Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

「這很好笑嗎?」幽默在夫妻之間不一定是個好東西?

研之有物│中央研究院_96
・2018/10/31 ・3976字 ・閱讀時間約 8 分鐘 ・SR值 547 ・八年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

該如何跳婚姻這場雙人舞?夫妻互動研究

「你快點回火星去吧!地球是很危險的。」在《少林足球》電影中,當周星馳對著趙薇說出這句話時,相信多數觀眾都笑了,但如果你對著自己的老婆或老公說出這句話,下場會怎麼樣呢?中研院民族學研究所的周玉慧研究員,與團隊長期研究「夫妻互動關係」,發現夫妻間幽默的後果有好也有壞!

幽默有的時候在夫妻間不見得是好東西? source:Wikipedia

幽默不一定都很好?

要解除抑鬱的方法,正是開懷大笑,這也是幽默一詞的由來,更是現代人紓壓的選擇之一。上班聽同事說笑,臉書看網紅的詼諧影片,交往對象的條件經常會有「幽默」這個選項。但你知道在婚姻裡,「幽默」卻可能是人間兇器?無意間就會刺碎枕邊人透明的玻璃心。

周玉慧與團隊的研究中,分析大台北地區 390 對夫妻的問卷資料,將這些夫妻的幽默互動整理成以下四種型態:

1. 第一類夫妻,丈夫運用較多詼諧與自貶式幽默,稱之為「夫詼諧自貶型」。
2. 第二類夫妻,妻子運用較多嘲諷與自貶式幽默,命名為「妻嘲諷自貶型」。
3. 第三類夫妻不論自貶、嘲諷或詼諧,丈夫與妻子各種幽默的運用頻率都很高,稱為「雙多元運用型」。
4. 第四類夫妻不論何種幽默的運用頻率都最低,稱為「雙少用幽默型」。
資料來源│〈夫妻互動的社會心理研究──以幽默為例〉,作者:周玉慧 圖說設計│張語辰

進一步研究發現:「雙少用幽默型」的夫妻對於婚姻的滿意程度是最高的,次之是「雙多元運用型」與「夫詼諧自貶型」,而「妻嘲諷自貶型幽默」的夫妻婚姻滿意度則最低。

-----廣告,請繼續往下閱讀-----

得到這個研究結果時,周玉慧研究員自己都感到驚訝:大家都以為幽默受歡迎才對呀!為何「幽默」對婚姻有正面效應、竟也有負面效果?

枕邊人的幽默類型

電影《安妮霍爾》。source:IMDb

仔細想一想,如果妳是電影《安妮霍爾》裡的女主角安妮,每天都面對酸言酸語的男伴艾維,連需要他幫忙時,他嘴巴還是不饒人地嘲諷妳一番呢?或者,你可以像電影《歌喉讚》裡的邦普,總是能夠欣賞艾美言語之中帶有「顏色」的風趣嗎?這些在電影裡常會出現的幽默型態,置放在夫妻日常生活的朝夕相處中,反而可能無法相安無事。

心理學家史登堡在 1986 年提出愛情三角理論 (triangular theory of love),認為愛情是由「激情」、「親密」與「承諾」所組成。而夫妻相較於情侶,更為親密,也需要承擔更多責任。當兩人從半透明的曖昧雲霧裡,走向日光燈底下的家庭餐桌,每一個舉動都可能產生不同的解讀。多數幽默的動機是出於好意,但最終決定這一個幽默能不能激起正面的漣漪,關鍵在於表達的形式、以及對應的伴侶在當下是否能接受與理解這番幽默。

夫妻運用幽默的「動機 Why」與「方式 What」,是影響伴侶能否感受幽默的變因。

在問卷調查中,周玉慧與研究團隊把幽默運用動機(個人採取幽默的原因,why) 分成三種:利他(製造歡樂氣氛、娛樂他人)、利己(情境或壓力因應、獲得稱讚)、利關係(促進關係、減少人際緊張)。

而幽默運用方式 (運用什麼形式展現幽默,what) 亦可拆解為三種:自貶(拿自己開玩笑)、嘲諷(帶有貶意地開伴侶的玩笑)、詼諧(玩諧音、文字遊戲等等)。

上述大台北地區 390 對夫妻樣本中,夫妻間的幽默運用方式,以妻嘲諷自貶型幽默為最多 (35.1%),接下來並列的是夫詼諧自貶型 (25.4%)、丈夫和妻子雙多元運用型 (25.1%),而夫妻雙少用幽默型為最少 (14.4%)。

從下表比較結果來看,通常夫妻運用幽默的動機大多為了「利他」,包含營造歡樂氣氛、娛樂朋友、增進自己的人際關係。很有趣的現象是,「利關係」的動機相對較少。顯示夫妻搞笑時,大多是為了伴侶之外的他人、或當下的氣氛,而相對較少是念及維繫夫妻關係。

夫妻四種幽默運用類型,問卷調查結果的變項平均值。
資料來源│周玉慧 (2018)。〈夫妻間幽默運用及其影響〉。《中華心理學刊》,60,33-55。 圖說重製│張語辰

問及對於婚姻的「充實感」與「後悔感」,如下表,「妻嘲諷自貶型」的丈夫或妻子對於婚姻評價明顯低於其他三型。相較之下,雙方都不太耍幽默的夫妻,卻對於婚姻有最高的充實感、最少的後悔感。

由此調查結果顯示,幽默的運用不一定與良好的婚姻品質相連結,尤其是妻子嘲諷或自貶式的幽默,對於婚姻關係反而產生負面效果。

夫妻四種幽默運用類型,問卷調查結果的變項平均值。
資料來源│周玉慧 (2018)。〈夫妻間幽默運用及其影響〉。《中華心理學刊》,60,33-55。 圖說重製│張語辰

老婆幽默錯了嗎?

由於男性擁有較高的權力、地位及物質資源,因此掌握幽默的主導權。──Crawford (2003)

周玉慧與團隊的研究結果,與 Crawford 於 2003 年的研究(註一)相呼應。根據前述圖表顯示,丈夫確實比妻子具有更高的幽默動機與更多的幽默行為。從社會觀感來看,說笑、耍寶、自嘲通常被認為應是「男性」所為。周玉慧提到,研究訪談時曾經有一名年輕的丈夫表示:「不希望太太講笑話,耍寶嘻笑這種事先生來做就好。」

難道,沒有一個女子是因為她的靈魂幽默而被愛的?

這背後其實受到傳統文化與社會觀感影響,隱隱透露臺灣夫妻對於幽默的刻板印象,仍存在「君子不重則不威」或是「女子必須莊重」的看法。使得臺灣夫妻的相處互動中,與其運用幽默不如不用,或是與其妻子運用不如丈夫運用。

另外,周玉慧與團隊的研究結果,也呈現一個值得留意的現象。如下圖,無論是運用哪種幽默類型的夫妻,丈夫對於婚姻的充實感都比妻子高許多。這提供了一個線索,讓人反思:在臺灣當代社會中,究竟「婚姻」這件事是對丈夫有利?或是對妻子有利?

-----廣告,請繼續往下閱讀-----
婚姻的「充實感」分數,在四種幽默運用類型的夫妻間的差異。
資料來源│周玉慧 (2018)。〈夫妻間幽默運用及其影響〉。《中華心理學刊》,60,33-55。 圖說重製│張語辰

尊重,當對方的神隊友

研究夫妻互動關係的周玉慧,認為夫妻間運用幽默,最重要的心態是要「相互尊重」。像是「死老頭」、「娶這老婆沒用」這種嘲諷笑話就像包裝過的敵意,殺傷力很強。

不該說笑時說笑,或自以為幽默卻未顧及伴侶,都會成為負向溝通。

歷年來與數百對夫妻訪談,周玉慧提到,其實大家結婚的原因都不盡相同。但婚姻持續的共通點是:成為夫妻、變得更親密之後,也要對彼此更尊重。「而且,很多夫妻都不太知道對方的底線」,周玉慧提到,夫妻最好互相告知地雷區,說了就別誤踩禁區。雖然不一定會從塵土裡開出花來,但至少不會惹起塵埃。

「夫妻對於幽默的展現,需要學習,亂用不如不用。」周玉慧道出長年的研究心得。
攝影│張語辰

詩人里爾克說過:「愛,很好;因為愛是艱難的。以人去愛人:這也許是給與我們的最艱難、最重大的事,是最後的實驗與考試,是最高的工作,別的工作都不過是為此而做的準備。」這段話值得每對夫妻放在心裡。

當妻子為愛勇往直前、突破傳統時,無論是為了利他、利己、利關係而發揮幽默,丈夫應該要給予支持的力量,當個神隊友、放下不需要的刻板印象,與另一半一起完成「夫妻互動」這個最高的工作。而妻子也要聰明選擇幽默的型態,多採取詼諧的方式,避免自貶或嘲諷造成反效果。

婚姻關係因幽默運用類型而大相徑庭 ,其中動機 (Why)與類型 (What) 的交互作用,更展現臺灣夫妻互動的特色。雖然仍受到父系社會的影響,而存在幽默主導權的問題,不過周玉慧提到,「家庭和諧」一直是臺灣民眾相當重視的核心價值。當夫妻雙方願意對彼此的關係和諧付出更多努力,並且謹記尊重對方、選擇適當的幽默運用方式,那麼明天起床也就還會有一頓好吃的早餐了,無論是丈夫或是妻子準備的。

延伸閱讀

本著作由研之有物製作,原文為《幽默啊!你的名字難道是婚姻的謀殺者?》以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3652 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
2

文字

分享

0
2
2
數學無聊是誰的錯?數學家其實很幽默?——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/08 ・2441字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

雖然很少有學生小學畢業後還不懂乘法表,但有很多人確實不會算,如果一個人開車的速度是每小時 56 公里,開了 4 小時之後,他就開了 224 公里。要是每公克花生賣 40 美分,而 1 袋花生賣 2.2 美元,那麼,這袋花生裡就有 5.5 公克花生。假如全世界人口中有 1/4 是中國人,其餘的 1/5 是印度人,那麼,印度人在全世界的人口中就占了 3/20,或說是 15%。當然,要理解這些問題,並不像學會算 35×4=140、(2.2)/(0.4)=5.5、1/5×(1–1/4)=3/20=0.15=15% 這麼簡單。對很多小學生來說,這不是自然而然就會的東西,要靠做很多很實用、或是純屬想像的問題,才能進一步學會。

至於估計,學校裡除了教一些四捨五入之外,通常也沒有別的了。四捨五入和合理的估計與真實人生大有關係,但課堂上很少串起這樣的連結。學校不會帶著小學生估計學校砌一面牆要用掉多少塊磚、班上跑最快的人速度多快、班上同學爸爸是禿頭的比例多高、一個人的頭圍與身高之比是多少、要堆出一座高度和帝國大廈等高的塔需要幾枚 5 美分硬幣,還有他們的教室能否容納這些 5 美分硬幣。

幾乎也沒人教歸納推理,也不會用猜測相關性質和規則的角度,來研究數學現象。在小學數學課裡談到非形式邏輯(informal logic)的機率,就跟講到冰島傳說一樣高。當然,也不會有人提到難題、遊戲和謎語。我相信,這是因為很多時候,聰明的 10 歲小孩輕輕鬆鬆就能打敗老師。

數學科普作家葛登能最不遺餘力探索數學和這些遊戲之間的密切關係。他寫了很多極有吸引力的書,也在《科學美國人》撰寫專欄,而這些都是會讓高中生或大學生感到很刺激的課外讀物(前提是有人指定他們去讀的話)。此外,數學家喬治.波利亞(George Polya)的《怎樣解題》(How to Solve It)和《數學與合情判讀》(Mathematics and Plausible Reasoning),或許也屬於這一類。有一本帶有這些人的文風、但屬於較初階的有趣好書,是瑪瑞琳.伯恩斯(Marilyn Burns)所寫的《我恨數學》(The I Hate Mathematics! Book),書裡有很多啟發性的提示,帶領讀者解題與發想各種奇思異想,是小學數學課本裡罕見的內容。

-----廣告,請繼續往下閱讀-----
圖/envato

有太多教科書仍列出太多人名和術語,就算有說明解析,也很少。比方說,教科書上會說加法是一種結合律運算(associative operation),因為(a + b)+ c=a +(b + c)。但很少人會提到非結合律運算,因此,充其量來說,結合律運算的定義是畫蛇添足。不管是結合律或非結合律,你知道了這些資訊之後要怎麼應用?書上還會介紹到其他術語,但除了用粗體字印在書頁中間的小框框裡,看起來很了不起之外,也沒什麼值得提的理由。這些術語滿足了很多人認為,知識就好比一門普通植物學,每種學問都可以在體系中,找到自己的類別和位置。相比之下,把數學當成有用的工具、思維方式或是獲得樂趣的途徑,在多數小學教育課綱中都是很陌生的概念(即使教科書內容不錯也一樣)。

或許有人會認為,在小學階段,可以用電腦軟體,來幫助學生掌握基本的算數原理及相關應用(應用題、估計等等)。可惜的是,目前可用的程式通常是從教科書上擷取無趣的例行練習,轉化成電腦螢幕版本而已。我不知道有任何軟體可用整合、一致且有效的方法,來教算術與解題應用。

小學階段的數學教學品質普遍不佳,最終必會有人怪罪於老師能力不足,而且對數學沒什麼興趣、或不懂欣賞數學。我認為,這當中有一部分又要歸咎於大專院校的師資培養課程中,很少或根本不強調數學。以我自己的教學經驗來說,我教過的學生中,表現最差的是中學生,而不是大學主修數學的學生。準小學老師的數學背景也很糟,很多時候甚至根本沒有相關的數學教學經歷。

而每所小學聘用一、兩位數學專才,在學校裡每天分別到不同班級輔導(或教授)數學,或許可以解決部分問題。有時我認為,如果大學數學教授和小學老師每年可以交換個幾星期,會是個好方法。同樣的,把主修數學的大學生和研究生交到小學老師手裡,不會造成傷害(事實上,後者或許能從前者身上學到一些東西)。而三、四、五年級的小學生則可以在完全適任的老師教導下,接觸到數學謎題與遊戲,將可大大獲益。

-----廣告,請繼續往下閱讀-----
圖/envato

稍微打個岔,謎題與數學之間很有關係,而且相關性會一直延續到大學與研究階段的數學。當然,把謎題換成幽默也通。我在《數學與幽默》(Mathematics and Humor)書中試著說明,數學和幽默都是某種益智遊戲,與猜謎、解題、遊戲和悖論多有共通之處。

數學和幽默都是把概念組合、拆開再拼回來,然後從中得到樂趣。慣用的手法包括並列、歸納、迭代和倒向(比方說「aixelsyd」就是把「dyslexia」﹝閱讀障礙﹞的字序倒過來)。那麼,如果我放寬這個條件,但緊縮另一個條件會怎樣?某一個領域的概念(像是綁辮子),和另一個看來完全不同領域的概念(如某些幾何圖形的對稱性)有什麼共通點?當然,即便不是數盲,可能也不熟悉數學這個面向,因為你必須要先具備一定程度的數學概念,才可以拿來耍弄。其他像獨創性、不協調感以及精簡的表達,對於數學和幽默來說也都同樣重要。

可能有人說過,因為所受訓練之故,數學家有一種特殊的幽默感。他們往往會接受字面意義,但字面上的解讀又常和標準用法的意義不同,因此很好笑。比方說,哪種運動比賽時要蓋臉?答案是,冰上曲棍球以及痲瘋病人拳擊(按:原文「Which two sports have face-offs」,「face-off」其中一個字面意義為「蓋臉」,而這也是冰上曲棍球常用的術語,意指「爭奪球權」)。他們也很沉溺於歸謬法(reductio ad absurdum),或設定極端前提條件然後做邏輯演練,以及各式各樣的字組遊戲。

如果可以透過小學、中學或大學階段的正式數學教育,或是非正式的數學科普書籍,傳達數學有趣的面向。我認為,數盲就不會像現在這麼普遍。

-----廣告,請繼續往下閱讀-----

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。

0

3
3

文字

分享

0
3
3
減碳新招:二氧化碳再利用!光觸媒材料可以把二氧化碳還原成工業化學原料?——專訪中研院原分所陳貴賢特聘研究員
研之有物│中央研究院_96
・2023/11/03 ・5793字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|簡克志
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

降低碳排還不夠,奈米材料幫你直接減少二氧化碳!

氣候變遷問題日益嚴重,2023 年 9 月成為全球有史以來最熱的月份,臺灣夏天飆破 38 ℃ 的頻率逐漸增加。為了避免地表升溫超過工業化前水準的 +1.5 ℃,世界各國訂出 2050 年淨零排放的目標,設法減少大氣中的溫室氣體。減碳解方除了低碳電力之外,直接減少二氧化碳也是一條路徑。中央研究院「研之有物」專訪院內原子與分子科學研究所陳貴賢特聘研究員,他的研究專長是奈米能源材料,我們將介紹一種複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),在太陽光照射下,此材料表面發生的氧化還原反應,會將二氧化碳還原成有用的工業化學原料!

為了避免全球升溫超過工業化前水準的 +1.5 ℃,我們需要減少碳排放與開發負碳技術,並盡量在 2050 年左右達到全球溫室氣體淨零排放量的目標。所謂的「工業化前水準」是指 1850-1900 年的平均溫度。
圖|iStock

地球「保冷」計畫——減碳是關鍵

我們每天排放多少二氧化碳?根據 Our World in Data 的人均二氧化碳排放數據,2021 年全球每人排放的二氧化碳為 4.69 噸,而燃燒 1 公升的汽油大概會產生 2.3 公斤的二氧化碳。換算一下,每人每天排放二氧化碳約為 12.8 公斤,相當於每人每天消耗 5.6 公升的汽油!

根據聯合國政府間氣候變化專門委員會(IPCC)的特別報告「全球暖化 1.5 ℃」,人類活動排放的溫室氣體,已經讓地球表面平均溫度上升了 1 ℃。若以人類目前經濟模式發展下去,碳排放量可預期將不斷上升,大量溫室氣體將讓暖化現象與極端天氣事件更加劇。

氣候科學家警示,地球表面平均溫度需控制在 +1.5 ℃ 以內 註 1,否則將有不可逆的後果,例如生物多樣性大幅度降低的風險。因此,世界各國有了 2050 年淨零排放的共同目標,並不是說都不排碳了,而是要設法讓溫室氣體的碳排放量和碳減少量相互抵消,達到「淨零」的目標。

-----廣告,請繼續往下閱讀-----

要達到淨零的目標,除了尋找與開發減碳電力之外,直接減少二氧化碳也是一個方法。想像一下,如果可以像植物一樣,只要照太陽光,就把二氧化碳變成有價值的碳氫化合物,聽起來不錯吧?但是二氧化碳做為燃燒後的產物已相當穩定,要如何以人工方式讓二氧化碳再次參與反應?

我們可運用「陽光」與「光催化材料」(又稱光觸媒,photocatalyst),不僅可以減碳,還能產生有價值的碳氫化合物,是一種「一舉兩得」的方法!

光觸媒(光催化)材料是什麼?

在談到光催化材料之前,先複習一下「催化劑」這個概念,催化劑不參與化學反應,但是它讓原先不可能的化學反應變得可行!陳貴賢分享,這就像過去從臺北到宜蘭需要翻過雪山,經過九彎十八拐的北宜公路;但如今有了「雪山隧道」之後,就大大降低臺北到宜蘭的時間與難度。「雪山隧道」就是臺北通往宜蘭的催化劑。

除此之外,催化劑也可以說是推進人類歷史發展的重要角色!在過去,農作物施肥只有天然氮肥可以使用,產量有限。而肥料意味著糧食增加與生產力增加,《巫師與先知》這本書就提到位於秘魯的鳥糞島嶼成為各家跨國公司必爭之地。另一方面,波斯人也在各地建造供鳥類休息的高塔,用來收集當肥料用的鳥糞。

-----廣告,請繼續往下閱讀-----

到了近代,陳貴賢提到在 20 世紀初,德國科學家哈伯(Fritz Haber)透過催化劑,在高溫高壓的條件下,以鐵粉做為催化劑,讓氮氣和氫氣轉換成氨。這讓人工固氮成為可能,人類不用再依賴緩慢的生物固氮反應就可以合成化學氮肥,農作物產量也大幅提昇。

本文主角「光催化材料」,顧名思義就是協助光化學反應的催化劑,但光催化材料與一般催化劑不同的地方在於,其化學反應通常發生在固態的表面環境,目標反應物、光子和電子都有參與反應。

比起光催化材料,你可能更常聽到它的同義詞「光觸媒」,例如某某產品宣稱具有「奈米光觸媒消毒」的功能,其實就是照射足夠的光,讓材料表面的氧化還原反應把細菌分解。而之所以光觸媒需要做到奈米尺寸,這是因為奈米小顆粒可以改變物質的電子能量結構,且大幅增加反應的表面積,讓光催化反應更有效率。

陳貴賢:「一個高表面積的奈米粉末,它的表面積可能是薄膜的一萬倍,甚至於十萬倍。」

給你電子,還你原形!光催化材料上的氧化還原反應是怎麼發生的?

光催化材料之所以能夠減少二氧化碳,是因為照光後材料表面發生「氧化還原反應」,氧化反應會失去電子,還原反應會得到電子。陳貴賢與團隊開發的複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),可以讓二氧化碳還原成甲醇(CH3OH)和乙醛(CH3CHO),這兩種產物都是工業常用的化學原料。反應式如下:

-----廣告,請繼續往下閱讀-----

要持續減少二氧化碳,就要持續發生上述還原反應,持續供給電子。不過,我們要怎麼讓電子快速又順利的補充到材料表面?這裡就開始涉及到半導體的核心問題:電子與電洞的產生、分離和傳輸

陳貴賢與團隊開發的複合光催化材料:ZnS/ZIS,是結合兩種奈米半導體材料,透過水熱法合成,將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,形成 0D-2D 結構的 ZnS/ZIS 複合物,就像製作巧克力豆餅乾,不過要複雜得多。

陳貴賢團隊將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,就好像做巧克力豆餅乾一樣,形成複合的異質半導體,做為光催化材料用途。左圖是示意圖,右圖是電子顯微鏡下的照片,Zn:In 比例為 1:0.46。
圖|研之有物(資料來源|Nano Energy

既然 ZnS/ZIS 是半導體,當受到光照之後,原來的價帶(valence band)電子會被光激發成導帶(conduction band)電子,原本價帶電子佔據的位置則留下一個空位,就是電洞。電子和電洞的遷移,就是半導體形成電流的原因,因此電子和電洞都稱為「載子」(charge carrier)

還記得上面的還原反應嗎?

-----廣告,請繼續往下閱讀-----

對光催化材料來說,為了在光照環境下把二氧化碳還原成乙醛和甲醇,必須獲得穩定的電子來源,材料內部要迅速補充電子到表面,因此:

照光產生的電荷載子數量越多越好;產生的電子和電洞要傾向分離,分得越遠越好;電子和電洞越快移動到表面參與反應越好。

載子輸送要快速穩定,首先照光產生的載子要多,就有更多電子和電洞參與反應。分離載子是為了避免復合,照光產生的電子和電洞很容易復合,一旦復合,等同於減少載子。再來是載子越快移動到表面越好,可以讓每次的氧化還原反應都是最佳效率。

尋找最有效的光催化材料

陳貴賢團隊總共做了 4 種不同比例的 ZnS/ZIS 光催化材料,依照 Zn:In 比例 1:0.12、1:0.26、1:0.46 和 1:0.99,分別標記為 ZnS/ZIS-1、ZnS/ZIS-2、ZnS/ZIS-3 和 ZnS/ZIS-4。其中,ZnS/ZIS-3 的光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇(如下圖)。

水熱法製備的 ZnS/ZIS-3 光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇。最右邊是將 ZnS 和 ZIS 簡單物理混合的對照組,沒有介面效應的輔助,催化效果不佳。
圖|研之有物(資料來源|Nano Energy

為了驗證光催化材料產生有效載子的效率,陳貴賢團隊計算了 ZnS/ZIS-3 的總 AEQ 值(apparent quantum efficiency),用來評估「照到光催化材料上的每顆光子數量,產生了多少實際參與催化反應的電子數」。測量之後,ZnS/ZIS-3 的 AEQ 值為 0.8%,量子效率比單獨的 ZnS 材料提高了將近 200 倍!

-----廣告,請繼續往下閱讀-----

這也是為什麼陳貴賢團隊要使用兩種不同的材料結合,因為單一半導體材料照光產生的電子和電洞有很高的復合機率,選擇兩種不同的半導體材料組合,讓兩種材料形成特殊的「能量階梯」就可以有效分離電子和電洞,並且把電子送到它該去的材料表面。

此外,使用兩種半導體材料的好處還有「二次激發電子到更高能階」,以符合光催化反應的能量門檻,自由電子掙脫 ZnS 的束縛之後,繼續往 ZIS 跑,光的能量會繼續把電子往上送到更高能級的材料表面,還原二氧化碳的反應在此發生。

Z 字形跑比較快!控制材料之間的微應變提升氧化還原效率

關於光催化材料的二次激發,陳貴賢提到:「材料低能階,然後光子進來後,把電子激發到高能階去做反應,太陽能電池也是這樣。但是呢,有時候沒那麼剛好,例如激發後的能階不夠高,雖然激發上去了,但電子沒有辦法跟二氧化碳做反應。那我把兩個材料拼在一起,電子上去以後又下來,然後再吸收第二個光子上去,那就變得很高了,高了以後它的反應效率就提升很多。」

如果我們把光催化材料的二次激發過程畫成示意圖,如下圖所示,電子在 ZnS 束縛區受到第一次光子的激發,變成自由電子,接著經過設計完善的材料介面,先降到較低的 ZIS 束縛區,受到第二次光子的激發,再次變成自由電子,跑到光催化材料的表面,和二氧化碳發生還原反應,將二氧化碳變成可再利用的乙醛和甲醇。

-----廣告,請繼續往下閱讀-----

看看電子走過的路,如果向左歪著頭看,是不是就是一個 Z 字呢?科學家把這個過程稱為「直接 Z 方案」(Direct Z-scheme)。「直接」的意思是,電子從 ZnS 跑到 ZIS 的過程,不需要再經過一個中間地帶,降低電子和電洞復合的機會。

為了將二氧化碳轉換成可用化學原料,電子在材料內部能階走 Z 字路徑,過程中受到光的二次激發,最後到達材料表面。電子參與還原反應,將二氧化碳變成乙醛和甲醇。電洞參與氧化反應,將水變成氧氣。
圖|研之有物(資料來源|Nano Energy

為什麼陳貴賢團隊設計的「直接 Z 方案」光催化材料,電子可以不需要中間的「轉接站」,直接轉移到另一個材料上呢?這裡也有一個巧思:不同材料之間的「微應變」

不同材料的晶體排列規律是不一樣的,當兩種材料接在一起時,接面處會發生「晶格不匹配」,也就是兩種材料的原子會互相卡到、晶格微微變形。但是,如果我們可以控制微應變(Strain)的程度,就可以控制兩種材料「能量階梯」的相對位置,微應變可以讓材料接面自動帶有「轉接站」的功能,進而形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。

總之,陳貴賢團隊開發的這套材料組合,是有微應變誘導的直接 Z 方案光催化材料,可做為未來量產光催化材料的研發設計參考,同時也是減碳的解方之一。

-----廣告,請繼續往下閱讀-----
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy

綠能趨勢——光催化材料未來可期

陳貴賢表示,目前表面科學和材料是中研院原分所的主要研究領域,他的實驗室選擇能源材料作為研究主軸,有太陽能電池和熱電材料,同時團隊也專注研究可還原二氧化碳的光催化材料,以及與燃料電池相關的催化劑。

陳貴賢看好將來能源材料的發展,因為在 2050 淨零排放之前,有愈來愈多企業紛紛加入「RE100 倡議」的行列,企業必須承諾最晚於 2030 年前使用 100% 再生能源。最著名案例是科技巨頭蘋果Google 和微軟等公司都已宣布其全球供應鏈將符合 RE100 的要求。其中,台積電為蘋果主要供應商,2020 年也加入 RE100,目前為臺灣再生能源的主要買家

可以預見,將來風能、太陽能與燃料電池的相關材料有其市場需求,而能夠減少二氧化碳的光催化材料,也將成為全球減碳的利器。陳貴賢提到,當前光催化材料還在基礎研究階段,目前的人工光合作用效率約 1%,接近大自然效率,而團隊希望提升到至少 5% 到 10% 以上,方能有其實用價值。

陳貴賢進一步強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值,不僅轉化後的燃料可以賣錢,處置二氧化碳原料亦可以收取負碳費用,是一種前所未有的概念。

陳貴賢強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值。
圖|研之有物

註解

  1. 根據 IPCC 的資料,如果要將全球暖化幅度控制在 +1.5 °C 以內,必須在 2050 年左右達到二氧化碳的淨零排放目標,同時也要大幅度降低非二氧化碳的溫室氣體排放,特別是甲烷。
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3652 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook