來越遠。Coyne 在探討自然在數位時代中的位置時也說道:「無論自然是什麼,其絕不是資料」(Coyne, 2018, p. 7)。我們之所以能夠區別何謂自然或不自然,前提是我們已經使用了「自然/非自然」的這組區別。對人類以外的有機體而言,這組區別無疑是不存在的。

在科技發展上,將自然透過各種感測器或演算法等化約為「資料」。圖/Pixabay

換句話說,這組區別乃是技術的產物,也正是從技術(人造而非自然)的角度觀之,自然充滿了訊號(signals)或徵兆(signs), 等待著被(技術)解讀。對自然的「認知」——搜集、解讀訊號並賦予意義,一開始雖是透過尚未被技術中介的身體與感官來實現,但如今卻逐漸轉向由人造感官(artificial organs)與演算法來架構出對自然的認識。

歷史上的四種認知階段

廣義而言,「認知」就是對世界或環境的感知與認識。Vallverdú 區分了歷史上的四種認知階段:自然、文化、計算,以及後設統計(meta statistics)(超人類/超智能)(Vallverdú, 2017, p. 194)。這四個階段也可以看作是四種認識世界的方式,而這個過程也標示了那個原本是自然之一部分的身體,在科技介入後如何逐漸消逝的過程。

-----廣告,請繼續往下閱讀-----

在前三個階段,那個自然意義下的身體仍是認知發展與主體,感官在其中扮演重要角色。心智的發展也與感官如何感知外部世界有密切關係。因此,至少在這些階段中,知識仍是具身性的(embodied)。假如我們依舊相信科學與科技發展中的奇點(singularity)論述是可能出現的,那麼在奇點之後的人類以及「認知」又會是什麼樣子?這是 Vallverdú 所謂的第四階段:後設統計。他認為,未來的知識在本質上將會是「統計性的」。他稱那些在奇點之後所出現的認知實體為「後認知實體(post-cognitive entities)或「後奇點智能(post-Singularity intelligences)」(Ibid., p. 197)。

這樣的一種後認知實體主要有兩類,其一是「超人類(transhumans)」,其二則是人工智能學家 Nick Bostrom 所謂的「超智能(superintelligences)」(Bostrom, 2014)。超人類或許仍可被認為是人類或具有部分人類的性質,或者所謂的「賽博格(cyborg)」。然而,對於「超智能」——一種具有人類智能特性卻能超越人類智能的演算法,如何定義其是否為活著的或者是有機體等,對某些人而言似乎還是個困擾。

在探討認知的發展與情緒是不可分的前提下,Vallverdú 將這些後奇點智能的情緒系統描述為「para-emotions」,這個系統與當前人類的情緒系統運作會有很大不同,也將會是建立在新的資訊結構之上。如果情感與情緒在某種程度或意義上仍是自然的,那麼我們將要如何理解透過人造感官、各種感測器所蒐集到的數據,並據以形成關於情感與情緒的計算及結果?

另外,假如一個人工智能演算法能夠展現情感與情緒,並以此為基礎發展出對環境的認知與理解,這樣的一種非人的、後奇點實體是否能被視為是具有生命的?這些問題不僅在實務上會帶來各種倫理議題,在知識論上也直接挑戰了自然與技術的界線。

-----廣告,請繼續往下閱讀-----

在日常生活中,我們已經可以見到人們透過穿戴式或植入式裝置搜集數據,並以此為了解自身身體的方式。這些人造感官、感測器所獲得之資料,可以單獨運作或與身體感官的運作合併,一同形塑出所謂的認知。人們感知的方式也會形塑其思考與行動的方式與內容。

人們透過穿戴式裝置搜集數據,並以此為了解自身身體的方式。圖/Pixabay

Vallverdú 以「羞恥感(shame)」在社會連結中扮演之角色為例指出,羞恥感這種複雜的社會情緒,乃是透過複雜的社會互動而出現。此外,羞恥感更能夠用來實現人們彼此之間更細緻、複雜的社會互動(Vallverdú, 2017, p. 205)。這樣的情感與情緒如何在人造認知設備中獲得實現,以及對人機互動的影響與啟發等,都還尚待深入探究。

「感覺」可以透過大數據或演算法建構嗎?

「資料並未創造出感覺(data do not create sense)」,Vallverdú說道(Ibid.)。

透過技術能搜集到的資料越多,並不表示對自然或環境的感知或理解就必然會越加正確或適切。更重要的是,透過人造感官為人類或超智能所架構出來的環境特性,是否也是自然的,或自然的一部分?若我們將演算法也視為一種人造感官,當人們越來越依賴演算法來架構認知時,人類大腦是否會受到各種人造感官的影響,而被形塑成一種透過人造的方式來認識其環境,或者甚至,最終為人造大腦所取代?例如,書寫工具的數位化將我們與自然的接觸簡化到手指的固定、簡單的幾個動作,但卻給予與我們探索更多非屬於自然的可能性,而得以讓想像力因為數位化工具而得以更精緻、更多意想不到的方式來實現。其確實為我們帶來了更豐富的世界,但也將我們與自然的關係簡化為僅是手指的幾個動作。

再舉個例子,我們對植物的認識,過去需要到外面,透過觀察、觸摸等方式來認識植物,如今透過智慧型手機中的 APP(例如「形色」或 Google),只要對不知名的植物或花卉等拍攝照片,該程式就會將照片與其雲端上的資料庫進行比對,然後將結果回傳到手機螢幕上,然後使用者就會知道該植物的名稱及特性。在經驗研究中觀察到的是,使用者是在獲得回傳之資料後,再將該資料中對該植物特性的描述與眼前的植物進行比對,也就是透過回傳之資料來認識該植物的特性。

-----廣告,請繼續往下閱讀-----
現在透過 APP 就可以顯示不知名植物的資訊。圖/Pexels

在此一過程中,原本一開始是需要透過感官進行仔細觀察、觸摸、尋找資料、比對等都被簡化為一連串數位化的動作,這些動作與所要認識的對象之性質無關,而我們卻越來越習慣於用這樣的方式來認識與接觸自然。當我們意識到時而想要回歸到更多的自然時,我們所需要付出的代價可能更高(一方面是因為我們已經習於技術為我們提供對自然的認識或進用),甚至是一件不太可能或相當困難的事。

Braidotti 認為後人類、後人類中心主義的觀點,乃是茁生於「展露自身於世界,且折疊世界於自身之中的實作」(Braidotti, 2013, p. 193)。對我來說,這就是將人類帶回自然。至於這個「將人類帶回自然」對人類自身而言是一種貶抑或者是提升,或許仍有待討論。若科技是為了征服自然而存在及發展,也就是致力於人與非人(人造物)、自然與技術之界限的消解,那麼這樣的一種後人類論述,或許更像是創造了不存在真正自然的對象物。前述之界線的消解包含兩種意涵。其一是解消而回歸自然,其二是解消但卻是回歸技術。

然而,對這兩種意涵的探究,是否也預設了人與非人這組區別是技術而非自然的產物?這或許也是值得思考的問題。關於後人類與後人類中心主義的提問便會包括,這組區別之解消,帶來的是偏向自然或偏向技術的世界或思維?

《脫稿玩家》中擁有自我意識的 NPC

在最近的一部電影《脫稿玩家(Free Guy)》(2021)中,劇情主要描述一個在數位虛擬世界中的 NPC(Non-Player Character,非玩家角色)在獲得自我意識之後所發生的各種情節。非玩家角色指的是,在角色扮演遊戲中,那些不是由玩家所控制的角色。非玩家角色通常是由電腦程式或人工智能演算法所控制,主要協助真人玩家進行遊戲或豐富遊戲的場景與互動內容。

-----廣告,請繼續往下閱讀-----

在該電影中所設定的虛擬遊戲場景裡的 NPC—Guy—突然獲得了自我意識,因此也認識到他跟遊戲中的其他 NPC 角色有所不同。此外,該遊戲的真人玩家也在與 Guy互動的過程中,不僅有真實情感的投入,也引發了對於 Guy 是否應該被視為是「人」或者是「活著的」討論。這也直接挑戰了自然與非自然的界線,以及「什麼是『活著的(alive)』?」、「自然就等於是活著的嗎」等觀點。更進一步提問會是,在這個從自然到非自然的跨越,以及從非自然跨回自然之過程中,到底發生了哪些事?

結語

綜上所述,人類(社會)或許正經歷一個從「科技中介的自然(technologically-mediated nature, or artificial nature」到「科技的自然化(naturalization of technology)」之發展。在此過程中,關鍵的提問將會是,自然如何解消於科技之中,以及這樣的解消為物種帶來何種面對自身的方式及後果?無論是 Vallverdú 稱之的後認知或後奇點實體,還是 Braidotti 的後人類主體,這些都會是「身體主動吸引技術進入其中」的主體,技術不再是輔助身體之用,正常與不正常的身體,都期待技術帶來的好處——也將重塑正常/不正常的界線。

例如我們不只是無法抗拒智慧型手機,在某種意義上,我們歡迎智慧型手機對身體——姿勢、行為、心理與心智——的殖民。感官與知覺設備不再只是指單純的身體感官,也不是如麥克魯漢所言之的身體感官透過技術物而延伸的產物,而是技術物改變感官經驗甚至取代感官以提供資訊給心智(演算法)進行處理,最終帶來的或許正是一個科技就是自然的後認知時代。

參考資料:

  • 萬毓澤. (2018). 你不知道的馬克思. 新北市: 木馬文化.
  • Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford, UK: Oxford University Press.
  • Braidotti, R. (2013). The Posthuman. Cambridge, UK: Polity Press.
  • Braidotti, R., & Hlavajova, M. (Eds.). (2018). Posthuman Glossary. London and Oxford: Bloomsbury Academic.
  • Coyne, R. (2018). Network Nature: The Place of Nature in the Digital Age. London & New York: Bloomsbury Academic.
  • Franssen, M., Lokhorst, G.-J., & Poel, I. v. d. (2015). Philosophy of Technology. In E. N. Zalta, U. Nodelman, & C. Allen (Eds.), Stanford Encyclopedia of Philosophy (pp. 1-55). Stanford, CA: Stanford University.
  • Simmel, G. (2009[1908]). Sociology: Inquiries into the Construction of Social Forms (Volume 1) (A. J. Blasi, A. K. Jacobs, & M. Kanjirathinkal, Trans.). Leidon & Boston: Brill.
  • Vallverdú, J. (2017). The Emotional Nature of Post-Cognitive Singularities. In V. Callaghan, J. Miller, R. Yampolskiy, & S. Armstrong (Eds.), The Technological Singularity (pp. 193-208). Berlin, Heidelber: Springer.
-----廣告,請繼續往下閱讀-----
文章難易度
再・創世 Cybernetic_96
11 篇文章 ・ 29 位粉絲
由策展人沈伯丞籌畫之藝術計畫《再・創世 Cybernetic》,嘗試從演化控制學的理論基礎上,探討仿生學、人工智慧、嵌合體與賽伯格以及環境控制學等新知識技術所構成的未來生命圖像。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
1

文字

分享

0
3
1
當情緒像過山車?從亢奮到低落,解碼躁鬱症的真實面貌
PanSci_96
・2024/10/12 ・2253字 ・閱讀時間約 4 分鐘

躁鬱症(Bipolar Disorder),正式名稱為「雙向情緒疾患」或「雙極性情感障礙」,是一種讓患者的情緒不受控制地在極度亢奮和極度低落之間擺盪的精神疾病。這樣的情緒變化不僅僅是短暫的起伏,而是持續多天、甚至數週的狀態,對於患者的生活、關係和工作會造成重大影響。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是躁鬱症?

躁鬱症患者的情緒通常經歷兩個極端階段:躁期和鬱期。

在躁期,患者可能會感到無比的精力充沛、自信心爆棚,甚至會有過度樂觀和衝動的行為。然而,躁鬱症不僅僅是「情緒高漲」的表現,在躁期過後,患者往往會經歷嚴重的情緒低谷,進入所謂的鬱期。此時,他們會感到情緒低落、無力感、甚至有自我傷害的傾向。

近幾年大眾逐漸正視精神疾病的影響,許多名人也曾經公開分享他們的躁鬱症經歷,如歌手瑪麗亞.凱莉、演員小勞勃道尼。這些公眾人物的經歷讓我們看到了這種精神疾病的廣泛影響,以及如何對他們的創作、生活和心理造成衝擊。

-----廣告,請繼續往下閱讀-----

躁鬱症的分類與盛行率

根據跨國研究,不論種族、性別或地區,躁鬱症的盛行率約為 1%,這意味著每 100 人中就有一人可能經歷過躁鬱症的發作。如果將所有的亞型計算在內,終生盛行率甚至可能高達 2.4%。躁鬱症的發病年齡通常集中在 20 至 30 歲之間,超過 70% 的患者在 25 歲前就會出現早期症狀。

躁鬱症依照症狀的不同,還可以分為不同的亞型。最常見的分類是第一型和第二型。第一型躁鬱症的特徵是患者會經歷完整的躁期,通常會影響患者的日常功能,甚至需要住院治療。而第二型躁鬱症的躁期則相對較輕,稱為「輕躁期」,但鬱期仍然會對患者的生活造成嚴重影響。

躁鬱症根據症狀可分為不同亞型,最常見的是第一型和第二型。圖/envato

什麼是「躁期」和「鬱期」?

「躁期」和「鬱期」是躁鬱症的兩個主要特徵階段。

躁期: 許多人對「躁」字的理解常常會聯想到「暴躁」或「焦躁」,實際上躁鬱症的躁期,更多的是情緒高昂、亢奮的狀態。在輕躁期(Hypomania),患者會持續數天感到極度精力充沛,無論在工作還是生活中,表現得比平時更有自信和創造力。但問題是,這種情緒亢奮狀態不一定持續太久,躁期可能會逐漸惡化為狂躁期(Mania)。這時,患者的行為可能會變得極端,容易做出無法預測的決定,例如過度消費、縱情娛樂或進行不安全的行為。

-----廣告,請繼續往下閱讀-----

鬱期: 在鬱期,患者的情緒和行為完全反轉。他們會感到無精打采、情緒低落,對任何事物都提不起勁。這時候,患者的日常活動變得困難,注意力和記憶力也會大幅下降,甚至有自我傷害或自殺的傾向。

從外界看來,躁期似乎是一個非常「高能」的狀態,但實際上,躁鬱症的危險之處正在於它的不穩定性。躁鬱症患者在躁期中無法控制自己的情緒與行為,即使感覺自己處於高峰狀態,這樣的「興奮」很可能會導致衝動行為,如不理智的財務決策或人際衝突。

如何應對躁鬱症?

躁鬱症不僅僅是情緒的擺盪,同時也會對患者的生活產生影響:

  1. 無法控制的躁期時間:躁期的長度和強度不是患者能控制的,患者可能從精力充沛的狀態,轉變為難以收拾的混亂局面。
  2. 鬱期的危險性:在躁期過後,進入鬱期的患者常常因為自責或對前期行為的後悔,而陷入更深的低谷,這增加了自我傷害的風險。
  3. 生活質量下降:反覆發作的情緒擺盪讓患者難以享受生活,甚至對快樂的感受也會變得懷疑和恐懼。
  4. 人際關係受損:情緒極端的變化會讓患者難以建立穩定的人際關係,這對於長期支持系統的建立是巨大的挑戰。
  5. 大腦損傷:每次發作對大腦的損害都是不可逆的,長期下來,注意力、記憶力、甚至思考能力都會受到影響。

治療與日常應對方法

對於躁鬱症的治療,藥物和心理治療是兩個不可或缺的部分。穩定情緒的藥物,如鋰鹽,是控制躁鬱症的重要工具。鋰鹽自 20 世紀開始就被廣泛用於躁鬱症的治療,能有效減少躁鬱症的復發風險。如果患者正處於躁期,醫生還可能會使用抗精神病藥物來幫助控制症狀。

-----廣告,請繼續往下閱讀-----

除了藥物治療,心理治療同樣重要,特別是在症狀穩定後,透過心理治療,患者可以學習如何識別躁鬱症復發的早期徵兆,以及如何調適壓力和情緒。

心理治療可以幫助患者學習識別躁鬱症復發的早期徵兆,並有效調適壓力和情緒。圖/envato

如何支持身邊的躁鬱症患者?

身為躁鬱症患者的家人或朋友,了解如何在不同的情緒階段支持患者是關鍵。在躁期時,避免硬碰硬,而是試著將患者的注意力引導到安全的活動上;在鬱期時,提供非批評的陪伴,讓患者感受到被理解與支持。

躁鬱症是一種需要長期管理的疾病,但這並不意味著生活的希望就此消失。許多躁鬱症患者在接受治療後,依然能過著豐富充實的生活,並在自己的專業領域中發揮才華,擁有幸福的人生。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2568 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。