2

13
2

文字

分享

2
13
2

出事了哈伯!細數哈伯太空望遠鏡 31 年來的維修升級史

EASY天文地科小站_96
・2021/07/09 ・3188字 ・閱讀時間約 6 分鐘

  • 文/林彥興|清大理學院學士班,努力在陰溝中仰望繁星
  • 文/邵思齊|台大地質科學系,沉迷於世界的浩瀚之中

2021 年 6 月 13 日,哈伯太空望遠鏡上負責控制與協調儀器的酬載電腦(payload computer)突然關閉,主電腦不再接收到酬載電腦的指示訊號,所有觀測計畫也被迫中斷。至此文撰寫時(7 月 2 日)NASA 仍在嘗試啟用備用的酬載電腦與記憶體。其實這不是哈伯第一次發生故障了,在它漫長的服役生涯中,哈伯曾多次發生故障需要維修。從 1990 到 2009 年之間,哈伯共接受過四次太空梭的服務任務(Service Mission),除了排除故障,也將老舊的設備換新,提升望遠鏡的觀測能力。本文就讓我們一起來回顧過去三十多年中,哈伯太空望遠鏡的維修與升級史吧!

第一次任務:STS – 61 (1993)

擁有一座位於大氣層之上的天文台可謂是二十世紀天文學家的共同夢想。在不受大氣干擾的外太空,不僅可以拍攝出更加銳利清晰的影像,更可以觀測紫外線、紅外線等容易被大氣吸收的波段,以更全面的了解宇宙中的天體。而 NASA 與 ESA 合作的哈伯太空望遠鏡計畫,正式完成這份夢想的結晶。哈伯的主鏡直徑高達 2.4 公尺,並搭載了五個(見下圖)功能各異的相機,以好好的分析這麼大口徑的望遠鏡所收集的光線。不僅如此,作為野心勃勃的頂級太空望遠鏡計畫,NASA 早在設計之初就幫哈伯預留了可以升級與維修的空間,且預定以太空梭進行四次「服務任務(Service Mission)」,幫助哈伯與時俱進,在軌道上工作十五年。但出乎意料的是,這個功能竟然這麼快就得派上用場。

哈伯太空望遠鏡剛升空時的初始配備。圖/NASA/ESA,製圖:邵思齊

哈伯在 1990 年發射不久後,研究人員就發現望遠鏡的成像有著嚴重的問題,拍攝出來的影像模糊不清,就好像望遠鏡近視了一樣。經過檢驗,NASA 發現原因出在主鏡的弧度磨製錯誤,勢必需要進行調整,這使得原本規劃的第一次服務任務更加迫切與重要。

第一次服務任務於 1993 年由奮進號太空梭執行。當時六名組員搭乘太空梭飛到哈伯身旁後,他們拆掉了哈伯的「第一代廣域和行星照相機 WFPC」,並將內建有修正鏡組的「第二代廣域和行星照相機 WFPC2」裝了上去。同時,他們拆除了「高速光度計 HSP」並在空出來的空間安裝了一組名 COSTAR 的修正鏡組,負責幫其他沒有內建修正鏡片的儀器(GHRS、FOC 與 FOS)修正扭曲的影像。於是哈伯在升空三年後,哈伯的成像問題終於解決,開始了正常的觀測與科學研究。

COSTAR 的安裝過程。圖/ NASA/ESA
第一次服務任務前(左)後(右)哈伯拍攝的照片比較,可以看到影像品質的進步相當明顯。
圖/NASA and STScI

第二次任務:STS – 82 (1997)

經過第一次任務的維修,哈伯突破性的觀測資料為人們展示了宇宙深處的各種風貌,與此同時,嶄新的技術與硬體也正準備要登上太空。第二次服務任務更新了兩個科學儀器,一是把原本用來觀測紫外線的光譜儀 GHRS 換成近紅外線為主的 NICMOS,二是把原本專用於拍攝小天區的 FOS 換成了可以拍照片也可以拍光譜的紫外線相機 STIS,補上原本 GHRS 負責的紫外線波段。

第三次任務:STS – 103 (1999) & STS – 109 (2002)

哈伯的第三次維修任務原定於 2000 年 6 月進行。然而,突如其來的意外打破了原本的計畫。

不像車子或飛機,人造衛星處於空無一物的太空中,想要轉向是相當不容易的事情。尤其哈伯作為一台望遠鏡,需要精準而穩定的持續指向星體才能好好拍照,對姿態控制(attitude control)的要求相當的高。為此,哈伯採用了六顆「陀螺儀(gyroscope)」,以角動量守恆的原理來偵測望遠鏡的轉動,協助維持它的精準指向。一般情況下,哈伯需要三顆陀螺儀正常運作,才能觀測目標。

但是 1999 年 11 月 13 日,哈伯上的六具陀螺儀壞了四具,使得望遠鏡無法繼續觀測,只能進入安全模式待機。因此,NASA / ESA 決定將原本的第三次維修任務拆成兩次執行。

於是,1999 年 12 月 19 日,哈伯拯救部隊搭乘再次搭乘發現號升空,執行「維修任務 3A」。這次的任務都是機械設備的更新,包括換裝新的陀螺儀、控制電腦、資料儲存裝置、感測器、天線、保護毯等等。而科學儀器的更新,則要等到維修任務 3B 再進行。

而以升級觀測儀器為目標的 3B 任務終於在 2002 年登場。本次任務最重要的目標,就是要裝上哈伯的新一代相機「先進巡天照相機 ACS」。ACS 是哈伯的第三代相機,取代了原本的暗天體相機,並擁有比 WFPC2 大兩倍的視野,能夠更有效率的拍攝大範圍的區域,儀器名稱中的「巡天」二字正是從此而來。另外,本次任務還更換了哈伯的太陽能板,使哈伯的外觀發生了非常明顯的變化。

ACS 的感光元件。圖/NASA/ESA and the ACS Science Team
ACS 全套系統。圖/NASA/ESA and the ACS Science Team
3B 維修任務之前的哈伯。圖/NASA
3B 維修任務之前(左)與之後(右)哈伯的外觀變化。圖/NASA

第四次任務:STS – 125 (2009)

哈伯可維修的設計,讓一個 1980 年代以前設計的望遠鏡直到 21 世紀初都仍是天文學的頂尖先鋒。但可惜的是,2003 年哥倫比亞號太空梭在返航時解體,造成了七名太空人殉職的悲劇,使得世人再次質疑起太空梭的安全性。加上成本的日益高漲,讓 NASA 最終決定盡快將其退役。於是,第四次維修任務,就成為了最後一次維修哈伯的機會。

2009 年 5 月 11 日,亞特蘭提斯號太空梭升空,這是人類最後一次造訪哈伯。這次任務中,太空人幫哈伯安裝了「廣域相機 3(WFC3)」與「宇宙起源光譜儀(COS)」,再一次強化哈伯的觀測能力。同時還修復了分別在 2004 年與 2007 年故障的 STIS 與 ACS 兩台儀器。並且還幫陀螺儀、飛控電腦、電池等多項零件大換血,盡力延長哈伯可以繼續服役的時間。從此,哈伯只能自力更生。

哈伯太空望遠鏡的儀器升級歷史。圖/林彥興

展望未來

四次的服務任務,讓 1970 年代設計的哈伯太空望遠鏡,直到 2020 年代都仍活躍在天文學的最前沿,締造無數傳說。但隨著時間過去,哈伯已經無人維修長達 11 年之久,期間雖然多次遭遇陀螺儀失效、電腦當機等故障,但工程師們仍千方百計地保持望遠鏡的運作。然而,2021 年 6 月 13 日的這次故障,經過近一個月的搶救仍無法恢復正常。沒有人知道,哈伯太空望遠鏡的傳奇是否將在此終結。

還好,即使哈伯就此功成身退,NASA、ESA 與 CSA 合作的下一代旗艦級太空望遠鏡即將在今年底升空,它就是「詹姆士.韋伯太空望遠鏡 JWST」。它擁有直徑 6.5 公尺、金光閃閃的六角形鏡面,集光面積是哈伯的五倍以上。而且與主攻紫外線和可見光的哈伯不同,韋伯的觀測波段位於紅外線,這讓它可以看穿星際塵埃,直擊深埋在分子雲中的初生恆星;也可以極力遠望,看到宇宙早期的第一批恆星與星系;又或者是利用光譜儀,分析系外行星的大氣組成,尋找生命的蹤跡。韋伯將會續寫哈伯的傳奇,帶領我們更深入的了解宇宙的奧秘!

韋伯太空望遠鏡概念圖。圖/Kevin Gill

延伸閱讀

  1. Hubble 30 圖文專輯(一)
  2. Hubble 30 圖文專輯(二)
  3. Hubble 30 圖文專輯(三)
  4. 百倍於哈伯觀測能力,大小尺度通通包辦!——NASA 的下一個旗艦級「羅曼太空望遠鏡」 – PanSci 泛科學
  5. 哈伯望遠鏡因電腦問題暫時停擺
文章難易度
所有討論 2
EASY天文地科小站_96
23 篇文章 ・ 1142 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

7
0

文字

分享

0
7
0
韋伯太空望遠鏡運作滿週年,它看到了什麼?
PanSci_96
・2023/09/02 ・3306字 ・閱讀時間約 6 分鐘

古老星系中發現有機分子?我們離第三類接觸還有多遠?

韋伯正式展開拍攝任務已經屆滿週年,最近也傳回來許多過去難以拍攝到的照片。六月初,天文學家在《自然》期刊上發表了這張照片,在藍色核心外,環繞著一圈橘黃色的光環。

這是一個星系規模的甜甜圈?這是一個傳送門?還是外星文明的戴森環?

——都不是!其實,這是一個含有有機物多環芳香烴的古老星系,其名為 SPT0418-47。因為名字很長,以下我們就簡稱為 SPT0418 吧!

這個觀測結果有什麼特殊意義?這代表我們發現外星生命了嗎?

SPT0418 是怎麼被拍到的?扭曲時空的重力透鏡!

一年前,在韋伯望遠鏡傳回第一組令人震撼的照片時,我們製作了兩期節目來介紹韋伯望遠鏡,和它在天文觀測史上跨時代的重要意義。在那之後,也有不少泛糰敲碗,希望我們可以再繼續介紹韋伯望遠鏡的後續發展。

這次在週年前夕公開的這張 SPT0418 照片,是一張標標準準因為重力透鏡而形成的美麗照片。「重力透鏡 Gravitational Lensing」這個概念,相信有在關注天文物理的泛糰們,應該都有聽過。愛因斯坦的廣義相對論告訴我們,星系與星系團的龐大質量會扭曲它們周圍的時空,就像一面星系尺度的超級放大鏡一樣,可以在光線通過時改變它們的走向,從而扭曲背景星系的影像。而如果背景星系與前方的前景星系剛好前後對齊的話,重力透鏡效應還能將背景星系扭曲成美麗的環型,這個環型被稱為「愛因斯坦環 Einstein Ring」。

背景星系從黑洞後面經過時的重力透鏡效應模擬影像。圖/Wikimedia

乍聽之下,重力透鏡會扭曲背景星系影像,好像會干擾觀察,是個缺點。但實際上重力透鏡在扭曲影像的同時,也會聚焦背景星系發出的光,從而讓背景星系變得更加明亮而容易觀測,讓天文學家可以看到更遠或更暗的天體。因此雖然扭曲的影像會增加分析上的麻煩,但天文學家其實非常喜歡觀測這些受重力透鏡效應影響的天體們。甚至會專門安排觀測計畫,拍攝這些受重力透鏡效應影響的區域。這次的主角 SPT0418,正是韋伯太空望遠鏡針對重力透鏡效應開展的「TEMPLATES 」觀測計畫的其中一個觀察對象。

SPT0418 是一個位於時鐘座(Horologium)方向,距離地球約 123 億光年遠的古老星系。最早在南極望遠鏡(SPT)的觀測資料中被發現,並在後續以阿塔卡瑪大型毫米及次毫米波陣列 ALMA 進行的觀測中,確認了它是一個富含大量塵埃,而且正在以每年約 350 個太陽質量的超高速率生成恆星的星系。

在我們與 SPT0418 之間,還存在著一個前景星系。正是這個前景星系的質量扭曲了周圍的時空,像一片巨大的放大鏡一樣將背後的 SPT0418 扭成了漂亮的愛因斯坦環。

當觀察者、前景星系和背景星系在同一直線上時,就可以透過重力透鏡效應觀測到愛因斯坦環。圖/PanSci YouTube

在這張經過調色的照片中,中間的藍色部分就是前景星系,旁邊的橘色環則是因為重力透鏡而扭曲的 SPT0418 。得益於這個重力透鏡,SPT0418 的影像被增亮了三十倍以上,非常適合讓天文學家一窺早期宇宙中星系的狀態,因此被選為韋伯的觀測目標。

韋伯望遠鏡藉由重力透鏡效應拍攝到的扭曲的古老星系 SPT0418-47。圖/J. Spilker/S. Doyle, NASA, ESA, CSA

那麼,這次的觀測又有什麼重要意義呢?

多環芳香烴是什麼?看見它代表什麼意義?

這次的拍攝結果不能完全說是意外,因為在這個研究中,韋伯的目標非常明確,就是要尋找古老星系中的多環芳香烴。

在天文學上,多環芳香烴通常指兩個以上的苯環所組成的有機化合物的統稱,人們一般以它的簡稱「PAH」來稱呼它。

發現有機分子,難道這代表有生命存在於古老星系中嗎?其實不能這麼快下定論。

因為 PAH 廣泛存在於各式各樣的星系中,與其他由碳和矽組成的塵埃顆粒,同屬於星際塵埃的一部分。甚至在彗星、小行星、隕石中,都能發現各式各樣的 PAH。目前認為,宇宙中可能有超過 20% 的碳原子,都是以 PAH 的方式存在,只是環數不盡相同。

圖中右側的黑色暗帶為星際塵埃。圖/NASA, ESA, and the LEGUS team

所以,雖然科學家認為,宇宙中的生命誕生,可能與這些這些遍布其中的有機分子有關。但發現 PAH,不能直接與發現生命劃上等號。

過去數十年的天文觀測結果也顯示,PAH 確實廣泛存在於星系之中,但是天文學家對於這些分子究竟如何形成?又是什麼時候形成的?目前還沒有共識。因此迫切需要更多觀測,例如這次的目標 SPT0418 是個距離我們非常遙遠的古老星系,對於研究宇宙早期星系以及 PAH 的起源就很有幫助。

觀察 PAH 的困難及韋伯望遠鏡的重大突破

然而,要觀察 PAH 卻不太容易。原因是這些 PAH 發出的光,波長主要都集中在幾微米到十幾微米的近紅外與中紅外線波段。這個波段的光線受到大氣層的吸收非常嚴重,幾乎無法從地面觀測,因此過去我們很難取得相關數據。想要尋找 PAH 的蹤跡,勢必得使用紅外線太空望遠鏡才行。

這時,就是韋伯大展身手的時候了。比起同樣專注於紅外光譜的前輩史匹哲太空望遠鏡,韋伯的鏡片直徑大了超過七倍,集光面積更是大了將近六十倍,這不僅讓韋伯能夠拍攝遠比史匹哲更清晰的影像,更可以在更短的時間內拍攝到更暗的目標。

得益於韋伯強大的觀測能力,在這個研究中它僅僅對著 SPT0418 曝光了不到一個小時的時間,就在 3.3 微米的波段找到了清晰的 PAH 發射譜線,確認了PAH的存在的同時,也打破了觀測到最遠的 PAH 訊號的紀錄。

此外天文學家也發現,韋伯所拍攝到的 SPT0418 與前幾年使用 ALMA 觀測到的影像並不全然相同。

由於觀測波段不同,不同的望遠鏡拍攝同一天體的亮部分布會產生差異。圖/PanSci Youtube

由於韋伯拍攝的是 PAH 發出的近紅外光,而 ALMA 拍攝到的則是毫米尺寸的大顆粒塵埃所發出的遠紅外線,因此這可能代表 SPT0418 這個星系的不同部分,有著不同的塵埃組成。為甚麼會這樣呢?天文學家目前也沒有肯定的答案,需要更多的觀測來進一步釐清。

任務還在繼續!TEMPLATES 計畫持續追蹤 PAH 足跡

韋伯對 SPT0418 拍攝的照片,不僅打破了人類探測過離太陽系最遠的 PAH 訊號紀錄,更展示了在重力透鏡加韋伯的攜手合作下,能大幅拓展人類觀測遙遠星系的能力。除了 SPT0418 之外,天文學家還預計觀測另外三個被重力透鏡放大的星系,尋找並研究其中 PAH 的足跡,以解開星系與星際塵埃的演化之謎。

韋伯望遠鏡的「TEMPLATES 」計畫預計觀測四個被重力透鏡效應放大的天體。圖/JWST ERS Program TEMPLATES

雖然還有許多未解之謎,但韋伯傳回來的每張相片,都能讓我們能更了解這個宇宙一點點。最後想問問大家,韋伯望遠鏡正式展開拍攝工作屆滿一年,你最喜歡,或最希望我們繼續來講解的照片是哪一張呢?

  1. 土星、天王星和海王星的行星環高清照
  2. 大爆炸後 3.2 億年就誕生的的古老星系
  3. 即將蛻變為超新星的恆星照
  4. 更多你覺得美麗的照片,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1191 篇文章 ・ 1751 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

8
4

文字

分享

1
8
4
太陽系如何形成、如何演化?就讓「靈神星」來解答!
EASY天文地科小站_96
・2023/04/12 ・2962字 ・閱讀時間約 6 分鐘

  • 文/黃子權|掉入岩石堆中的研究生,現就讀台大地質所
  • 文/林彥興|現就讀清大天文所,努力在陰溝中仰望繁星

M 型小行星與行星的誕生

了解太陽系的形成歷史與演化,是行星科學最重要的使命之一。然而,身在太陽系形成後 46 億年的我們所看到的行星,都是經過漫長演化後的結果。它們的表面特性、內部結構,早已與剛形成時大相逕庭。

因此,想要研究太陽系的形成與演化,小行星是相當重要的目標。由於小行星質量小、冷卻快,更不會有複雜的風化和地質運動,因此它們從太陽系形成之初到現在都沒有什麼改變,就像活化石一般。而過去幾十年,人類也確實對小行星進行了廣泛而詳細的研究,比如拍攝照片計算它們的軌道,用光譜分析化學組成,甚至派遣太空船(如 JAXA 的隼鳥一號、隼鳥二號、NASA 的 OSIRIS-REx)直接前往小行星,將樣本採回地球分析。

而在太陽系目前已知的一百多萬顆小行星中,有一個相當特殊的族群,它們大多具有較大的密度和較高的雷達反照率,同時在光譜上缺乏特徵。基於上述特點,科學家們認為它們的組成中有含有不少金屬,因此稱之為 M 型小行星。

根據目前天文學家對行星形成的理解,原行星盤(protoplanetary disk)中的金屬元素分布理應相當分散,因此能夠自然產生元素分異並聚集大量金屬的地方,只有足夠大、足夠熱的原行星(protoplanet)的行星核。所以傳統上,M 型小行星被視為受到撞擊後裸露的行星核,同時也是鐵隕石的來源之一。但截至目前,仍未有探測器直接造訪 M 型小行星,確認這個假說是否正確。

近期,新的觀測資料更顯示,某些 M 型小行星似乎比人們預想的還輕,各種特徵也和人們對行星核的認知不盡相同(例如,在表面觀測到含水礦物的訊號)。這表示傳統的行星形成與演化模型,也許不盡正確。換個角度看,這也代表對 M 型小行星的研究,也許將能幫助我們揭開行星演化理論中的盲區。

M 型小行星是由什麼構成的?它們的演化歷史又是如何?苦於距離遙遠,過去人們對這些問題往往只能止於粗略的推測。但隨著靈神星號任務逐漸上軌,我們離解答這些問題(的一部分)只有一步之遙了。

靈神星號探測器。圖/NASA/JPL-Caltech/ASU

靈神星探索任務

靈神星探索任務(Psyche)是 NASA 發現計畫(Discovery Program)的一部分。發現計畫始於 1989 年,每隔幾年就會向全美國徵求任務提案,經過重重篩選後,最具有科學價值且最可行的團隊,就可以獲得 NASA 提供的經費,將他們的構想付諸實行。從 1996 年的 NEAR 任務開始,發現計畫已經為十幾個重要的太陽系探索任務提供機會,包含近期因太陽能板發電量降低而終止的火星「洞察號(InSight)」任務。2014 年,第 13、14 次發現計畫徵選開始,最後脫穎而出的其中一個計畫,正是靈神星探索任務。

而計畫要觀測的目標靈神星(16 Psyche)於 1852 年被義大利天文學家加斯帕里斯(Annibale de Gasparis)發現,並以希臘神話中靈魂之神「賽姬」命名。祂是第 16 個被發現的小行星,雖然不是最大的小行星(平均寬度約 220 公里)但卻是目前已知小行星中第 10 重的,其質量佔小行星帶總質量的 1%。根據估算,靈神星的密度大約為 3.9 g/cm3,遠低於鐵鎳隕石的 7.9 g/cm3,因此靈神星不太可能真的完全由金屬構成,比較可能是類似石鐵隕石那樣,由金屬與岩石共同組成。

科學家對靈神星的想像。圖/ NASA/JPL

作為發現計畫的一員,靈神星計畫切實地反映了該系列任務的宗旨:便宜、快速的解答重要的疑問。M 型小行星是行星形成與演化中相當重要的一片拼圖,而靈神星又是體積最大的 M 型小行星,其重要性不言而喻。對靈神星的探測,勢必能更加推進人們對行星演化的認知。

靈神星號的科學目標及預期解答的問題為:

  1. 靈神星是行星核還是未熔結物質?
  2. 靈神星表面的相對年齡為何?
  3. 小型金屬天體是否含有和高壓地核同比例的輕金屬?
  4. 靈神星形成環境的氧化還原性?
  5. 靈神星地表及撞擊坑特徵?

為了達到這些目標,靈神星號上搭載了以下儀器:

  • 多光譜成像儀 (Multispectral Imager)
  • 伽馬射線/中子光譜儀 (Gamma-Ray and Neutron Spectrometer, GRNS)
  • 通量閘磁強計 (Fluxgate Magnetometer)
  • X頻無線電實驗 (Radio Science (X-band))

整體而言,靈神星號的載酬相當簡要,科研儀器加總起來只占約 30 公斤,且每項儀器都是經過「實戰」驗證過的:多光譜成像儀來自火星好奇號探測車,GRNS 來自水星的信使號任務、磁強計參與了洞察號任務、X 頻無線電實驗(利用通訊時訊號的都卜勒效應測量重力強度變化)更是有多項成功紀錄。使用這些驗證過的儀器不僅能減少任務風險,同時能省下不少研發經費,提高任務的 CP 值。另外,靈神星號同時也會為深空網路(Deep Space Network, DSN)測試全新的「深空光學通訊(Deep Space Optical Communication, DSOC)」系統,利用雷射作為資料載體進行傳輸,科學家估計 DSOC 的資料傳輸速度,將比過去使用無線電的 DSN 快 10 到 100 倍。

靈神星號各項儀器位置圖。圖/修改自NASA/JPL-Caltech/ASU
靈神星號的伽馬射線光譜儀及中子光譜儀。圖/Johns Hopkins APL/Ed Whitman

另外,隨著科技進步,太空探索不再是國家機構的天下,各種商業公司紛紛加入了衛星製造的行列。因此重視任務 CP 值的靈神星號,從設計初期,科學家們便決定向商業公司尋求成熟、有發射紀錄且搭載了離子推進系統的衛星載具。最終他們選定了 Maxar 旗下的 Space Systems/Loral(SSL)公司的 1300 系列框架作為靈神星號的主體,並由噴氣推進實驗室(JPL)整合飛行系統(包含指令及資料處理系統)。靈神星號的推進系統是一具 SPT-140 霍爾效應推進器(Hall effect thruster),藉由游離氙氣並透過磁場將其加速噴出以獲得推力。搭配發電量達 20 千瓦的太陽能板及 922 公斤的氙氣,足夠支持靈神星號走完將近六年的航程。

抵達靈神星後,探測器將嵌入軌道開始環繞靈神星。科學家為靈神星號安排了四個逐漸降低的軌道(A 到 D),每個軌道都有各自主要的研究目標:

  1. 最高也是最初始的軌道 A 半徑約 700 公里,靈神新號將會在這裡測量靈神星的磁場。
  2. 56 天後,探測器將降至軌道 B(半徑 290 公里)並且開始對靈神星的地貌進行調查。
  3. 76 天後,靈神星將下降至半徑 170 公里的軌道 C,這是最小的穩定繞極軌道,同時也是最適合用來探測靈神星重力場的高度。
  4. 100 天後靈神星號將會降至最後、最低的軌道 D,軌道半徑僅 85 公里,在這探測器將利用 GRNS 調查靈神星表面的元素分布。
靈神星號任務示意圖。圖/修改自 NASA/JPL-Caltech

靈神星號原訂的發射日期為 2022 年 9 月。然而在飛行前的測試中,任務團隊發現飛行軟體異常,導致它錯過了 2022 年的發射窗口。經過幾個月的調查和調整,目前 NASA 公布的下個發射窗口為 2023 年 10 月 10 日以後,屆時靈神星號將會搭乘 SpaceX 的獵鷹重型火箭進入太空,就讓我們好好期待靈神星號傳回來的各種資料吧!

延伸閱讀

  1. 我們的征途是星辰大海:回顧隼鳥二號的億里長征
  2. Just Look Up!小行星監測系統「哨兵」全面升級
  3. 災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?
所有討論 1
EASY天文地科小站_96
23 篇文章 ・ 1142 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

1

6
0

文字

分享

1
6
0
人類在宇宙中是否孤寂?——宇宙中是否可能有其他文明?
Castaly Fan (范欽淨)_96
・2023/04/12 ・4993字 ・閱讀時間約 10 分鐘

1990 年,NASA 的航海家 1 號完成任務時,在 64 億公里外回首拍攝一張照片。地球,好似一粒漂浮在深空中的塵埃。該照片被命名為《蒼藍小點》(Pale Blue Dot),天文學家卡爾・薩根(Carl Sagan)隨後寫下了這段經典的語錄:

「凝視著這個淡藍小點:就是這裡。這就是家園。這就是我們。在這個小點上,每一個你愛的人,每一個你認識的人,每一個你曾聽聞的人,每一個人類、都曾經生活於此。我們一切的快樂和掙扎,萬千種引人自豪的宗教信仰、思想體系、經濟法則,每一位獵人與騎兵,每一位英雄與懦夫,每一個文明的締造者與摧毀者,每一位君王與農夫,每一對陷入愛河的年輕伴侶,每一位為人父母者、充滿希望的孩子們、發明家與探險者,每一位靈魂導師,每一位貪腐政客,每一個所謂的「超級巨星」,每一個所謂的「偉大領袖」,每一位歷史上的聖人以及罪人⋯⋯我們的一切一切,全部存在於——這顆懸浮在一束陽光中的渺小塵埃上。」

著名地球照片《蒼藍小點》。 圖/wikimedia

在浩瀚的宇宙中,地球確實是一粒渺小沙塵,也是我們唯一確定有智慧生命居住的世界。那麼,在茫茫太空中、銀河系的彼端、抑或是更遙遠之處,是否還有其他生命、乃至於文明正在活躍著?在這偌大而寂寥的宇宙中,人類又是否是孤獨的存在?

地球是否特別?平庸與殊異的爭辯

《蒼藍小點》這張影像意味著:地球不過是宇宙空間億萬顆星體中的一粒微塵,在近幾十年來,實驗觀測更指出宇宙比我們想像中來得更大、且正在持續擴張中。從演化論的視角來看,人類並非特別,我們所擁有的聰慧恰恰就是有機化學中基因序列的一種結果。

這些證據指向了一個事實——地球並不特別,只不過是一顆普通的行星。這樣一種看法在哲學上面被稱作「平庸原理」(mediocrity principle)。

然而,對此有不少科學家抱持反對意見,而這一系列說法被稱之為「地球殊異假說」(Rare Earth hypothesis)。他們認為,地球的形成、板塊運動、大氣、海洋、乃至於生命的誕生、演化——這些都並非輕而易舉就能產生的。英國天文學家霍伊爾(Fred Hoyle)爵士曾如此形容:

「生命自發形成的機率,宛若一陣龍捲風掃過垃圾場、從中隨機拼湊出一架波音 747 那樣渺茫。」

確實,一系列有機分子纏繞結合成蛋白質、再組成基因序列、構成原始細胞這一段程序,這機率是非常微小的。而科學家們同時也提出了地球恰恰位在「適居帶」(habitable zone),這些條件決定了生命是否得以形成並且演化:

  1. 星系適居帶:恆星系統若接近星系中心,由於超大質量黑洞影響,會導致輻射、宇宙射線、以及星體撞擊的干擾,從而難以形成生命;若過於遠離核心,則會使重元素(例如:鐵、碘)難以形成,這些重元素是組成複雜生命分子的條件。太陽系位在銀河系第三旋臂上,恰好座落在適居帶。
  2. 太陽系適居帶:對於一個恆星系統而言,行星與恆星的距離將主宰生命誕生的條件。比如:水星、金星溫度過高,便不適合生命形成;火星、木星外側的行星距離太陽偏遠,則不會有液態水的存在;而地球位處金星、火星之間,不僅溫度適宜、有液態水存在,更有足夠大氣層可以擋避隕石與輻射,使得碳循環得以建立,恰好符合生命形成的條件。
  3. 行星適居帶:與前者類似,行星必須在恆星的一定範圍內,才能有良好的溫度環境、使得液態水可以存留。
太陽系在銀河系中的位置。圖/Wikipedia

超級適居行星的發現

所謂的「超級適居行星」(superhabitable planet),顧名思義,就是指位居在適居帶的行星。請注意,不少人常常將其誤解為「超級地球」(super-Earth),但這兩者是不一樣的。

首先,超級地球的判斷依據僅僅是質量,而非適居帶等條件,亦即比地球大出許多的岩質行星、但通常遠比天王星或海王星小。

而另一個相關的數據稱為地球相似指數(Earth Similarity Index, ESI),指的是一行星的大小、質量、溫度等條件與地球的相似程度。以地球的 ESI=1 為標竿,目前所發現 ESI 最高的行星為位在 1,075 光年外的 KOI-4878.01,其 ESI 值高達 0.98,但存在性還在評估中。

不過,ESI 值高並不代表行星中有生命(畢竟有可能遠離行星適居帶)。真正意味著有可能會有生命存在的,便是「超級適居行星」。目前,葛利斯 370b、葛利斯 581c、葛利斯 581d、葛利斯 581g、葛利斯 832c、克卜勒 22b、克卜勒 62e、克卜勒 62f、克卜勒 69c、克卜勒 186f 和克卜勒 442b 等等,皆是超級適居行星的代表。為了探究這些星球是否有生命存在,最具表性的行動莫過於「搜尋地外文明計畫」(SETI)。

地球數以萬億計的物種中,人類算得上是最具高等智慧的生物。但假設——遙遠的某顆行星上也有「智慧生命」的存在,那麼,對方是否有可能比我們先進?他們能透過量子力學的應用而發明電子產品嗎?他們能掌握陽光、電磁等能源嗎?他們是否有完善的醫療、教育、經濟、社會結構?又或者,他們是否已然可以達成人類難以觸及的瞬時旅行?

在探討這個問題之前,先讓我們回到「人類」身上。人類是因為達成了哪些「成就」,而擁有了智慧呢?

費米悖論:我們為何從未接觸過外星智慧?

或許宇宙深處已然有著科技程度比我們先進數百萬年的高等文明,那些 III 型文明或許早已可以駕馭光速飛行、甚至能掌握時空動力學跳脫距離限制到訪地球。根據「德雷克公式」(Drake equation),銀河系中可能與我們接觸的先進文明數量大約可以表示為:

其中,等號右側從左至右依序為:銀河系恆星形成速率、恆星系統有行星的可能性、位於適居帶行星的平均數目、行星上發展出生命的可能性、生命演化成為智慧文明的可能性、智慧文明得以進行通訊的可能性、以及該智慧生命的預期壽命。根據估算,可能與人類通訊的智慧文明在銀河系中最少一千、最多則高達一億個。

我們總是如此預估:在擁有 137 億年歷史的廣袤宇宙中,與地球類似的星體非常多,先進地外文明的存在性相對而言也非常高,而德瑞克公式更意味著本銀河系中便可能有成千上萬個智慧文明存在。於是,一個矛盾產生了:

既然宇宙的尺度與年齡意味著高等文明應當存在,那麼——為何這個敘述迄今沒有得到充分的科學證據支持?

更簡潔的說法,便是:

宇宙中高等文明存在的可能性極高,然而為什麼這些智慧生命至今尚未與我們接觸過?

這便是著名的「費米悖論」(Fermi paradox)。關於這項提問,也出現了各種不同的說法或解答。

第一種答案認為,目前其實並沒有外星文明存在,因為:

  • 生命誕生的條件是極其稀罕的,有可能進化失敗、又或許尚未崛起(地球殊異假說)。
  • 自我摧滅:智慧生命在能完成恆星際旅行之前,便可能因為核戰爭、生化戰爭、或是資源枯竭等災難而自我毀滅了。

第二種則認為,外星文明其實存在,卻因為:

  • 尺度限制:受限於空間限制,使得智慧生命不容易前來;此外,也有可能是外星生命已經接獲人類的訊號,只是訊號尚未返回地球。
  • 技術因素:外星文明未必比地球文明進步;又或是,人類找尋外星生命的方法有誤,也有可能外星技術現象與自然現象過於雷同而難以區辨。
  • 刻意緘默「動物園假說」(zoo hypothesis)意味著外星智慧有可能已經收到人類訊息,但為了觀察人類舉動而不願回答;或者,科幻作家劉慈欣提出的「黑暗森林法則」認為,在尚未分別對方意圖之時、為保有宇宙資源等利益,刻意隱匿行蹤,必要時可能摧毀對方文明;又或者,基於技術奇點(technological singularity),與人類差別太遠從而無法有效答覆。
  • 已然接觸:外星智慧已然與人類接觸,但可能因為維度差異、或者隱匿行蹤,致使人類尚未發覺。例如文章中所提及的「馮紐曼探測器」(von Neumann probe)預示著:智慧文明可能透過奈米乃至於原子尺度的探測針、散播並且監控著地球人的舉動。

對於地外文明的探索與展望

對於探索地外文明,人類的野心從未止息。1972 年,無人探測器先鋒號裝載了一塊鍍金鋁板,其中囊括一些有關人類科技的基本訊息,例如——人類的身材面貌、氫原子躍遷圖示(用以表示長度與時間單位)、太陽系位置、以及地球的所在地等等。這塊「先鋒號鍍金鋁板」(Pioneer plaque)雖然不是第一個離開太陽系的人造物件(第一個離開太陽系的是航海家一號),但卻是第一個攜帶了人類文明訊息離開太陽系的人造物件。

先鋒號鍍金鋁板上面所鐫刻的訊息。圖/Planetary

如同先前提及的,SETI 或許是最具代表性的團體。1974 年,SETI 透過無線電訊息發送了知名的「阿雷西波訊息」(Arecibo message)至遠在 25,000 光年外的 M13 球狀星團。這串訊息陣列包含了:二進位數字、DNA 序列、核苷酸、雙股螺旋、人類平均身高與人口、行星系統、以及望遠鏡結構。假設 M13 星團的外星文明接收到訊息,那麼根據傳播速度推算,人類接收到回覆大約是五萬年之後的事了。

阿雷西波號所發射的無線電波信息,其中攜帶了人類相關的基本資訊。圖/PHL

1977 年,有鑒於先鋒號刻板基礎,以薩根為主的 NASA 委員會將地球上的 55 種語言、各種大自然的聲音、不同年代的音樂,以及有關於科學、人體構造、生態、建築物、交通建設、書信文物等 116 張影像,一併收錄至一張唱片裡,其中還包括時任總統卡特(Jimmy Carter)的書面信息,再透過航海家探測器發射至太空。這張「航海家金唱片」(Voyager Golden Record)預計 4 萬年後才會到達距離太陽系 1.7 光年的地方。

航海家金唱片及其所攜帶的信息。圖/NASA

雖說上述訊息目前為止都尚未得到回覆,當然,就宇宙尺度而言恐怕要等到數萬年後才會有所答覆。不過,值得一提的是,近年來天文學家透過克卜勒望遠鏡觀測到 KIC 8462852(又稱 Tabby 星、博雅吉安星)的光度有異常變化。

關於這個變化,有人認為可能是新形成的恆星塵埃造成的,但是科學家在觀測後尚未發現相關跡象;有人認為是星體碰撞下的殘骸導致的,然而克卜勒望遠鏡觀測到此情況的機會亦非常低;也有人認為是彗星群受到重力影響而朝往該恆星方向運動,不過這說法無法解釋為何光度會顯著下降。

這光度異常不規律的起伏至今仍是謎團,而所有證據彷彿指向了另一個極端的可能性——人工巨型結構(即「戴森球」)。假設該恆星系統有高等文明存在,便得以透過「戴森雲」這類結構控制恆星能量。乍聽之下似乎無比驚人,然而,目前唯有這個說法可以合理解釋光度的異常變化,因此,科學家並不否定 KIC 8462852 存在先進外星文明。

作者註:目前 KIC 8462852 的光度變化,科學界基本上已經排除戴森球的可能性

我們期待這些有關外星智慧的謎團能夠解開,也期許人類文明能在短時間內擺脫戰亂、資源枯竭等危機,從而在本世紀末順利躍升成為第 I 型文明。最後,讓我們引用 1977 年收錄在航海家金唱片中、吉米・卡特前總統的一段語錄作為總結:

「這個禮物來自於有點遙遠的世界,夾帶著屬於我們的聲音、我們的科學、我們的圖像、我們的音樂、我們的思想、以及我們的感觸。我們嘗試永存現有的時光,好讓來日得以共生於你們所處的時光中。我們期望有朝一日,能夠共同解決彼此所面臨的難題,並且聯合組成一個星系文明。這張唱片象徵著我們的希望、我們的決心、以及我們的善意——在這浩瀚且壯麗的宇宙中。」

參考文獻

  • 加來道雄,《穿梭超時空》,台北:商周出版,2013
  • 加來道雄,《平行宇宙》,台北:商周出版,2015
  • 卡爾.薩根,《宇宙・宇宙》,台北:遠流出版事業股份有限公司,2010
  • 史蒂芬.霍金,《胡桃裡的宇宙》,台北:大塊文化,2001
所有討論 1
Castaly Fan (范欽淨)_96
5 篇文章 ・ 1 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及文學創作。