0

0
0

文字

分享

0
0
0

哈伯太空望遠鏡發射升空│科學史上的今天:4/24

張瑞棋_96
・2015/04/24 ・1053字 ・閱讀時間約 2 分鐘 ・SR值 479 ・五年級

1990 年的今天,哈伯太空望遠鏡在歷經波折後終於發射升空,由發現號太空梭安置在 559 公里高的軌道。肩負著天文學家的殷切期盼,開始以前所未有的視野向宇宙深處搜尋。

將望遠鏡置放於太空的好處顯而易見:

星光不會受大氣干擾,又能觀測到容易被大氣層吸收的紅外線與紫外線波段。

因此早在 1946 年天文學家史匹哲(Lyman Spitzer)就倡議發射太空望遠鏡。美國在六○年代先發射了幾次小型的觀測衛星,發現成效不錯而決定打造一個直徑 3 米的反射式望遠鏡,預計在 1979 年由太空梭載上太空。

然而預算遭到國會全數刪除,所幸在科學家們發動宣傳尋求民眾支持下,這個差點胎死腹中的計劃最後終於在刪減一半預算下過關。雖然歐洲太空總署也願意奧援部分資金,但鏡片口徑仍不得不縮減為 2.4 米,發射日期也延到 1983 年。此時望遠鏡才正式命名為哈伯,以紀念發現宇宙膨脹的天文學家哈伯(Edwin Hubble)。

為了能觀測到紫外線波段,哈伯鏡面的精密度必須達 10 奈米。負責研磨拋光鏡子的廠商低估了其困難度,結果進度一直延後,預算也不斷追加,最後終於一切就緒時,發射日期只能排到到 1986 年 10 月。不料當年一月的挑戰者號太空梭在空中爆炸解體,所有太空梭任務必須中止,靜待調查。直到 1990 年的今天,哈伯太空望遠鏡才終於成功升空送上軌道。

但災難還沒結束。當天文學家興奮地收到哈伯傳回來的照片時,卻赫然發現影像是模糊的!原來是廠商拋光鏡面時所用的校正儀器有問題,哈伯成了近視眼。幸而鏡子整體的精密度符合規格,只要替哈伯戴上一副「眼鏡」就能將誤差校正回來。也幸而當初就設計將哈伯放在太空梭可以往返的低軌道,所以才能事後補救。

1993 年底,奮進號太空梭前往安裝更換,哈伯終於能傳回清晰的天體圖像。之後幾年又陸續為哈伯進行了幾次升級與維修(電影《地心引力》中的主角就是進行這樣的任務),直到 2009 年 NASA 宣布這第五次的維護任務會是最後一次,也就是說哈伯在未來幾年就會壽終正寢。

在太空運行二十餘年的哈伯太空望遠鏡就像隻忠實的老狗,不斷傳回宇宙深處壯觀絢麗的影像。它幫我們更精確地定出宇宙年齡、發現宇宙在加速膨脹、尋找系外行星,也讓我們目睹了跨越時空的星際奇觀,包括早期宇宙的樣貌、恆星的誕生與死亡、在星系中心吞噬物質的巨型黑洞。雖然有更多更新的太空望遠鏡將取代哈伯,然而我們將永遠記得是它最先讓身處宇宙一隅的我們眼界大開,得以一窺宇宙之神祕莊嚴。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 699 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

6
0

文字

分享

0
6
0
順利升空只是開始!韋伯太空望遠鏡升空後「必須完美」的 29 天旅程
楊燿綸_96
・2021/12/29 ・2569字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 作者/楊燿綸|美國維吉尼亞大學天文系博士後研究員
  • 作者/張珮綺|自由撰稿人

“ trois, deux, unités, top ” ​

美東時間 12 月 25 日的清晨,亞利安五號火箭在任務指揮官 Jean-Luc Voyer 的倒數下點火。 ​

歷經 20年、100 億美元設計建造,即將成為世界上最大的太空望遠鏡 — 詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope)緩緩升空,揭開人類對宇宙了解的下一個篇章。​

繼哈伯之後,次世代太空望遠鏡

​韋伯太空望遠鏡提供了前所未有的觀測能力,讓我們可以看到宇宙大爆炸之後的初代星系、橫跨宇宙時間的星系演化、系外行星的大氣組成、以及恆星行星形成的過程。​​​不同於哈伯太空望遠鏡以及大部分在地表的望遠鏡,韋伯太空望遠鏡主要觀測紅外光。

史無前例的望遠鏡設計,史上最高靈敏度

由於任何有溫度的物體(包括望遠鏡本身)都會放出紅外光,為了提高觀測的靈敏度,望遠鏡必須越低溫越好。 因此韋伯太空望遠鏡攜帶了各種「冷卻設備」,以及五層如隔熱紙一般薄、如網球場一樣大的「遮陽膜」。 ​ 

望遠鏡的位置也是一大關鍵,需要放在長期背向太陽、距離地表 150 萬公里的軌道中,讓韋伯太空望遠鏡可以繞行在太陽與地球重力影響的一個穩定點 L2。​相較之下,哈伯太空望遠鏡則是距離地表 545 公里。

韋伯望遠鏡的遮陽帆將望遠鏡分為面光側和背光側兩個部分,而望遠鏡的本體長期都會處在黑暗且低溫的背光側。圖/NASA

韋伯太空望遠鏡主鏡的直徑是 6.5 公尺,哈伯太空望遠鏡為 2.4 公尺,另外一個去年退役的紅外光太空望遠鏡 史匹哲(Spitzer) 的主鏡只有 0.85 公尺。望遠鏡的鏡面越大,能夠收集到的光也越多,讓望遠鏡更靈敏。​韋伯太空望遠鏡的靈敏度比現有的望遠鏡高 50 – 100 倍,空間解析度在中紅外光也提升了 2.5 到 7 倍。​

太空工程大躍進

​工程技術層面,這次的任務需要挑戰把一座網球場大小的望遠鏡發射到太空中。目前載貨空間最大的火箭亞利安五號(Ariane 5)只能容納約 5 公尺大小。 因此,韋伯太空望遠鏡必須要像「摺紙」一樣,折成可以放入火箭的大小,進到太空中以後再展開。 ​這是太空工程的極大挑戰, 韋伯太空望遠鏡的展開的過程必須要「萬無一失」。

摺疊裝入亞利安五號火箭整流罩中的韋伯望遠鏡。圖/ArianeSpace, NASA, ESA

必須完美的 29 天旅程

從發射開始,韋伯太空望遠鏡要經歷長達 29 天的旅程,到達 L2 並展開到可以運行的樣貌。 有幾個時間點特別關鍵:​

⏱ 發射後 27 分鐘:韋伯太空望遠鏡脫離發射的火箭,脫離後望遠鏡就要靠自己了!​
⏱ 發射後 33 分鐘:展開太陽能板讓韋伯太空望遠鏡有電可用​
⏱ 發射後 12.5 小時:第一次的軌道修正(也是最關鍵一次), 韋伯太空望遠鏡要用攜帶的燃料推進到前往 L2 的軌道​
⏱ 發射後 5-8 天:展開五層網球場大小的遮陽膜。展開的過程中有 107 個機關必須要同時啟動去鋪開這五層遮陽膜,任何一個機關失敗,韋伯太空望遠鏡就沒有辦法進行原定的科學任務了​
⏱ 發射後 10 天:放下第二反射鏡​
⏱ 發射後 13 天:展開主要反射鏡。這時候韋伯太空望遠鏡就完全展開了!​
⏱ 發射後 29 天:進行最後的軌道修正進入 L2​

​這段旅程中有超過 300 個「必須成功的步驟」!當韋伯太空望遠鏡到達 L2 後,科學任務就正式展開!儀器團隊會先花幾個月校正各項儀器,確保韋伯太空望遠鏡一切如設計般的運作,發射後六個月「觀測任務」將會正式展開。​

主要研究方向

韋伯太空望遠鏡的設計可以用來進行各種的觀測計畫,包含前所未見的觀測計畫,大幅地推進我們對於宇宙的了解。​

  1. 了解宇宙誕生的過程:高靈敏度的紅外光觀測可以看到大爆炸之後初代的星系。​
  2. 了解星系的演化:觀測宇宙不同時期的星系,像是暗物質對於星系的影響等等。​
  3. 也許會知道哪些行星是否適合人類居住:在紅外光可以看到很多不同分子(像是二氧化碳、水、甲烷等)獨特的光譜,透過韋伯太空望遠鏡我們可以量測系外行星的大氣組成。​
  4. 恆星與行星形成的過程:恆星與行星剛形成時多半環繞著塵埃組成的雲氣,有點像是我們常看到的雲霧,擋住了視線。而紅外光觀測可以看透這些雲氣。​

相關連結:

延伸閱讀:

  1. 出事了哈伯!細數哈伯太空望遠鏡 31 年來的維修升級史 – PanSci 泛科學
  2. 天文學未來 10 年的 3 大目標:探索適居行星、動態宇宙與星系演化—— Astro2020 報告 – PanSci 泛科學
楊燿綸_96
1 篇文章 ・ 2 位粉絲
天文物理學家,目前於美國維吉尼亞大學天文系擔任博士後研究員,期待扮演天文學家跟大眾的翻譯蒟蒻,讓大家能更了解我們的宇宙。本身研究專注於透過紅外光、遠紅外光及無線電波觀測,了解恆星及行星長大的過程,也特別關注恆星誕生時伴隨的化學演變。

3

12
3

文字

分享

3
12
3
淺談 JWST 的科學意義:探索宇宙深處與塵埃後的外星世界!——認識韋伯太空望遠鏡(四)
EASY天文地科小站_96
・2021/10/21 ・4876字 ・閱讀時間約 10 分鐘

  • 作者/林彥興|清大理學院學士班,努力在陰溝中仰望繁星 

在談完了韋伯太空望遠鏡(JWST)的源起、技術與運行軌道之後,本系列的終章就帶大家一起來了解,天文學家花費上百億美金之後,究竟希望韋伯能為哪些領域帶來突破?

背景圖片/illustris simulation。製圖/林彥興

追尋起源:早期宇宙與星系演化

月亮距離我們大概 380,000 公里,光需要花費 1.3 秒左右才能到達地球,因此我們看到的月亮,是 1.3 秒以前的月亮;同理,我們看到的太陽,是 500 秒以前的太陽;我們看到的仙女座星系,是 250 萬年前的仙女座星系。在宇宙中,我們看得越遠,看到的東西就越古老。某種意義上,望遠鏡就像是一座時光機,可以讓我們一窺宇宙從誕生到現在的演化歷程。

在 1995 年,一組天文學家申請哈伯太空望遠鏡進行一次瘋狂的觀測。他們選擇將哈伯太空望遠鏡對準天空中一片看似什麼都沒有的區域,接連進行了 140 個小時的曝光。他們得到的影像,日後成為天文史上最重要的照片之一,其名為:哈伯深空(Hubble Deep Field)。

哈伯深空影像。圖/Robert Williams (NASA, ESA, STScI)

天文學家們驚訝的發現,這片看似空無一物的區域,其實充滿了數以千計遙遠、古老且黯淡的星系。比起銀河系這種中老年星系,哈伯深空中拍到的許多星系才形成不久,相當的年輕有活力。瘋狂誕生恆星的星系,與現在宇宙中的星系相當不同,非常有趣。望遠鏡就好像時光機一樣,帶我們一窺宇宙過去 130 多億年的演化歷史,而哈伯深空影像,正因此成為早期宇宙與星系演化研究的一個重要里程碑。

然而,當哈伯想要往更遙遠、更古老的宇宙望去的時候,就漸漸顯得力不從心了。原因是典型的星系發出的光主要以可見光為主,但是這些古老星系發出的可見光,在前往地球的過程中,會隨著宇宙的膨脹而發生紅移。越是遙遠的星系,紅移的情況就越嚴重。因此對於非常遙遠的星系來說,它們發出的可見光到達地球時,就已經被宇宙紅移拉到紅外線波段了。因此,只能觀測紫外線到近紅外的哈伯,就很難看到它們。

這時,就是韋伯出場的時候了。專司紅外線波段的韋伯,將能夠幫助天文學家看見宇宙中第一批恆星與星系的形成,以及這些恆星與星系如何與它們周遭的環境互動。

JWST 將幫助天文學家揭密宇宙早期演化的過程,包括宇宙的再游離(Reionization)以及第一批恆星與星系的形成等。圖/STScI

在宇宙學方面,JWST 將能讓宇宙學家深入探索宇宙「再游離(Reionization)」的過程。這是當前早期宇宙研究最重要的課題之一。大霹靂後 38 萬年,宇宙中的氫是以原子(稱為中性氫)的方式存在,然而在當今的宇宙中,多數的氫都是以游離態存在的。天文學家猜測,是宇宙中第一批形成的星系與黑洞發出的強烈輻射,游離了宇宙中的中性氫,才使得宇宙中多數物質的狀態發生了這樣的改變。但是再游離的過程究竟如何發生,現在無論是觀測還是理論都還無法給出統一的答案,仍待 JWST 等新一代望遠鏡的進一步探索。除此之外,就像前文所述,JWST 將能讓我們看到哈伯太空望遠鏡所見更古老的星系,這些仍在襁褓中的星系長有甚麼特色?又是怎麼演化成為我們在現在的宇宙中所看到的星系?這些也是 JWST 將幫助天文學家回答的問題。

宇宙學模擬團隊 THESAN 所進行的宇宙再游離模擬。可以看到星系們像吹泡泡一樣把中性的氫轉變成游離態。影/THESAN Simulations
天文學家模擬韋伯和哈伯以近紅外波段的觀測類星體(Quasar)與其宿主星系(Host galaxy)的效果。可以看到在近紅外波段,韋伯的解析度明顯勝於哈伯,讓天文學家可以清楚的將類星體與其宿主星系區分開來,以利進一步研究。圖/M. Marshall (University of Melbourne)

恆星搖籃:看穿恆星形成區

初生恆星所發射的噴流 HH 212。圖/ESO/M. McCaughrean

恆星是天文物理最古老的研究對象之一。數十年來,天文學家對於恆星的類型、內部結構、演化歷程都有相當詳細的了解。然而,星際間瀰漫的雲氣究竟是如何聚集成一顆一顆的恆星,以及其周圍的行星系統,卻還有很多不清楚的地方。

典型的觀點認為,恆星誕生於巨大分子雲(GMC)之中。當分子雲中的氣體在重力的影響下逐漸聚集,就會形成紊亂而複雜的纖維狀(filament)的結構。

而在這些結構的高密度區域,隨著溫度、壓力與密度不斷提高,最終會點燃核融合反應,形成一顆顆的恆星。雖然大致的圖像有了,但是這整個過程不僅橫跨巨大的時間與空間尺度,更牽涉到磁流體力學、輻射、化學反應鏈等一系列複雜的物理與化學過程,因此上述的許多細節,仍是天文學家們努力研究的題目。

STARFORGE 團隊的天文學家借由超級電腦模擬恆星形成的過程。影/STARFORGE Simulation

然而,由於這些恆星的形成區,往往被濃密的氣體與塵埃所包圍,因此當天文學家使用可見光觀測時,往往只能看到黑壓壓一片,難以窺探雲氣神秘的核心之中,恆星究竟是怎麼演化的。此時,紅外線的優勢再次展現。由於波長較長,紅外線比可見光和紫外線,更能夠穿過層層的星際雲氣而不被吸收,因此可以幫助天文學家直擊初生恆星的核心區域。

哈伯太空望遠鏡利用可見光與近紅外線拍攝的創生之柱(Pillars of Creation)。可以看到利用紅外線觀測時,望遠鏡能夠更好地看穿厚重的星際雲氣。圖/NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

除了恆星本身之外,恆星形成時環繞在其周遭的「原恆星盤(Protoplanetary disk)」也是行星誕生的溫床。利用 ALMA 等次毫米波(介於遠紅外線到無線電波之間)望遠鏡,天文學家發現許多初生的恆星系統旁,都圍繞著濃密的氣體與塵埃盤。不僅如此,它們還發現這些盤面上,常有許多大小不一的間隙(gap),很可能就是來自正在形成中的行星。在少數的系統中,天文學家甚至能夠直接拍攝到這些正在襁褓中的系外行星們。而 JWST 在紅外波段的觀測,將能夠讓天文學家更進一步了解這些行星(尤其是靠近恆星的類地行星們)的形成。

ALMA 在遠紅外線/次毫米波波段拍攝的多個原行星盤(protoplanetary disk)影像。它們是恆星旁殘留的塵埃與雲氣,且被認為是系外行星誕生的搖籃。JWST 將以中紅外線對這類天體進行更多的觀測。圖/ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello
中紅外波段存在許多重要的分子的發射譜線,如甲烷(Methane)、氨(Ammonia)、乙炔(Acetylene)等等,這些了解這些分子的分布與含量,能幫助天文學家了解行星的形成時原行星盤的環境,以進一步了解行星的形成機制。圖/NASA, ESA, CSA, Leah Hustak (STScI)

外星世界:凝視太陽系與系外行星

「我們在宇宙中是孤獨的嗎?」

這個問題雖然至今仍沒有答案,但過去 25 年,天文學家對外星世界的認識已經有了巨大的進展。曾經,系外行星是只存在於假想中的天體;但現在,天文學家已經發現了超過 4,000 顆,隨著資料的不斷更新(主要歸功於 TESS 衛星的努力),這個數量還會持續上漲。

想了解系外行星學的發展歷史?這首 Acapella Science 的作品絕對是最棒的入門!

影/acapellascience

但是,天文學家雖然知道這些系外行星的存在,對這些外星世界的了解卻還相當有限,原因是系外行星實在是太小太暗了。對於多數的系外行星,天文學家都只能用一些間接的方法,測量它們的質量、半徑、軌道週期等相對粗略的特性,並且估計這個行星是否處於適合生命生存的「適居帶(Habitable Zone)」之內。

NASA 的 Kepler 與 TESS 望遠鏡是專司以「凌日法」搜尋系外行星的獵手。目前已知大半的系外行星都是由它們兩個發現。但是他們的觀測能夠提供的資訊相對有限。圖/NASA/JPL-Caltech

JWST 強大的能力將幫助天文學家突破困境。它能夠以兩種主要的方式觀測系外行星:一種是趁著系外行星繞行到其母恆星前方時,觀測整個系統的光譜,並找出其中由系外行星的大氣所貢獻的吸收譜線,這種方法被稱為「凌日光譜學 (Transit Spectroscopy)」;另外一種方式是藉由「日冕儀(Coronograph)」遮擋住來自母恆星的光線,直接拍攝並取得系外行星的光譜,這種做法被稱為「直接影像法(Direct Imaging)」。結合這兩種方式,JWST 將能夠讓天文學家對系外行星的認識不再只有多大、多重、多遠這些淺顯的描述,而是能知道大氣的組成、溫度與垂直結構,以及它們隨著季節、軌道半徑等其他因素的變化,深入地了解這些外星世界,甚至是尋找生命可能存在的跡象。

藝術家對 Kepler-1649c 行星的想像圖。圖/NASA

除了遙遠的系外行星之外,JWST 對於太陽系內的觀測其實也能有很大貢獻喔!舉例來說,JWST 擁有的中紅外波段的光譜觀測能力,既然可以分析系外行星的化學組成,當然也可以拿來分析太陽系內的小天體,如小行星、彗星、古柏帶天體等等,補足地面天文台無法觀測中紅外線留下的資訊空缺。此外,對於火星、四大巨行星、以及土衛六泰坦的研究,都是 JWST 可能的觀測目標。

未來精彩可期

從 1996 到 2021,從「新世代太空望遠鏡」到「詹姆士.韋伯太空望遠鏡」,天文學家的超級紅外線太空望遠鏡之夢,走過了漫長而曲折的發展歷程。25 年後的今天(10 月 17 日),JWST 已經搭乘海運抵達位於南美的法屬圭亞那太空中心,準備在 12 月 18 日搭乘亞利安 5 號火箭(Ariane 5),前往日地第二拉格朗日點(L2),以前所未有的性能,展開對宇宙、星系、恆星與行星的深入研究。更重要的是,每當一代更新、更強大的儀器成軍,天文學家不僅期待它回答上述「現有」的問題,更希望它能將人類的視野,開拓至我們從未想過的領域。韋伯究竟會帶來怎樣的驚喜,就讓我們拭目以待!

參考文獻

延伸閱讀

  1. 為何 NASA 不惜大撒幣也要把它送上太空?——認識韋伯太空望遠鏡(一) – PanSci 泛科學
  2. 史上最大口徑的 JWST 要如何塞進火箭?——認識韋伯太空望遠鏡(二) – PanSci 泛科學
  3. 太空巨獸 JWST 升空後的 150 萬里長征—— 認識韋伯太空望遠鏡(三) – PanSci 泛科學
所有討論 3
EASY天文地科小站_96
21 篇文章 ・ 906 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

6

11
3

文字

分享

6
11
3
太空巨獸 JWST 升空後的 150 萬里長征 —— 認識韋伯太空望遠鏡(三)
EASY天文地科小站_96
・2021/10/14 ・3488字 ・閱讀時間約 7 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 作者/陳麒云|中央太空科學與工程學系
  • 作者/林彥興|清大理學院學士班,努力在陰溝中仰望繁星 

二十年磨一劍,科學家與天文迷引頸期盼的詹姆士.韋伯太空望遠鏡(James Webb Space Telescope, JWST)終於確定將於 2021 年 12 月 18 日升空。作為人類的下一支旗艦級太空望遠鏡,JWST 上配備了最尖端的科學儀器,在本系列上一篇文章:《史上最大口徑的 JWST 要如何塞進火箭? 》中,我們詳細介紹了這些儀器與望遠鏡的鏡組機體。此篇,讓我們接續來解析,JWST 如何在一個月內,從升空,到運行至天文觀測的風水寶地 ── 拉格朗日點(Lagrangian point)。

詹姆士.韋伯望遠鏡將在 L2 運行。圖 / NASA / Adriana Manrique Gutierrez。

被引力遺忘的角落

在劉慈欣所著的經典科幻小說《三體》中,三體人生活的行星圍繞著三顆質量差不多的恆星運轉。由於這三顆恆星的運動軌跡是完全不可預測的,儘管三體人擁有極為先進的數學與科學技術,卻始終無法解決這「三體問題」,導致他們的文明被無數次摧毀。

在現實中,三體問題同樣也是物理界的大哉問。其中兩位對三體問題做出重要貢獻的,就是 18 世紀的數學家歐拉(Leonhard Paul Euler)和拉格朗日(Joseph Lagrange),他們找到了「限制性三體問題」的五個特殊解:當三個天體(比如太陽、地球、太空望遠鏡)中的一體(太空望遠鏡)質量可以小至不計時,可以在空間中找到五個位置放入這個天體,使其與另外兩體的相對位置不變,以相同的週期旋轉。而這五個點,就被稱為拉格朗日點(Lagrange Point)。

由於拉格朗日點的物理特性,探測器只需要很少的燃料就可以滯留於此,這讓拉格朗日點在太空探測中有很高的價值。至今,人類已有十多架探測器到達過日-地拉格朗日點,其中包括著名的太陽和太陽圈探測器(SOHO)、威爾金森微波各向異性探測器(WMAP)等人類太空史上的重要衛星。本系列文章的主角詹姆士.韋伯望遠鏡也將跟上前輩們的腳步,前往日-地連線上的拉格朗日點 L2 執行任務。

在日地系統的 L2 上,太陽、地球、月球位於同一側,這使得 L2 上的探測器只需要想辦法擋住一側的陽光,就能達到降溫和排除光害的效果,因此 L2 成為了放置太空望遠鏡的好地方,也是韋伯望遠鏡的最好去處。

日-地系統中 5 個拉格朗日點。圖 / NASA / WMAP Science Team。

歐洲最可靠的重型運載火箭——亞利安五號

JWST 摺疊後高度超過 10 米,寬度達 4.5 公尺,更是有 6.2 噸的重量,要將如此大型的科學儀器送至地球 150 萬公里外的 L2,難度將會比發射至低地球軌道的哈伯望遠鏡高得多。而這個艱鉅的任務,將交給亞利安 5 號運載火箭(Arian 5)來完成。亞利安 5 號是歐洲太空總署開發的重型運載火箭,2009 至 2013 年環繞於 L2 軌道的赫雪爾太空望遠鏡(Herschel Space Telescope)及普朗克巡天者(Planck Space Oberservatory)正是由亞利安 5 號發射的,另外還有超過 100 次成功發射衛星至地球軌道的經驗,功勳卓越且穩定。

亞利安 5 號升空的動力由第一節火箭的火神發動機(Vulcain 2)及兩枚固態輔助火箭(Solid boosters)提供,它們將帶領火箭脫離地表。火箭的上半部則是由第二級火箭(Second stage)及酬載倉組成,另外還有整流罩包覆於第二節火箭與酬載倉外。第二級火箭的主要功能是在第一節火箭脫離後,提供繼續前進與轉向的動力;為本次任務特別製作的加大型整流罩,則可以避免火箭升空過程中,韋伯望遠鏡受到熱、震動、風壓或快速變化的氣壓影響而損壞。

2021 年 9 月初,亞利安 5 號的主要部件已經運送至法屬圭亞那發射場。包含主引擎、第二級火箭及酬載倉,並開始進行組裝與測試,固態輔助火箭等剩餘部件也會陸續到達。直至發射前一周,火箭主體完全配備完畢,才會將 JWST 裝載上酬載倉,並裝上整流罩。最後發射前夕,亞利安 5 號及韋伯望遠鏡由發射平台安裝上發射架。

一切準備就緒,只待發射場內再次響起,那代表人類進步的倒數。

Dix, Neuf, Huit, Sept, Six, Cinq, Quatre, Trois, Deux, Un, Zéro,…LAUNCH!!

圖 / ESA/CNES/Arianespace – Optique video du CSG – P.Prion。

發射時,兩枚固態輔助火箭和主火箭提供火箭升空的推力。兩隻輔助火箭只能提供 130 秒的動力,會最先耗盡燃料,並脫離火箭主體以減少重量。接著,當韋伯望遠鏡抵達較稀薄的高層大氣後,空氣阻力變得微乎其微,就不再需要整流罩的額外保護了。此時,整流罩將會分為兩瓣脫落,露出酬載倉裡的 JWST。

接下來,主火箭將獨自推進直到離開大氣層。發射後 9 分鐘,主火箭脫離。主火箭脫離後第二節火箭不會馬上點火,而是先帶著 JWST 繞行至大西洋上空,讓火箭在大致指向 L2 時點火,開始往目的地加速。為了避免韋伯望遠鏡因過熱而損壞,第二節火箭會一直調整方向,確保火箭一直正對太陽,最大程度上減少望遠鏡的受光量、為 JWST 抵擋一部分陽光。發射後 27 分鐘,第二節火箭脫離,並利用最後一點燃料避開韋伯望遠鏡的路徑。

自此,一路被亞利安火箭守護的韋伯望遠鏡,終於要獨自開始它的太空之旅。

 

整流罩將會分為兩瓣脫落,露出酬載倉裡的 JWST。 圖 / ESA / D. Ducros。

詹姆士.韋伯的太空漂流之旅

要在太空中展開一個網球場大的望遠鏡,對溫度控制和機械結構的挑戰很高,所以 JWST 的展開將會非常緩慢,也非常壯觀。韋伯望遠鏡與亞利安火箭分離後,首要任務是和地面建立聯繫,太陽能板和天線會在發射後 24 小時內展開,建立韋伯在太空中定位和飛行的能力,也停止消耗電池電量,為後續各構造的展開做準備。

首先要展開的是摺疊於支架上的遮陽帆 (Sunshield) ,放下前後遮陽帆支架後,JWST 核心的伸縮塔會把鏡組抬升約 2 公尺,提供 遮陽帆完全展開的空間。接下來,左右舷的伸縮機械臂依序將左右剩餘的遮陽帆拉出。部屬遮陽帆的最後一步是拉緊薄膜,這五層厚度比頭髮還細的薄膜,各自有不同的大小和形狀,將五層薄膜分離至特定的位置才能徹底展開,發揮遮陽的作用。

遮陽帆展開後,JWST 大約會花五天的時間降溫到其最終操作溫度,在遮陽帆作用下,遮陽帆陰影中的鏡組能降溫到攝氏 -200 度以下。發射後 11天,背光面已經足夠低溫,是時候展開韋伯望遠鏡最後的展開工作 ── 鏡組展開。首先,次鏡慢慢從主鏡上方放下,並固定到位。接著,位於主鏡後方的散熱器展開,用於處理多餘的熱量,對 JWST 這種紅外線任務來說,這項功能任務至關重要,避免蒐集的訊號淹沒在熱造成的雜訊中。最後,主鏡的兩翼固定到位,完成詹姆士.韋伯望遠鏡的全部展開工作。然而展開工作完成後,韋伯望遠鏡離開始運作仍有很長的路要走。

韋伯望遠鏡的發射與展開流程。來源 / Northrop Grumman。

主鏡固定到位後,JWST 要繼續在太空中漂流約兩周,才會啟動推進器,轉向進入 L2 軌道。值得一提的是,JWST 不會正好在 L2 點,而是以 6 個月為周期圍繞著 L2 運行,稱為「暈輪軌道(Halo Orbit)」。在暈輪軌道上,維持軌道所需的動力較少,這讓韋伯望遠鏡攜帶少量燃料就能在軌道上運作超過 5 年。與每隔 90 分鐘進出地球陰影的哈伯望遠鏡不同,運行於暈輪軌道能讓韋伯遠離地球的陰影,從而確保其太陽能板能持續供電,觀測也不會受到地球的遮擋。

JWST 暈輪軌道模擬。來源 / About Space Only。

韋伯望遠鏡進入 L2 軌道後,科學團隊將開啟長達半年的儀器調整與校正,包括 18 塊主鏡的對焦微調、四大酬載的拍攝測試等等。如果一切順利,我們有機會在明年暑假前,看到詹姆士.韋伯望遠鏡的開光照,一窺這隻太空巨獸的火力。相信屆時 NASA 能說服我們,這二十年的等待是值得的。

參考資料

  1. James Webb Space Telescope – Webb/NASA
  2. JWST Orbit – JWST User Documentation (stsci.edu)

延伸閱讀

  1. The Launch – Webb/NASA
  2. 為何 NASA 不惜大撒幣也要把它送上太空?——認識韋伯太空望遠鏡(一)
  3. 史上最大口徑的 JWST 要如何塞進火箭?——認識韋伯太空望遠鏡(二)
  4. 淺談 JWST 的科學意義:探索宇宙深處與塵埃後的外星世界!——認識韋伯太空望遠鏡(四)
所有討論 6
EASY天文地科小站_96
21 篇文章 ・ 906 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事