Loading [MathJax]/extensions/tex2jax.js

5

0
0

文字

分享

5
0
0

全球暖化使耐熱珊瑚出現

葉綠舒
・2012/03/30 ・999字 ・閱讀時間約 2 分鐘 ・SR值 508 ・六年級

-----廣告,請繼續往下閱讀-----

去過綠島或澎湖浮潛的朋友們,可能會被珊瑚美麗的色彩給吸引。其實,珊瑚美麗的色彩來自於與他們共生的藻類蟲黃藻(zooxanthellae),而蟲黃藻除了使珊瑚變得多采多姿以外,它還會進行光合作用,提供珊瑚養分。當海水溫度上升到臨界值的時候,高溫使得珊瑚蟲排出與他們共生的蟲黃藻,讓珊瑚變白;如果海水溫度持續維持在高溫,最後珊瑚蟲就會(因營養不良而)死亡。由於珊瑚對維持海洋生態系的多樣性非常重要,因此這些年珊瑚的生存受到高度的關注,也使得白化珊瑚的照片經常出現在全球暖化的相關報導中。

這些年來,由於全球暖化加劇,白化的珊瑚越來越多;不過最近在雪梨的新南威爾斯大學的 James Guest 教授發現,有些珊瑚,如生長快速的鹿角珊瑚(Acropora spp.),似乎較能適應暖化的氣候。

前面是鹿角珊瑚;後面白化的珊瑚為濱珊瑚。(圖片來源:ScienceNOW)

Guest 教授以及他的研究團隊,在 2010 年的珊瑚白化事件中,探查了三個珊瑚礁生長的地方。其中在印尼的這個區域,過去不曾發生過白化事件;而在新加坡與馬來西亞的這兩個點,則在 1998 年曾經發生過珊瑚礁白化事件。

結果 Guest 教授的團隊發現,在印尼那裡,所有的珊瑚都白化了;可是在新加坡與馬來西亞,卻只有長得慢的濱珊瑚(Porites spp.)發生白化,長得快的鹿角珊瑚並沒有白化。因此 Guest 教授的團隊認為:這或許代表了長得快的珊瑚(包括鹿角珊瑚以及菜花珊瑚 Pocillopora)相對比較耐高溫。當然,究竟這個耐高溫的現象是由於珊瑚蟲或是蟲黃藻演化出耐高溫的機制,目前還不大清楚,而這是許多科學家們很想知道的。

-----廣告,請繼續往下閱讀-----

不過,雖然這個觀察發現了並不是所有的珊瑚都會在海水溫度上升時死去,但暖化顯然對長得比較慢的珊瑚影響比較大,可能幾次海水溫度上升會使得海洋裡面的珊瑚礁都被長得快的種類給取代,這對於生態平衡也不是好事;畢竟維持生物多樣性(biodiversity)是很重要的,維持海洋中珊瑚的種類多樣也是重要的;再者,新加坡與馬來西亞的這兩個點,距離上次發生暖化事件(1998)已超過十年,如暖化的現象加劇,海水溫度上升的頻率也會提高,在那樣的狀況下,鹿角珊瑚與菜花珊瑚是否還耐得住、生長的速度是否能趕得上呢?所以耐熱珊瑚的出現並不見得就是一個好消息,也不代表全球氣候暖化對珊瑚礁的威脅已經解除,「轉彎說」也不適合用在這些事情上,不是嗎?

參考資料:
Some Corals May Adapt to Warmer Seas—ScienceNOW [12 March 2012]

本文發表於作者部落格

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 5
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

8
0

文字

分享

0
8
0
氣候變遷會讓世界變得又熱又病嗎?暖化之下的寄生關係可不簡單
阿咏_96
・2023/05/15 ・3195字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

近年來,氣候變遷已經變成一個眾所皆知的熱門話題,不僅影響著我們身處的自然環境,以及人類生活,也對生物的繁殖、生長、分布等造成衝擊。不過,今天我們沒有要討論海平面上升、極端天氣等這些巨觀環境的改變,而是要來談談或許你我體內都有的——寄生蟲。

提到寄生蟲,大家比較熟悉的或許是蟯蟲、蛔蟲等,有機會寄生於人類體內的寄生蟲,而自然中許多物種之間也有寄生關係,但這與氣候變遷有什麼關係呢?

有許多研究顯示,氣溫升高會導致寄生蟲爆發事件增加,也有些研究說寄生蟲在高溫下的表現比宿主好,因此暖化可能會造成相關疾病越來越嚴峻,後來也衍生出「地球越溫暖,流行病越多」的假說。

地球越溫暖,流行病越多」的假說近來相當盛行。圖/envatoelements

寄生不是哩想ㄟ那麼簡單

俗話說:魔鬼藏在細節裡。腹肌藏在脂肪裡。

如同在生物課本裡學過的,寄生關係是生物間的交互作用,一種生物寄居在另一種生物的體表或體內,獲取營養得以生存、繁殖,所以也並非只有寄生蟲的事,和宿主的生理也有很大關係。找到溫度升高會影響寄生過程的哪些步驟,以及背後的機制怎麼運作,是了解氣候變遷對寄生關係影響的關鍵。

-----廣告,請繼續往下閱讀-----

近期發表在英國皇家學會《自然科學會報》(Philosophical Transactions of the Royal Society B)的一項新研究就發現,溫度能夠調節寄生真菌在宿主水蚤體內的感染機制。

這個研究由臺灣大學氣候變遷與永續發展學程助理教授孫烜駿與美國密西根大學研究團隊合作,利用暖化實驗觀察水蚤和真菌之間的寄生關係。

他們將一種水蚤 Daphnia dentifera 作為實驗物種,水蚤平常吃藻類等浮游植物,然後也會被更大的捕食者吃掉,因此水蚤在淡水食物網中扮演著重要角色。而今天的另一個主角 —— 寄生真菌 Metschnikowia bicuspidata ,則是一種會感染多種水蚤的酵母菌。

那水蚤是怎麼被感染的呢?

-----廣告,請繼續往下閱讀-----

宿主與寄生真菌之間的攻防戰

水蚤在濾食水中浮游植物時,寄生真菌的孢子可能會一起被牠吃進去,這時感染過程就開始了(水蚤表示:窩⋯⋯窩不知道QQ)首先,寄生真菌的針狀孢子需要先刺穿水蚤的腸道上皮細胞,才能進到體腔內開始發育、繁殖,感染初期有些水蚤還可能痊癒,否則就會進到最終感染階段,一旦水蚤體腔內充滿寄生真菌的孢子或孢子囊,便不可能康復,最終走向死亡,之後下一代孢子釋放回環境中,再被新宿主吃掉,完成感染週期。

寄生真菌在水蚤中的感染過程。生真菌的針狀孢子會先刺穿水蚤的腸道上皮細胞。圖/英國皇家學會《自然科學會報》

也不是所有被吃進去的孢子都能夠成功感染宿主,必須要經過重重關卡,畢竟水蚤也不是吃素的(好啦水蚤真的吃素沒錯 XD)

而兩道最重要的關卡就是「物理屏障」與「細胞免疫」。

物理屏障是一種常見的防禦形式,例如我們的皮膚和植物的角質層,在水蚤與寄生真菌的感染過程裡,腸道上皮細胞就是抵抗孢子進入體腔的物理屏障,像是一道能夠抵抗外來敵人的城牆。

-----廣告,請繼續往下閱讀-----

但如果孢子還是順利進到水蚤的體腔內,細胞免疫就像一支軍隊,免疫細胞士兵們會聚集到被感染的部位,開啟防禦模式,共同抵禦外敵,也就是前面提到的,有些剛被感染的水蚤有機會康復的原因。

健康的 Daphnia dentifera 水蚤(左圖)與被寄生真菌 Metschnikowia bicuspidata 感染的水蚤(右圖)。圖/國立台灣大學

暖化之下,寄生關係會怎麼樣

研究團隊想知道:溫度對物裡屏障和細胞免疫的影響,以及會不會影響最終感染的機率。

因此他們把水蚤放到 20°C 和 24°C 下的環境飼養,為甚麼是這兩個溫度呢?

根據先前研究,20°C 是適合水蚤生長繁殖的溫度,而 24°C 則是來自 2100 年氣候變遷預測下的平均溫度變化,自西元 1985 年起,夏季的湖面溫度以每十年 0.34°C 攀升,到本世紀末預計上升 4°C。

並將不同溫度下飼養的水蚤,分別放入有寄生真菌和沒有寄生真菌的環境,總共四種環境條件的組別。

-----廣告,請繼續往下閱讀-----
  1. 實驗組:24°C,沒有寄生真菌
  2. 實驗組:24°C,有寄生真菌
  3. 控制組:20°C,沒有寄生真菌
  4. 控制組:20°C,有寄生真菌

接著,為了知道感染初期的情形,針對有寄生真菌的組別,研究團隊在放入真菌 24 小時後,用複式顯微鏡觀察,檢查水蚤腸道和體腔內是否有孢子,以及孢子的數量。

那要怎麼知道物理屏障和細胞免疫的防禦效果呢?

如同前段提過的,我們將作為物理屏障的腸道上皮細胞想像成城牆,免疫細胞想像成軍隊,而寄生真菌的孢子是試圖入侵的外敵

腸道的防禦力便是用「後來在體腔內的孢子數」與「所有試圖刺穿腸道上皮的孢子數」相除;也就是「進到城牆內的敵人數」除以「所有一開始來城牆外攻擊的敵人數量」。(編按:每一百個攻擊城牆的敵人,會有多少人突破城牆的防禦進到牆內)

-----廣告,請繼續往下閱讀-----

除此之外,團隊也觀察在不同溫度下水蚤腸壁上皮的厚度,畢竟城牆的厚度可能是防禦的關鍵。

而細胞免疫則是以「前來支援的免疫細胞數」除以「體腔內的孢子數」計算,可以想像成一個敵人需要幾個士兵一起抵抗

除了兩道關卡的抵禦能力外,為了解水蚤的健康狀態,研究團隊紀錄牠們在感染後的死亡率和繁殖力。

溫度影響的不只是寄生關係

實驗結果發現,較溫暖環境下的水蚤腸壁上皮細胞比控制組厚,但腸壁是越厚越好嗎?

-----廣告,請繼續往下閱讀-----

另一個結果顯示,其實較厚和較薄的腸壁上皮細胞,比較能抵抗寄生孢子的攻擊,反而是有中等腸道厚度的水蚤防禦孢子進入體腔的能力較弱。

而關於細胞免疫,則發現隨著成功進入體腔的孢子數量增加,附著在孢子上的免疫細胞總數也跟著增加,但在較溫暖環境下飼養的水蚤召集來的免疫細胞,比控制環境下來得少。也就是說,越多敵人入侵,軍隊會募集越多士兵來共同對抗,但在溫暖環境下召來的士兵較少

那物理屏障和細胞免疫之間有什麼關係呢?

在 20°C 下,腸道上皮細胞越厚,每個寄生孢子所需要的免疫細胞數就越少,這似乎蠻容易理解的,若城牆越厚,軍隊火力就不需要太強,反之亦然。

-----廣告,請繼續往下閱讀-----

但在 24°C 卻看不到同樣的趨勢,我們知道的只有在溫暖環境下,同樣腸道厚度免疫細胞仍比控制組少。

最後,不論是繁殖力還是存活率,都是在溫暖環境下被感染的水蚤敬陪末座。

從這個研究,我們可以得知,溫度上升不僅會改變宿主的物理屏障,也會影響細胞免疫,進而改變寄生真菌對水蚤的感染結果。在更了解溫度影響寄生關係中的哪些關鍵特徵和結果後,便能預測在暖化環境中,宿主與寄生蟲之間的交互作用,以及所導致的後果。

  1. Sun, S. J., Dziuba, M. K., Jaye, R. N., & Duffy, M. A. (2023). Temperature modifies trait-mediated infection outcomes in a Daphnia–fungal parasite system. Philosophical Transactions of the Royal Society B, 378(1873), 20220009.
  2. Rohr, J. R., & Cohen, J. M. (2020). Understanding how temperature shifts could impact infectious disease. PLoS biology, 18(11), e3000938.
  3. Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158-2162.
  4. Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W., & Hairston Jr, N. G. (2012). Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proceedings of the Royal Society B: Biological Sciences, 279(1735), 1873-1882.
  5. Ozersky, T., Nakov, T., Hampton, S. E., Rodenhouse, N. L., Woo, K. H., Shchapov, K., … & Moore, M. V. (2020). Hot and sick? Impacts of warming and a parasite on the dominant zooplankter of Lake Baikal. Limnology and Oceanography, 65(11), 2772-2786.
-----廣告,請繼續往下閱讀-----

0

2
3

文字

分享

0
2
3
COP 15 閉幕之後,臺灣生物多樣性工作該如何推展?——《科學月刊》
科學月刊_96
・2023/03/05 ・3970字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 李玲玲/臺灣大學生態學與演化生物學研究所教授。

Take Home Message

  • 《生物多樣性公約》(CBD)根據定期舉辦的締約方大會(COP)決定執行工作,以達成全球生物多樣性目標。
  • 去(2022)年底的 COP 15 訂下新的策略計畫與目標,以接續COP 10未完成的工作。雖更全面和具體,但未來成敗仍取決於執行狀況。
  • 臺灣過去在 CBD 的目標上有所貢獻,然而政府對 CBD 重視的程度仍不及國際公約,應繼續滾動修正並將生物多樣性納入主流。

任何關心生物多樣性現況與未來的讀者都需要了解《生物多樣性公約》(Convention on Biological Diversity, CBD)的內容與它的發展。這份在 1993 年正式生效、具有法律約束力的國際公約,目前有 196 個成員(締約方),它們共同承諾且致力於達成三項主要目標:保育生物多樣性、永續利用生物多樣性,以及公正合理分享由利用遺傳資源(genetic resources)所產生的惠益。

《生物多樣性公約》的運作

和其他國際性公約組織的運作方式類似,CBD 依據定期舉辦的締約方大會(Conference of Parties, COP)所通過的決定執行各項生物多樣性工作,並以大約每十年一期的間隔檢討生物多樣性工作的執行狀況,滾動修正下一個十年預計推動的整體策略計畫與目標。同時鼓勵締約方配合修正與執行各國的國家生物多樣性策略計畫(National Biodiversity Strategies and Action Plans, NBSAP),藉此協調眾國的努力以達成全球生物多樣性目標。因此每十年一次的策略規劃與目標設定都是一個里程碑,締約方需要檢視、累積過去成功與未能成功的經驗與教訓,調整步調使下一階段的執行成果能更接近理想目標。

例如 2002 年第六屆締約方大會(COP 6)通過了該公約的 2002~2010 年策略計畫和「2010生物多樣性目標」,預期到了 2010 年時能顯著減緩生物多樣性的流失速度,並在兩年後的COP 7通過了「2010生物多樣性目標」的 11 項具體目標與 21 項次目標。而在 2010 年的 COP 10 則在檢討「2010生物多樣性目標」的進展與缺失後,通過了「2011~2020年生物多樣性策略計畫與愛知生物多樣性目標」(以下簡稱愛知目標),設定出 20 項要在十年內達成的目標。

-----廣告,請繼續往下閱讀-----

2020 年原本預計舉辦 COP 15 檢討執行成果、滾動修正,並提出 2021~2030 年的策略計畫與目標,但卻因嚴重特殊傳染性肺炎(COVID-19)疫情在全球升溫,策略計畫草案工作小組、各締約方與民間團體代表的會前協商討論無法順利進行,使得策略計畫草案的內容遲遲無法定案,最終就連 COP 15 也無法如期舉辦。會議時間不斷地延後,直到 2021 年才決定將 COP 15 分兩階段召開,第一階段的會議在 2021 年 10 月 11~15 日以線上與實體並行方式進行,重點是決定 CBD 的預算;第二階段的會議又因疫情經過兩次延宕,終於在去(2022)年 12 月 7~19 日完成實體會議。

延期數次的 COP 15 會議,最後在 2022 年 12/7-12/19 進行。圖/envatoelements

有進展卻未達目標?過去的執行情況及COP 15 的新目標

檢視全球生物多樣性的狀況與檢討各期生物多樣性策略計畫與目標進展的主要依據是「全球生物多樣性展望」(Global Biodiversity Outlook, GBO),也就是 CBD 定期出版的報告。它總結了各方和各區域、國家新發布的生物多樣性研究與評估資料,呈現出全球生物多樣性的狀況與趨勢,並提出需要採取行動的綜合證據與建議,供CBD相關決策和制定新的策略計畫與目標參考。

2020 年出版的 GBO 5 指出,20 項愛知目標中有 10 項目標進展顯著,有六項目標可算部分實現,包括實行良好漁業管理的地區,海洋魚類族群豐度得以維持或恢復(目標6);成功清除外來入侵種的島嶼數和鎖定優先處理的外來入侵種進入途徑以避免再度入侵的案例數增加(目標9);2000~2020 年,陸域保護區面積從 10% 增加到 15%,海洋保護區面積從約 3% 增加到 7% ,同時對生物多樣性具有特別重要意義區域的保護也從 29% 增加到 44% (目標 11);《名古屋議定書》(Nagoya Protocol已在至少87個國家和國際間充分運作(目標 16);170個國家已根據《2011~2020年生物多樣性策略計畫》更新了 NBSAP (目標 17);各界可獲得的生物多樣性資料和資訊大幅增加(目標 19);透過國際資金流動使生物多樣性可用財務資源加倍(目標 20)。然而整體而言,全球生物多樣性仍在流失中,沒有任何一項愛知目標被完全實踐。

根據 GBO 5的總結及針對諸多未達標的分析所提出的改善建議,再經過多方的諮詢、協商、討論,甚至辯論,COP 15 終於通過了雖不能讓所有締約方滿意,卻勉強能接受的「昆明-蒙特婁全球生物多樣性框架」(Kunming-Montreal Global Biodiversity Framework, GBF)作為 2022~2030 年全球推動生物多樣性工作的依據。

-----廣告,請繼續往下閱讀-----

GBF 的內容涵蓋了《 2050 年願景》和《 2030 年使命》,以及希望在 2030 年能夠實現的 23 項目標。這 23 項目標可歸類為:減少對生物多樣性的威脅(目標 1~8)、透過永續利用和惠益分享滿足人們的需求(目標 9~13)以及執行和使生物多樣性主流化的工具和解決方案(目標 14~23)。希望在未來十年(到 2030 年時)逐步減緩生物多樣性喪失的趨勢,並在往後的 20 年扭轉此一現象,改善生物多樣性、恢復自然生態系,以實現 2050 年「一個與自然和諧相處的世界」的願景。

根據長期觀察 CBD 發展的媒體分析:除延續愛知目標中尚待達成的目標外,GBF 比愛知目標更包容、更全面、具體,但也更複雜。特別是目標 2 和 3 比以前的目標更具企圖心,分別是到 2030 年前確保至少 30%的退化陸地、內陸水域、沿海和海洋生態系得到有效恢復(愛知目標是 15% );以及透過保護區和其他有效的區域保護措施,有效保護 30% 的陸地、內陸水域、沿海和海洋區域(愛知目標分別是陸域17%、海域 10%)。

GBF 目標2和3企圖確保 30%退化陸地、內陸水域、沿海和海洋生態系得到有效恢復。圖/envatoelements

而目標 12 增加城市地區藍綠空間面積並改善它們的品質與生態連通性;目標 15 要求大型跨國公司和金融機構對業務、供應和價值鏈及投資組合監測、評估和透明地披露風險、依賴性和對生物多樣性的影響,均是愛知目標沒有提到的項目;目標 19 則有更明確、量化的資源調動目標。此外,COP 15 還為了配合GBF通過相關的指標與監測架構、能力建構和發展的長期策略框架等決定,以及規劃、監測、報告和審查的機制,以利締約方執行。但無論 GBF 的內容如何,成敗仍取決於未來實際的執行狀況。

臺灣生物多樣性的目標與執行,跟得上國際公約嗎?

臺灣雖非 CBD 締約方,但行政院自 2001 年通過《生物多樣性推動方案》以來,相關單位皆持續追蹤 CBD 的進展,並檢視國內生物多樣性狀況,先後於 2007 年與 2015 年依據《 2010 生物多樣性目標》與愛知目標,滾動修正臺灣 NBSAP 的內容,並透過 22 部會共同執行,至今已有相當豐碩的成果。對大部分愛知目標的達成也都有所貢獻,包括減緩棲地流失(目標 5)、保護脆弱生態系(目標 10)、保存基因多樣性(目標 13)、更新 NBSAP(目標 17),以及累積、分享、應用生物多樣性資訊與知識(目標 19)等,其餘各項目標大都有程度不一的進展,唯有目標 16(遺傳資源的獲取與惠益分享立法)與目標 20(增加生物多樣性工作的預算比率)較無進展。

-----廣告,請繼續往下閱讀-----

然而在國際間紛紛倡議加強保護自然以達成全球永續發展目標、氣候變遷減緩與調適、巴黎協定等目標的同時,臺灣政府對 CBD 重視的程度遠不及氣候變遷綱要公約。無論在國家永續發展目標、氣候變遷減緩調適、淨零排放、水資源管理、防減災等重要政策的推動上,生物多樣性可以扮演的角色與可以發揮的潛力卻嚴重被忽視。投入生物多樣性工作的人力與資源更遠不足氣候變遷相關事務,包括政府尚無具體的生物多樣性監測架構,也從未評估整體生態系服務,因此仍無法掌握生物多樣性與生態系服務變化的趨勢,以及變化趨勢對達成上述各項重要政策的影響。

因此在 GBF 定案後,臺灣除了需要繼續依據 GBF 滾動修正 NBSAP 的內容外,還需注意以下重點: 

  1. 深刻了解維護與改善生物多樣性與生態系服務對於提升人類福祉、氣候變遷減緩與調適及達成永續發展目標的重要性,並將它主流化。也就是說,需改變公私部門以往「將生物多樣性只視為自然保育部門業務」的錯誤認知。在規劃和執行與永續發展目標、氣候變遷減緩調適、淨零排放、綠能、國土計畫、水資源、防減災等重要政策、策略、行動時,應納入維護、改善生物多樣性與生態系服務的思考,同時注意部門間縱向與橫向的協調整合,以及從中央政策規劃到地方落實執行的連貫性,以協調一致的方式推動生物多樣性相關工作。
  1. 落實維護良好的生態系、恢復退化的生態系以逐步達成 CBD 2030 目標及 2050 年願景。「維護良好的生態系與恢復退化的生態系」是 GBF 目標 2 與 3 的重點,也是聯合國將 2021~2030 年定為生態系恢復十年、並鼓勵各國致力於恢復劣化生態系、增加自然資產與強化生態系服務,以提升人類福祉的目的。然而臺灣的農田、淺山、流域、海岸、海洋生態系仍持續劣化中,從中央到地方都輕忽生態系維護與恢復的重要性。此方面的工作應是後續 NBSAP 特別需要加強的工作。
  1. 無論永續發展目標或是生物多樣性目標的達成,都需要政府和全社會進行必要的變革,包含確定生物多樣性與國家發展目標的關聯,將自然的價值內化,並依此規劃整合性策略、優先行動,盡快調整相關政策、法規、制度、組織,合理分配財務和其他資源,加強能力建設、研發適當的政策工具。

註解:

  • [註1]根據 CBD 第二條,遺傳資源是指具有實際或潛在價值的遺傳材料;遺傳材料則是指任何植物、動物、微生物或其他來源中含有遺傳功能的材料。
  • [註2]《名古屋議定書》的全名為「關於遺傳資源獲取與公平平等分享使用惠益的名古屋議定書」,是 CBD 的第二份議定書,目的在以公平合理的方式分享對遺傳資源的利用所帶來的惠益。
  • [註3]詳見閱讀 GBF 目標內容:https://www.toolskk.com/qrcode-scanner
  • [註4]詳見閱讀「2020 生物多樣性國家報告」:https://reurl.cc/ZXQ1zV
  • 〈本文選自《科學月刊》2023 年 3 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3738 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。