Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

深入了解臺灣原生鳥類保育等級調整之緣由——保育名錄大風吹,吹什麼?

活躍星系核_96
・2018/07/02 ・5198字 ・閱讀時間約 10 分鐘 ・SR值 551 ・八年級

-----廣告,請繼續往下閱讀-----

編按:2018 年 6 月農委會林務局野生動物保育諮詢委員會討論了新一波保育類野生動物名錄的調整,其中鳥類部分修改調整牽涉了共 21 種鳥類。
參與評估分類專家會議(鳥類類群)的丁宗蘇老師、方偉宏老師應邀撰文,針對本次的保育等級調整作出說明。除釋疑名錄調整考量之主要內容,亦提要說明近年台灣鳥類值得注意之保育、研究情況。
延伸閱讀:為何調整保育名錄?獼猴降級與農損有關嗎?哺乳類保育類名錄檢討省思——保育名錄大風吹,吹什麼?

  • 丁宗蘇│國立臺灣大學森林環境暨資源學系副教授,林務局第 11 屆野生動物保育諮詢委員
    方偉宏│國立臺灣大學醫學檢驗暨生物技術學系副教授,林務局鳥類群野生動物評估分類專家會議召集人

林務局於 2018年 6月25日召開野生動物保育諮詢委員會第 11 屆第 2 次委員會議,會中重要提案之一是調整保育類動物之名單,引起社會大眾的關注及討論。我們出、列席參加本次這諮詢委員會議,同時在調整名錄過程中,也參與了鳥類群野生動物評估分類專家會議,很高興能藉由泛科學的討論平臺,來說明本次臺灣原生鳥類保育等級調整之原則及理由。

野生動物保育法的主要目的與精神

首先要請大家了解,野生動物保育法(以下簡稱「野保法」)之精神與目的是「保育」,野保法並沒有完全禁止野生動物的利用,也無法確保所有野生動物個體的福祉。野保法的主要目的,是阻止原生野生動物的物種滅絕。依照野保法的定義,保育類野生動物都是指「生存已面臨危機」之野生動物物種,而不同的保育類分級,則是依據其族群量之稀有程度及面臨之壓力程度而定。

我們當然希望看到每個野生動物個體都是安居樂業、過著幸福快樂的日子,但這並不是單憑野生動物保育法所能達成的境界。

「野生動物保育」最主要的目的,是阻止原生野生動物物種滅絕。圖/Pexels@pixabay

野生動物等級如何進行評估?

野生動物保育法於 1989 年頒布施行後,多年運作也經多次修改,在野生動物等級的評估與調整,已經有相當成熟的原則與程序。保育類野生動物的決定,都是依循「野生動物評估分類作業要點」來執行,這作業要點之目的,就是要提供具體、明確、一致的基準來評估野生動物保育等級,類似於「 IUCN 紅皮書」的物種瀕危等級評估。

-----廣告,請繼續往下閱讀-----

林務局將野生動物分成哺乳類、鳥類、兩棲爬蟲類、淡水魚類、及昆蟲等類群。各生物類群由 10-20 位該領域的專家,組成專家會議來共同評估,各類群的評分原則也不盡然相同。陸域的哺乳類、鳥類、兩棲類、爬蟲類的分級計分標準是一樣的,評估計分有六個面向(族群地理分布、目前族群量、族群變化趨勢、分類地位、棲地流失威脅、獵捕利用威脅)。各物種在這六個面向,可分別得到 1-5 分,總共可得到最低 6 分、最高 30 分的評估計分。各生物類群的專家都是依據這要點的規範,公正、客觀、獨立地為每個物種每個項目評分,再交給林務局保育組統籌平均評分。之後各生物類群的專家再齊聚開會,檢視大家的評分結果,並討論出保育類名錄建議清單,提交給野生動物諮詢委員會。

最近幾次的鳥類專家會議,進入保育類鳥種名單的分數標準大約是 15 分。野生動物諮詢委員會對於各生物類群專家會議的保育等級調整建議,一般都會予以尊重而照案通過。

以下的表格即是現行野生動物評估分類作業要點的附表(適用陸域之兩棲類、爬蟲類、鳥類及哺乳類動物)。關心保育類野生動物等級的人,大多也是熟悉野生動物現況的達人,可以試著針對熟悉的野生動物類群,依據以下的原則,挑幾個物種來嘗試給分。

一、野生族群之分布
(備註:由專家依現有資料決定採用描述性基準或量化基準做為評估依據。)

-----廣告,請繼續往下閱讀-----
野生族群之分布。(點圖放大)

二、 野生族群(成年個體)目前族群量
(備註:由專家依現有資料決定採用描述性基準或量化基準做為評估依據。)

野生族群目前族群量評估。(點圖放大)

三、野生族群之族群趨勢
(備註:由專家依現有資料決定採用描述性基準或量化基準做為評估依據。)

野生動物族群之族群趨勢。(點圖放大)

四、分類地位

野生動物分類地位評估。

五、面臨威脅

-----廣告,請繼續往下閱讀-----

(一)棲地面積消失之速率

野生動物等級評估中,對於基地消失之評估基準。

(二)被獵捕及利用之壓力

野生動物等級評估中,對於被獵捕及利用之壓力評估基準。

當要依據這評估分類作業要點來打分數時,一定會發現有很多猶豫吧。很可能會遭遇目前所掌握的資訊不足,難以明確判斷的情況,這樣的困擾也發生在專家身上。這六個面向,只有分類地位比較沒有爭議,其他五個面向都不容易明確給分,而且還有三個面向(分布、趨勢、棲地)牽涉到時間變遷,要看十年或百年的變化。即使鳥類專家會議成員,每個人觀察或研究臺灣鳥類都超過 20 年,我們所給的評分也不會完全一致。

有哪些台灣鳥類調查資料可供參考?

生物分布、數量與趨勢等基礎資訊不足的問題,過去及現在一直都在困擾著生態學、保育生物學、環境保護等等牽涉到野生動植物的議題,未來恐怕也難以快速改善。但是,受惠於眾多業餘愛好者的投入,無論在全球或是臺灣,鳥類可說是我們目前了解相對充分的生物類群。

-----廣告,請繼續往下閱讀-----
有賞鳥報告嗎?上傳到 eBird Taiwan 為鳥類調查盡一份心力吧!圖/網站截圖

以臺灣來說,除了專家學者所進行的研究調查外,也有眾多公民科學家所收集的大量資料。中華民國野鳥學會的鳥類紀錄資料庫,累積了過去四十年、超過一百萬份的賞鳥報告。特有生物保育研究中心、中華鳥會也與美國康乃爾大學鳥類研究室合作,開發 eBird Taiwan,三年前成立後,目前已累積超過 16 萬份賞鳥報告。特生中心在過去十年,也推動了繁殖鳥類大調查 (BBS)新年數鳥嘉年華 (NYBC) 等全民鳥類監測計畫,讓我們可以固定樣區、季節、方法的調查資料來確認鳥類族群的分布與數量變動。此外,特生中心也花了二年時間,盤點評估臺灣陸域脊椎動物,於 2016 年發表臺灣鳥類紅皮書名錄,仔細評估臺灣 316 種鳥類之族群現況及威脅。這 2016 年臺灣鳥類紅皮書名錄的評估準則,類似於「野生動物評估分類作業要點」,但是卻採用更多的標準與更精細的分級。

以上這些相關研究調查、鳥類紀錄資料庫、紅皮書評估資料,大大增加了我們對臺灣鳥類族群現況的掌握,讓我們更有信心地提出與時俱進的臺灣保育類鳥種名錄。

今年哪些鳥種保育等級經過變動?

2018 年臺灣鳥類保育等級變動整理。資料來源:農委會公告。泛科學整理

這次保育類等級有所變動的鳥種,基本上都是依最新的資料,認為其受脅等級有所改變而做的對應調整。

林鵰、黃鸝、遊隼這三種鳥類,在臺灣的數量仍然稀少,但是族群數量已有上升之趨勢,且短時間內並無面臨重大威脅,因此由「瀕臨絕種野生動物」調整為「珍貴稀有野生動物」。大田鷸(大地鷸)在全球未受生存威脅,近年來調查研究顯示,這種候鳥在臺灣很稀少,是因為臺灣並未位於本種主要遷移路徑上,而由「其他應予保育野生動物」調整為一般類。

-----廣告,請繼續往下閱讀-----
林鵰數量仍然稀少,但在台灣的族群數量已經有上升的趨勢。攝影/白欽源@TaiBIF

納入保育類的鳥類名單

金鵐、青頭潛鴨、琵嘴鷸這三種鳥類,全球族群數量非常稀少或是快速下降。例如,過去在臺灣的過境季節並不難看到金鵐,但近年已經大幅減少。這主要是因為金鵐在其主要度冬地(中國華南)遭到大量獵捕(近十年每年交易量超過一百萬隻),使得金鵐全球族群急遽減少,2004 年在 IUCN 紅皮書,金鵐的瀕危等級仍是最低的「略需關注」(Least Concern),2017 年已調整為最嚴重的「極度瀕危」(Critically Endangered)。青頭潛鴨與琵嘴鷸也是類似的情況,目前全球數量皆不超過一千隻,在 IUCN紅皮書都是「極度瀕危」。由於臺灣是這三個鳥種的穩定過境/度冬地,因此金鵐及青頭潛鴨由一般類連跳二級,調整為「珍貴稀有野生動物」,琵嘴鷸則由「其他應予保育野生動物」調整為「珍貴稀有野生動物」。

金鵐曾經並不少見,但近年來在中國華南的渡冬地受到大量獵捕壓力。攝影/林孫鋒@flickr

紅腰杓鷸、黑尾鷸、大濱鷸、紅腹濱鷸這幾種遷移性水鳥也是類似的情況,在全球及臺灣都有數量下降的趨勢。在東亞—紐澳這條遷移線上的水鳥,很多鳥種在近年都有數量下降的問題。雖然這狀況是這區域內所有國家的共同問題,臺灣是這條遷移線上的重要水鳥過境/度冬地,我們希望能善盡臺灣在國際上的保育責任。因此紅腰杓鷸、黑尾鷸、大濱鷸、紅腹濱鷸這四種遷移性水鳥的保育等級,由一般類調整為「其他應予保育野生動物」。

幾種遷移性水鳥都有數量下降的狀況,圖為大濱鷸。攝影/蕭世輝@TaiBIF

林三趾鶉、長尾鳩、董雞、黑頭文鳥這四種臺灣繁殖鳥類,也是因為在臺灣的族群數量相當低,而且在臺灣的分布範圍侷限,因此由一般類調整為「其他應予保育野生動物」。其中,黑頭文鳥還面臨外來亞種雜交的問題。

臺灣朱雀與岩鷚,分別是臺灣特有種及特有亞種,都棲息在高海拔山區。近年調查指出,這二種鳥的分布範圍愈來愈侷限於高山山頭,棲地消失的威脅增高,值得保育界持續關注。因此由一般類調整為「其他應予保育野生動物」。

-----廣告,請繼續往下閱讀-----
黃胸藪眉、白耳畫眉、冠羽畫眉、栗背林鴝這幾種台灣特有種鳥類雖然數量不少,卻明顯遭遇獵捕壓力。攝影/張俊德@TaiBIF

黃胸藪眉、白耳畫眉、冠羽畫眉、栗背林鴝這四種臺灣特有鳥種,也是由一般類調整為「其他應予保育野生動物」。很多人會納悶,這四種鳥在臺灣的族群數量並不低,為何也會調整成保育類呢?

其實,在 2008 年之前,這四種鳥類以及臺灣紫嘯鶇與金翼白眉,也都是「其他應予保育野生動物」。在 2008 年的鳥類專家會議,由於這六種臺灣特有種鳥類分布廣且數量多,整體評分並不高,因此這六種鳥類被調整為一般類。這個決定,當初在鳥類專家會議中引起廣泛的討論,因為部分專家認為這些鳥種一旦變成一般類,很可能會面臨不小的獵捕壓力。但是,依據「野生動物評估分類作業要點」,我們只能以被獵捕及利用的現況來評分,並不能以假設性的可能獵捕壓力來評分,因此這六種鳥類在 2008 年仍是被調整為一般類。

但是,當時鳥類專家會議要求,林務局要監控調查這些鳥種被移出保育類名錄後的被利用壓力。林務局也的確委託學者,進行全臺灣三百多家鳥店的訪查。結果發現,黃胸藪眉、白耳畫眉、冠羽畫眉、栗背林鴝被移出保育類後,在鳥店的展售數量明顯增加。由於這樣的證據,讓這四種鳥在這次評估中,被獵捕壓力評分增高,而調整為「其他應予保育野生動物」;臺灣紫嘯鶇與金翼白眉由於獵捕壓力並無明顯改變,仍維持一般類的地位。

野保法主要目的「物種的救亡圖存」

野生動物的愛好者,大多會希望看到每個野生動物個體,都受到最完善的保護,最好所有物種都是保育類動物,都獲得最高的保護等級。但是,野生動物保育法之目的是「物種的救亡圖存」,並不是要維護每個動物個體的福祉。對野生動物保育法來說,所有物種都在「保育類動物名錄」及「已滅絕物種清單」之外,就是最成功的境界。

-----廣告,請繼續往下閱讀-----

這二個路線的拉扯,也是保護與保育的核心價值差異。個人價值觀的取捨,我們交給大家來自己決定。我們不評論是非,也尊重大家的決定。在此,我們很感謝「泛科學」,讓我們可以完整說明,在「野生動物評估分類作業要點」的規範下,我們如何決定保育類鳥種。





-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
任意添加光學元件 為研究打開大門的無限遠光學系統
顯微觀點_96
・2025/01/30 ・1763字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖 / 顯微觀點

顯微鏡在科學發展中扮演關鍵的角色,讓人們得以突破肉眼的限制,深入微觀的世界探索。而隨著時間推進,顯微技術也日新月異,其中現代顯微鏡設計了所謂的「無限遠光學系統」(Infinity Optical Systems),更是提升了顯微鏡性能和突破過去的觀察瓶頸。因此主要的顯微鏡製造商現在都改為無限遠校正物鏡,成為顯微鏡的技術「標配」。

1930 年代,相位差顯微技術出現,利用光線在穿過透明的樣品時產生的微小的相位差造成對比,使透明樣本需染色就能更容易被觀察。1950 年左右,則出現使用兩個 Nomarski 稜鏡,將光路分割再合併產生 干涉效應的 DIC 顯微技術,讓透明樣本立體呈現、便於觀察。

在傳統「有限遠系統」中,單純的物鏡凸透鏡構造,會直接將光線聚焦到一個固定距離處,再經過目鏡放大成像。也因此過去顯微鏡的物鏡上通常會標示適用的鏡筒長度,通常以毫米數(160、170、210 等)表示。

-----廣告,請繼續往下閱讀-----

而在過渡到無限遠校正光學元件之前,選用的物鏡和鏡筒長度必須匹配才能獲得最佳影像,且大多數物鏡專門設計為與一組稱為補償目鏡的目鏡一起使用,來幫助消除橫向色差。

但是問題來了!當這些光學配件要添加到固定鏡筒長度的顯微鏡光路中,原本已完美校正的光學系統的有效鏡筒長度大於原先設定,顯微鏡製造商必須增加管長,但可能導致放大倍率增加和光線減少。因此廠商以「無限遠」光學系統來解決這樣的困境。

德國顯微鏡製造商 Reichert 在 1930 年代開始嘗試所謂的無限遠校正光學系統,這項技術隨後被徠卡、蔡司等其他顯微鏡公司採用,但直到 1980 年代才變得普遍。

無限遠系統的核心在於其物鏡光路設計。穿透樣本或是樣本反射的光線透過無限遠校正物鏡,從每個方位角以平行射線的方式射出,將影像投射到無限遠。

-----廣告,請繼續往下閱讀-----
有限遠(上)和無限遠(下)光學系統的光路差別
有限遠(上)和無限遠(下)光學系統的光路差別。圖 / 擷自 Optical microscopy

透過這種方法,當使用者將 DIC 稜鏡等光學配件添加到物鏡、目鏡間鏡筒的「無限空間」中,影像的位置和焦點便不會被改變,也就不會改變成像比例和產生像差,而影響影像品質。

但也因為無限遠系統物鏡將光線平行化,因此這些光線必須再經過套筒透鏡在目鏡前聚焦。有些顯微鏡的鏡筒透鏡是固定的,有些則設計為可更換的光學元件,以根據不同實驗需求更換不同焦距或特性的透鏡。

除了可以安插不同的光學元件到光路中而不影響成像品質外,大多數顯微鏡都有物鏡鼻輪,使用者可以根據所需的放大倍率安裝和旋轉更換不同的物鏡。

傳統上一旦更換物鏡,樣本可能就偏離焦點,而須重新對焦。但在無限遠光學系統的設計中,物鏡到套筒透鏡的光路長度固定,也就意味著無論更換哪個物鏡,只要物鏡設計遵循無限遠系統的標準,光路長度和光學路徑的一致性得以保持。

-----廣告,請繼續往下閱讀-----

因此無限遠光學系統也有助於保持齊焦性,減少焦距偏移。這對需要頻繁切換倍率的實驗操作來說,變得更為便利和具有效率。

不過使用上需要注意的是,每個顯微鏡製造商的無限遠概念都有其專利,混合使用不同製造商的無限遠物鏡可能導致不正確的放大倍率和色差。

改良顯微技術,使研究人員能夠看到更精確的目標;以及如何讓更多光學配件進入無限遠光學系統中的可能性仍然在不斷發展中。但無限遠光學系統的出現已為研究人員打開了大門,可以在不犧牲影像品質的情況下輕鬆連接其他光學設備,獲得更精密的顯微影像。

  1. M. W. Davidson and M. Abramowitz, “Optical microscopy”, Encyclopedia Imag. Sci. Technol., vol. 2, no. 1106, pp. 120, 2002.
  2. C. Greb, “Infinity Optical Systems: From infinity optics to the infinity port,” Opt. Photonik 11(1), 34–37 (2016).
  3. Infinity Optical Systems: From infinity optics to the infinity port
  4. Basic Principle of Infinity Optical Systems
  5. Infinity Optical Systems

延伸閱讀選擇適合物鏡 解析鏡頭上的密碼

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
28 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
一年有幾週?背後竟隱藏著宗教、政治與天文觀測的紛爭?為何決定一年有幾週如此大費周章?
F 編_96
・2025/01/06 ・3256字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

每到歲末或年初時,大家常會打開新的行事曆,做新一年的計畫。從直覺來看,我們常以「一年有 365 天」或「閏年 366 天」的概念衡量時間。如果將 365 天除以 7(每週 7 天),得到的答案約是 52 週又 1 天;若遇到閏年(366 天),則是 52 週又 2 天。換句話說,無論是一般年還是閏年,一年都不可能整除,剛好 52 週,總要多出 1 或 2 天。

對多數人而言,這種「約 52 週加 1 天」似乎是再自然不過的事。然而,實際上人類在訂定「一年幾天」與「多久閏一次」的規則上,一路走來經歷了漫長探索與爭議。自古以來,不同文明先後採用依太陽或月亮運行週期為基準的曆法;儘管最終各國大多轉而採行以太陽週期為主的格里高利曆(Gregorian calendar),但並非一蹴可幾,而是一段包含宗教、政治、天文觀測的故事。

一年感覺很長,其實也就 52 週(+1 或 +2 天)。 圖/unsplash

從洪荒到曆法:人類如何決定時間單位

追溯人類對時間的測量,可遠至一萬多年前:考古發現顯示,澳洲原住民或新石器時代的部落,便會根據太陽、星象的移動,來推算季節變遷與祭典進行。後來,隨著農業興起,區分一年四季並掌握耕作節氣成了首要需求,日曆的概念亦逐漸成型。

  • 宗教推力:古埃及與蘇美等文明常需要在特定時刻進行祭祀或儀式,故對晝夜長短、月相週期乃至每年太陽位置頗為講究。
  • 日月曆法之爭:有些文明依月亮週期(約 29.5 天)為月數基礎,稱「陰曆」;也有採納太陽年度(約 365 日)稱「陽曆」,或折衷稱「陰陽合曆」。

就週數而言,古人或許更關注「每個月有幾天」與「一年有幾個月」,而非「一年到底可以分成幾週」。然而,週的概念在很多宗教與文化裡同樣重要,如猶太教及後來的基督宗教都強調「七天」一週之體系,用於安息日或祈禱輪替。因此,當今的一年分成「52 週多幾天」,也綜合了宗教傳統與太陽年的計算。

-----廣告,請繼續往下閱讀-----

朱利安曆失準?教宗格里高利的關鍵校正

現行國際普及的格里高利曆,最早源自於古羅馬朱利安曆(Julian calendar)。公元前 46 年,凱撒大帝(Julius Caesar)在天文學家蘇西根尼斯(Sosigenes)建議下,設定一年 365.25 天,並每四年加一天作閏年。看似精妙,但實際上太陽年長度約是 365.2422 天,每年多出的 0.0078 天、也就是大約 11 分鐘,雖然聽來微乎其微,卻在一段世紀之後累積成巨大的誤差。

對天主教而言,耶穌受難與復活日期影響了整年眾多教會節日。若曆法逐漸偏移,像復活節等慶典便逐年脫節了季節原意。至 16 世紀末時,朱利安曆已誤差累積多達 10 天。教宗格里高利十三世遂在 1582 年宣佈大刀闊斧改革:10 月 4 日的次日直接跳到 10 月 15 日,並規定「百年年份如若非 400 整除,則不列為閏年」。如此,將一年的平均時長微調至更貼近 365.2422 天。

一些國家如法國、西班牙和義大利等迅速採納「新曆」,但英國則因宗教立場等因素拖延至 1752 年才肯切換。中國雖在 1912 年起算是「正式認可」,但廣泛實施延至 1929 年。這樣因曆制修整所產生的「失落日子」,在各國各時期都曾引發不小民眾抗議與混亂,但如今我們所熟知的「一年 365(或 366)天、每週 7 天」全球大體一致,正是拜此改革所賜。

教宗格里高利十三世的改革,成了日後我們熟知的「一年 365(或 366)天、每週 7 天」。圖/unsplash

一年是 52 週又幾天?

回到主題:基於現在格里高利曆的「年」長度,一般年 365 天,閏年 366 天。因此只要把 365 ÷ 7 = 52 餘 1,或 366 ÷ 7 = 52 餘 2。這樣看來,52 週是某種近似值,再加上 1 或 2 天則填補了週數的縫隙。有趣的是,人們日常生活中往往不深究這些「多一天」會落在哪裡,反而透過各國法定假期、節日分布或企業排班,來靈活因應。

-----廣告,請繼續往下閱讀-----

不管日曆如何安排,七天一週與太陽一年的 365.2422 天本質上不會整除。因而實際執行層面,才衍生「一月有 4 週多幾天」或「一年 52 週多幾天」。而根據格里高利曆規範,每 4 年遇到 2、6 結尾者時通常加閏日;再以百年刪除閏日,唯獨 400 年倍數的百年不刪。如此 400 年中有 97 個閏年,非 100 次,年均值約 365.2425 天,與真實太陽年極為貼近。

再度修正:米蘭科維奇曆與東正教的調整

與此同時,一些東正教教會或科學家,仍曾嘗試做更精準的校調。例如 1923 年出現的「米蘭科維奇曆」,由塞爾維亞天文學家米蘭科維奇(Milutin Milanković)提出:

  • 改進閏年規則:如果該年不是 100 的倍數,則正常計算;若是 100 的倍數,就得看除以 900 所餘下的數是否為 200 或 600,若是,則跳過閏年。
  • 應用範圍:此一方案被視為更貼近天文年,但只有部分東正教教會接納實施,對全球世俗時間並未產生重大影響。

有趣的是,若米蘭科維奇曆被大規模推廣,平均一年長度會更符合真實太陽年,但世界各國基礎已扎根於格里高利曆,也不太可能再冒然重新改革。畢竟,每次曆改都會使官方紀錄、民間活動和宗教節慶產生協調難題,且大眾的社會慣性早已落實在現行制度裡。

時間計算背後宗教、政治與科學的糾纏

我們眼中的「一年 52 週又 1~2 天」其實是長期政治、宗教、科學交互影響的產物。數世紀以來,不同文明為祭祀、政令或貿易往來而反覆調整曆制;伴隨天文觀測與數學演算的精進,人們才一步步從古老的朱利安曆轉到格里高利曆,避免每年多出一些看似微不足道的分鐘數量,卻逐漸累積成整天的時差。在這些爭論、改革中,週數雖非爭議焦點,但它一同被帶入今日世界,最終定型為「一年 = 52 週 +1(或 2)天」。

-----廣告,請繼續往下閱讀-----
儘管目前的曆法存在些許時差,但已是目前全球通用的計日方式。圖/unsplash

另一方面,有些文化或地區在現代仍維持傳統的陰曆、陰陽曆搭配格里高利曆,如中國農曆可見節氣和月相紀錄;穆斯林世界則使用純陰曆,並以其方法計算齋戒月、開齋節等。全球一體化雖使格里高利曆成為主流,但不代表其他紀年方式就此消失。在各種曆法交錯下,「一週幾天,一年多少週」或許並非普世絕對,卻是人類根植於宗教、科學與經濟行為下逐漸形成的共識。

踏入 21 世紀,隨著全球高度互聯與商業活動頻繁,幾乎所有國際公約、金融市場、交通規劃都以格里高利曆為基準。此種高度一致有利經貿往來與跨國協作,但究其根源,私底下仍有一種「不完美但通用」的妥協性質。時至今日,要再度大規模推行新的曆制(比如米蘭科維奇曆)的機率微乎其微。

也許未來某天?

不管你是否每天翻開行事曆查看日期,或是習慣智慧型手機提醒,在全球主流價值裡,「一年 52 週又 1 或 2 天」已成幾乎不容置疑的常識。

也許未來仍有理論家建議以更精準的曆法取代格里高利曆,讓一年日數更貼合天文常數。然而,歷史經驗告訴我們,此種改革勢必付出巨大社會成本,還要面對全球龐雜的政治協調。最終,我們大概仍會安於現在這個略有瑕疵卻普及度最高的制度,繼續說著「一年有 52 週」,並在每年最後那 1 或 2 天裡,慶祝跨年、增添慶典。

-----廣告,請繼續往下閱讀-----

不論如何,時間的運行永不止息;地球仍舊繞著太陽旋轉,帶給我們四季遞嬗與新的挑戰。或許最重要的並非究竟一年「整除」了多少週,而是我們如何在這既定框架下規劃生活,在有限的時間裡,拓展出新的生活軌跡。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃