0

0
0

文字

分享

0
0
0

追風又追電,富蘭克林的冒險──《天氣之書》

時報出版_96
・2018/11/24 ・1979字 ・閱讀時間約 4 分鐘 ・SR值 548 ・八年級

-----廣告,請繼續往下閱讀-----

編按:《天氣之書》以編年形式講述一百個具有里程碑意義的時刻,標註了氣候與人類生活共同演化的歷史。一篇一個歷史時刻,皆以一張主題圖片搭配六百到八百字的短文呈現。本文摘錄兩篇:一七五二年〈班傑明.富蘭克林的避雷針〉與一七五五年〈追風的富蘭克林〉。

茲茲茲,就算觸電還是要做實驗!

班傑明.富蘭克林(Benjamin Franklin,1706-1790)最為人所知的身分是美國的開國元勛之一,但他也是一位作家、畫家、發明家、郵政專家、外交官、公民運動家,而且特別著迷於與電相關的早期科學研究。富蘭克林從一七四七年開始實驗,意外讓自己嚴重觸電──「宇宙的一擊從頭到腳貫穿我的全身」──他在一封信中如此描述此事件。

富蘭克林也學習氣象學,所以他深信閃電和靜電相似,並開始探索不同的方式,以保護建築結構免受這種強大的氣象威脅。一七四九年,富蘭克林開始發展理論,認為一根末端尖尖的棒子若與地面連接,就能保護建築免受雷擊。

一七五二年六月,他對費城一座教堂的尖塔尚未完工感到不耐──本來希望用這座尖塔來測試他的避雷針概念。於此同時,他進行了那一場傳奇的風箏實驗:在雷雨天放風箏,線上綁著一把鐵製的鑰匙。富蘭克林活著結束這個實驗是很幸運的,因為後來有人嘗試重現該實驗,結果遭雷擊身亡。而當富蘭克林的研究傳到歐洲時,那裡也進行了數個實驗,想確認他的想法。

富蘭克林從天空取電(c.1816)。畫家為英裔美籍的班傑明.魏斯特(Benjamin West,1738-1820),描繪富蘭克林出名的風箏實驗。 圖/《天氣之書》

有裝有保庇,避雷針橫空出世啦

風箏實驗和避雷針的設計都顯示了一項科學原理:電會試著找到抵抗最小的路徑以抵達地面。利用這些見解為本,富蘭克林在一七五三年度的《窮李查年鑑》(Poor Richard’s Almanack)中發表了一篇文章,描述保護房子免受雷擊的方法。他的系統由三個關鍵元素組成:一根立在屋頂尖端的金屬棒,水平的屋頂導體,以及垂直的導體,將電荷引導到接地。

-----廣告,請繼續往下閱讀-----
圖/pixabay

富蘭克林在自家立了一根避雷針,並增加創新的細節──接地線有電時,鈴鐺就會響,通知大家這間房子上方的大氣是通電的。富蘭克林的避雷針最後被裝在多個重要建築上,包括之後成為美國獨立紀念館(Independence Hall)的賓夕維尼亞州州政府。

不只追電還要追風,富蘭克林衝一波

除了研究閃電與電,富蘭克林也一直對龍捲風等其他旋風抱持濃厚的興趣。證據來自於一系列相關信件與其他文章,特別是一七五三年一篇關於水龍捲的詳細論文,內容還附有詳細的圖片,闡述了他對於水龍捲構造及能量的理論。

富蘭克林論文〈水龍捲與旋風〉所附的水龍捲示意圖,收錄於1806年出版之《已故的班傑明.富蘭克林博士哲學、政治學、道德研究全集》(The Complete Works in Philosophy, Politics, and Morals, of the Late Dr. Benjamin Franklin)。(點圖放大)圖/《天氣之書》

富蘭克林顯然渴望近距離觀察它們。一七五五年,他帶著兒子威廉住在班傑明.塔斯克上校(Colonel Benjamin Tasker)的馬里蘭州宅邸。在鄉間騎馬時,兩人碰上了一陣剛形成的塵捲風。富蘭克林後來寫信給經常與他討論電學的彼得.寇林森(Peter Collinson),回憶接下來發生的事;以下摘錄自他的信:

它以圓錐形出現,在端點上旋轉,沿著山坡朝我們移動過來,一邊前進一邊變大。當它經過我們時,靠近地面的較小部分差不多是一個普通桶子的大小,但是往上愈變愈大,在十二.二或十五.二公尺高的地方,直徑變得有六.一或九.一公尺那麼寬。同行的其他人都站在那兒看,但我的好奇心愈來愈強烈,於是我跟著它,騎馬接近它的側面,觀察到它一邊前進,一邊帶起那體積較小端下方的所有灰塵。因為一般認為開槍射擊水龍捲會破壞水龍捲,所以我揮舞馬鞭數次,試圖破壞這個小旋風,但徒勞無功。

這段追逐結束於這股旋風橫掃過一座菸草田後消散無蹤,只留下滿天被捲起的樹葉。富蘭克林以下列妙語為他的追風之旅做結:「當我問塔斯克上校,這種旋風在馬里蘭州是否很常見時,他愉快地回答:『不,一點也不常見,但我們為了招待富蘭克林先生,故意使其發生。』真是高規格的待遇啊⋯⋯」

-----廣告,請繼續往下閱讀-----

 

《天氣之書》延伸閱讀

  • 1806年〈蒲福為風力分級〉p.67
  • 1989年〈電子「精靈」的證據〉p.173
  • 2016年〈極端的閃電〉p.195

編按:關於富蘭克林的風箏實驗,後人描述的故事版本紛紜,其實富蘭克林本人曾撰寫文章描述該實驗,於1752年10月19日刊登在賓夕維尼亞公報(Pennsylvania Gazette)。

 

 

本文摘自《天氣之書:100個氣象的科學趣聞與關鍵歷史》,時報出版,2018  年 10 月出版。

 

 

 

 

 

 

 

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
【成語科學】見風轉舵:船隻如何改變方向?中國曾經是造船大國?
張之傑_96
・2023/10/13 ・1202字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

古人行船,以風作為動力。只要調整風帆和舵,各個方向的風都可利用。由此引申出成語「見風轉舵」,或「見風使舵」,比喻隨機應變,視情況行動。還是讓我們造兩個句吧。

古人以風為動力,因而引伸出「見風轉舵」、「見風使舵」。圖/unsplash

他一看氣氛不對,立刻見風轉舵,改變態度。

做人要懂得見風轉舵,不要死守自己的看法。

接下去讓我們談談舵。要使船隻改變方向,有三種辦法:一是向一側搖動船槳;二是搖動船尾的艪(大型船槳);三是轉動舵桿,帶動尾軸舵轉動。前兩者適合小船,如果遇到風浪,即使小船都不適用。那麼尾軸舵呢?尾軸舵裝在船尾,藏在水下,即使有大風大浪,都可發揮作用,這是唯一適合遠洋航行的轉向裝置。

中國不曾成為海權國家,卻是造船大國,在造船和航海上有許多重大發明。除了大家都知道的指南針(羅盤),尾軸舵是另一項重大發明。尾軸舵至遲到漢代即已出現,約 10 世紀末傳到阿拉伯,約 13 世紀傳入歐洲。學者們認為,如果沒有羅盤和尾軸舵,地理大發現是不可能發生的。

如果沒有羅盤,地理大發現是不可能發生的。圖/unsplash

中國式的風帆是用蓆子做的,呈梯形。不用時摺疊起來,出航時用滑輪昇起,掛在桅桿上。這種風帆操作簡易,可利用各個方風的風,甚至可以沿著「之」字形逆風而行。中國式的桅杆和風帆,對西方的桅杆和風帆的改進,也曾起過動大作用。

-----廣告,請繼續往下閱讀-----

船隻在江河、湖泊或海洋航行時,由於風向隨時可能發生變化,水手們得隨時拉動纜繩,調整風帆,改變風帆的迎風面;舵手也得隨時搖動舵桿,使尾軸舵轉動,配合船隻的航向。於是原本是行船的專業用語,經過演變,就成為一個成語,類似的例還不少見呢。

《馬可波羅遊記》記載:「中國江河中的船,比全歐洲的船加起來還要多!」 圖/unsplash

接下去章老師要回答一個問題:中國不曾成為海權國家,為何曾經是造船大國?中國傳統建築以木構為主,其他古文明皆以石材為主。古代的船隻,不論東方、西方,都是木構的。中國人擅長使用木材蓋房子,於是中國人也很會使用木材造船。

再說,中國曾經是造船大國,和需求有關。中國幅員廣大,自古就有南船北馬的說法。華中、華南的交通以水路為主,內河航行發達,船舶需求量大。《馬可波羅遊記》記載:「中國江河中的船,比全歐洲的船加起來還要多!」

-----廣告,請繼續往下閱讀-----
張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

2
1

文字

分享

0
2
1
變身沙贊靠閃電夠力嗎?會是能源解方還是一場災難?《沙贊! 》中的神力閃電之謎
Rock Sun
・2023/05/30 ・4134字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

「沙贊!」然後一道閃電就會打下來,擊中一位青少年,瞬間變成一位穿著紅衣+披風、渾身肌肉的(中二)成年人,這就是 DC 宇宙中,超級英雄沙贊的變身過程。

很有趣的是,大家可以回想一下,最近這 10 幾年來席捲世界的漫威和 DC 英雄,絕大部分執行英雄行動前都是進行「著裝」,例如鋼鐵人、蝙蝠俠、美國隊長……等,但是沙贊不一樣,儘管不複雜,但他需要一套特別的手續來改變他自己的身體,已獲得他身為超級英雄的力量,這點跟日本的超人力霸王比較類似。

根據 DC 宇宙的設定,賦予沙贊力量、讓他變身的閃電都來自神界的奧林帕斯山,只要他大喊一聲,閃電就會隨傳隨到,而因為一切是神力的關係,理論上他接收力量的位置無關緊要,也非常的安全。

真不愧是奧林帕斯山啊!如果我們能夠在比利(電影中變身成沙贊的少年)的頭上裝一個收集閃電能量的器材,那費城一定變成全美國能源最豐沛的城市。

-----廣告,請繼續往下閱讀-----
我們說的是站中間那個穿紅色緊身衣的大男人。 圖/IMDb

但是要進行超級英雄活動,普通的閃電能量夠嗎?這道奧林帕斯山的閃電會不會是一道超越人類認知的超級閃電呢?

還有儘管沙贊不會受影響,但如果有人不小心在變身時不小心碰觸他或在他附近,會發生什麼事呢?

這真的值得一起來探討~

先定立標準:閃電能提供多少能量?

閃電是大自然中最純粹的能量展現之一,經過大氣學家的觀測和預估,一道閃電電壓大概是 3 億伏特,帶有 10 億焦耳的能量,這差不多是燃燒 30 公升左右的汽油。

-----廣告,請繼續往下閱讀-----

聽起來非常的厲害,那我們利用閃電來獲得能源會不會是個好方法?

其實從 1980 年代開始科學家就有這種想法,但是他們發現這其實很不切實際,主要原因有幾個:閃電很難預測、傳導到地面上能量又會大減、效率很不穩定……但那是大自然的閃電,讓沙贊變身的可是充滿神力的閃電耶!不只能夠提供沙贊穩定且高能的能量來源,還可以藉由跟蹤比利知道閃電的位置和時間。

我們只要把比利抓起來請出來,跟他預約時間大喊沙贊,就可以發電了~

圖/GIPHY

現在的問題是……這道閃電有多少能量呢?

要知道一道神奇閃電帶有多少能量其實有點困難,因為一旦比利變身之後,他似乎沒有時間限制,不像超人力霸人那樣有 3 分鐘的活動上限,後者會比較好估算是因為你可以設想這 3 分鐘內超人力霸王做了哪些事情,在逐一拆解。

-----廣告,請繼續往下閱讀-----

所以筆者覺得最能夠執行的方式,是羅列出電影中沙贊一次變身基本上會做到的事情,這樣結果應該就足夠是神力閃電的基本盤。

從電影《沙贊!眾神之怒》中,筆者列出幾個沙贊在超級英雄狀態時做的事,包括:

  1. 以音速飛行 10 分鐘
  2. 把一隻體型巨大的飛龍打飛 10 公尺
  3. 把一台車移動 200 公尺
  4. 從手中放出好幾道像特斯拉線圈的能量閃電

這樣感覺差不多了吧……等等~還有一件很重要的事,就是這道閃電同時還把一名 17 歲的青年變成一名看起來 30 歲的成年人,這瞬間成長所需的誇張能量應該也要算進閃電的功勞裡,所以這個列表還要加進另一項:

  1. 讓 17 歲的青年成長成 30 歲男性的所需熱量
長大成這樣~ 圖/IMDb

那我們接下來可以逐一估算了。

-----廣告,請繼續往下閱讀-----
  • 那首先就來計算成長所需的熱量吧!

要讓人成長的能量,其實也是熱量,也就是大家耳熟能詳的卡洛里,1 千大卡的熱量差不多是 4184 焦耳的能量。

根據衛服部提供的資料,一名成年人每日所需的熱量依他的活動量和體重來決定,那沙贊毫無疑問絕對是重度活動量那一類的,體重的話少年比利看起來介於 60~70 公斤之間,而飾演沙贊的演員柴克萊威曾說為了演戲需要增重到超過 90 公斤,雖然隨著體重增加每日所需熱量也會不同,但為了簡單估算,我們姑且用 80 公斤算到底吧~

圖/衛福部

比利瞬間成長為超人般壯碩所需能量= 40 大卡 x 80 公斤 x 365 天 x (30-17) 年 x 4184 J= 6.35x 1010 焦耳 = 635 億焦耳

這數字怎麼已經有點大了……但在吐槽之前,我們先把其他的所需能量都估算完吧~

-----廣告,請繼續往下閱讀-----
  • 以音速飛行 10 分鐘

這裡我們借用四分之一英里估算法,這是個可以從物體重量(通常是車子)和行駛四分之一英里所需的時間來求得功率的簡單方式。

沙贊體重 90 公斤,而他在音速下完成 1/4 英里所需的時間為 1.2 秒,根據線上工具估算,這名英雄相當於擁有 22,876 馬力,轉化為瓦特差不多是 1700 萬瓦特,如果沙贊要飛行 10 分鐘,他就會需要大約 100 億焦耳的能量

  • 把一隻體型巨大的飛龍打飛 50 公尺

這個計算方式並不困難,就是簡單的做功運算,但是筆者遇到了很嚴重的問題:電影中的飛龍-拉頓到底多重呢?

經過一番搜尋,網路上對於一條中世紀奇幻飛龍到底有多重幾乎是沒有定論,看起來好像沒有人有認真算過,所以筆者打算自己來操刀,解決這個世紀大謎題 (?)。

-----廣告,請繼續往下閱讀-----

有看過《空想科學讀本》的人對筆者使用的方法一定不陌生,就是把模型浸到水裡面,估算體積之後放大,再考慮密度來求得飛龍的體重。

所以筆者到了地下街的玩具店,買了一條看起來最像電影中奇幻飛龍體型的模型玩具(其實是動漫《轉生成為史萊姆》的公仔,似乎是主角後期的樣子吧?筆者沒有看不清楚~),將它放進水盆裡面裝水,做好水位標記之後取出模型,水位下降之後從水盆的面積和下降高度求得玩具龍的體積大概是 0.000283 立方公尺,這時我們需要玩具龍的身長和電影中的拉頓身長來做等比放大,玩具龍身體差不多是 25 公分,而從電影中拉頓站在棒球場內野的畫面來做估算,它的身長大約是 25 公尺,身長差 100 倍,所以體積會變 100 的 3 次方也就是 100 萬倍,所以說拉頓的體積大概是 283 立方公尺。

筆者買到的龍模型,雖然它是站立的,但平放在地上看起來跟電影中的龍差不多。圖/作者提供

這時我們需要拉頓身體的密度來求得體重,如果拉頓是生物的話,它的身體密度應該也要接近水(每立方公尺 1000 公斤),例如人體的密度就差不多是每立方公尺 1062 公斤,但是電影中拉頓身體看起來有點像是由木頭構成的,而世界上最堅硬的木頭是澳洲鐵木樹(Australian buloke)密度是 1085 kg/m3,再加上龍的奇幻性質,我想把拉頓的身體密度定為 1100 kg/m3 應該是還可以接受的吧?

如果用這個方式估算,電影中看守花園的飛龍拉頓,體重大概會是 311 公噸,我們套入物理課本中看過的做功計算公式,可以知道沙贊把一條龍打飛 50 公尺所需要的能量,大概會是 7775 萬焦耳

-----廣告,請繼續往下閱讀-----
電影中飛龍的劇照。圖/Twitter
  • 把一台車移動 200 公尺

相較前面兩個,這計算相對簡單一點,我們一樣用上面的作功公式來求需要能量,而我們需要的就是車子的重量。根據統計,美國一般路上的車子平均重量為 1800 公斤,如果要在 3 秒鐘內移動 200 公尺,就相當於需要 4 百萬焦耳

  • 從手中放出好幾道能量閃電

沙贊從手上放出閃電,看起來就像是電弧的一種,而電弧是因為有強大的電場或高壓電存在,使的原本不導電的物質電漿化得以使電流通過的現象,而說到能夠最穩定產生電弧的狀況,筆者第一個想到的是在現實中會看到的特斯拉線圈。

特斯拉線圈是一種由知名物理學家特斯拉發明的強大變壓器,這種變壓器使用共振原理運作,主要用來生產超高電壓但低電流、高頻率的交流電力,因為特斯拉線圈可產生絢麗的電弧效果,所以很常在一些科學博物館或展示中看到,而世界上最強大的特斯拉線圈: Electrum 的能量使用率為 130,000 瓦特,假設沙贊能夠用同等功率放出電弧長達 10 秒鐘,就會需要 130 萬焦耳的能量。

Electrum 特斯拉線圈。圖/wikipedia

這下子我們需要的數字都有了!

這道神奇閃電所附帶的能量大約是:

635 億(變成大人)+100 億(音速飛行 10 分鐘)+7775 萬(打飛一條龍)+400 萬(移動一台車)+130 萬(放出閃電)= 735 億 8305 萬焦耳

 而正常世界一道閃電的能量大約是 10 億焦耳,也就是說~這道神奇閃電差不多是等於 74 道現實中閃電的能量。

好厲害啊!真不愧是奧林帕斯的眾神,能夠這麼精準的傳遞如此巨大的電能量根本就是神蹟…..也確實是神蹟沒錯~

但是如果一個不小心承接這道能量的人不是沙贊的話,會發生什麼事呢?

一般人被普通的閃電擊中就已經不是鬧著玩的了!

直接被閃電擊中的人會成為電流的一部分,一部分電流會沿著皮膚表面移動,另一部分會穿過身體的心血管或神經系統,前者會對皮膚造成灼傷,後者則有可能造成呼吸停止或心臟驟停,但我們還是能找到一些歷史上從雷擊中生還的故事,因為有沒有辦法在雷擊中活下來是跟就醫和電流通過體內的時間而定……運氣好的話,你不會死的。

但是在沙贊的神奇閃電面前,這一切都成為笑話。

這道 735 億焦耳的閃電能量相當於 2 顆歷史上最強大非核子炸彈:炸彈之母(GBU-43/B 大型空爆炸彈)爆炸所釋放出的能量,所以如果今天好死不死沒有打在比利身上,而是擊中地面的話,後果一定不堪設想,周遭的親友絕對是灰飛煙滅,費城可能會變成廢墟,之前說的收集能量可能完全行不通,因為應該沒多少設備儀器能夠承受如此巨大的威力。

反倒是比利啊~你是不是在承接沙贊能力時同時被改造了,被2顆炸彈之母轟炸都沒事,真是太神啦!還有就是一定要站好喔~

全世界只有這位男人能承受的力量。圖/IMDb
-----廣告,請繼續往下閱讀-----
Rock Sun
64 篇文章 ・ 960 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者