0

0
0

文字

分享

0
0
0

《〈柯南 零的執行人〉足球真能解決任何事?》——2019數感盃 / 國中組專題報導類佳作

數感實驗室_96
・2019/05/15 ・2474字 ・閱讀時間約 5 分鐘 ・SR值 562 ・九年級

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。

本文為 2019數感盃青少年寫作競賽 / 國中組專題報導類佳作 之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

  • 作者:鍾依庭/台北市立明倫高中

一、研究動機

去年紅遍全台的柯南電影——零的執行人,不但壓倒性強勢攻上日本全國票房榜首,創下觀影人數達1,289,000人,票房突破16.7億円(約新台幣4.67億元),創下系列作品首週票房最高紀錄!我們就來一探柯南拯救世界背後的數字究竟隱藏了多驚人的秘密吧!

二、前情提要

一開始,無人探測機-天鵝號,結束火星上採樣本的任務,即將返回地球,透過遠端操控程式修正衛星軌道,讓其脫離等速率圓周運動的軌跡,使其墜落地球,且墜落過程中,探測機本體會在大氣層中燃燒,僅讓直徑約4m的太空艙重返大氣層,之後本體的隔熱罩分離,降落傘會展開,預定將在日本近海的的太平洋上降落。

殊不知,兇嫌利用網路技術,駭入遠端操控無人機的程式,更改其墜落軌道,企圖讓太空艙墜落於警視廳。警方為了避免傷亡,將居民疏散並暫時安置在新興建造,位於東京填海地區的博弈塔中。另一方面,為了防止無人機墜落於警視廳,柯南與公安警察安適透利用阿笠博士發明的遙控型無人機,承載炸藥,飛向墜落中太空艙,於離地30000m的高空將炸藥引爆,藉由爆炸的能量改變無人探測機落下的軌道,希望讓其落入太平洋上,沒想到改變軌道後的太空艙,居然不偏不倚的朝向充滿避難居民的博弈塔方向飛去 !

此時,柯南乘坐安室的車,為了再次解決危機,朝向博弈塔的方向駛去,並開上了一棟20層樓高的興建中大樓,從頂樓以180km/hr的速度衝向空中,接著就是大家熟悉的場景,柯南利用一記射門,將足球踢向墜落中的太空艙,並成功讓其些微偏移原本的軌道,只有擦撞到博弈塔邊緣,對整體結構沒有很大的影響,成功化解了危機。

接著,就來探討這令人吸睛的過程,究竟有無可能發生?

三、禍從天降

根據每日頭條報導,以色列一無人太空飛行器高1.5米,直徑2米,重600公斤,若將所有太空艙視為一圓柱體且密度皆相同,接著由圓柱體積公式及密度公式 :

將無人探測機從宇宙失重落下的位置視為警視廳的正上方,離地30km處(也就是引爆炸藥的高度)的順時速度為10km/s,不計空氣阻力,重力加速度為10m/,炸藥爆炸時會改變太空艙墜落的方向。

將炸藥產生的能量視為水平衝擊,不影響鉛質落下的速度,爆炸釋放的能量會使太空艙進行水平拋射運動。接著由下圖可知,警視廳本部到博弈塔(東京填海地區)的直線距離為11.63km(約12km)。

google地圖與東京都港灣局公布的填海地區域圖之疊圖

三、禍不單行

爆炸後太空艙會因為炸藥衝擊而得到一水平方向的力,也就是說爆炸造成的平拋運動,不影響鉛質速度,爆炸前後落地時間不會改變。已知改變軌道的太空艙會撞上博弈塔,又太空艙在爆炸後第3秒末時(落地瞬間),要擊中相距警視廳(原落下位置))12km處的博弈塔,可以推算出爆炸後太空艙的水平速度為(km/s)。

太空艙落下過程示意圖(圖源 : 自己)

安室與柯南將車駛至高20層樓的廢棄大樓,高度約為3*20=60(m),柯南由離地60m高處將足球踢向墜落中的太空艙,假設柯南踢球的力道為鉛直向上,一顆普通足球的平均重量為440g,使球做一鉛直上拋運動,且足球與太空艙碰撞時,要讓太空艙產生1m的軌道偏離,也就是說球向上的鉛直速度要大到足夠讓太空艙鉛直下降的速度降低,使其落地的距離延後1m。若柯南所踢的足球接觸到太空艙的瞬間為落地前一秒,碰撞前,太空艙最後一秒的水平位移原為4km=4000m,碰撞後,要延後1m落地,也就是說,最後一秒內要行走的距離變成4000+1m。

利用動量守恆公式,可得4000 2400+0.44v=(2400+0.44) 4001,v = 9455.55m/s。

如果想讓太空艙偏離原本落下的軌道,柯南至少要讓一顆440g的足球產生將近10000m/s。那麼究竟需要多大的力道才能讓球產生比音速還快的速度呢?這個速度就連M16突擊步槍(子彈射出的速度為1450m/s)也無法超越。

假設柯南踢球時,腳與球的接觸時間為0.1s,接著可以利用衝量公式

當柯南對足球的鉛直施力大於41604.42N時才能讓太空艙產生1m的偏移,反之,若施以小於41604.42N的力,墜落太空艙就會擊中博弈塔,這樣是無法拯救在塔中避難的居民(還有小蘭)。

上述討論情形還是在沒有空氣阻力的理想情況下,若討論空氣阻力,也就是現實的情況之下,需要施比41604.42N更大的力,才有可能讓太空艙產生些許的軌道偏移。

五、大危機背後的數字

那麼,41604.42N的力量又有多大呢?如果對牛頓這個單位沒有概念的話,可以用1kgw=10N來換算,大約是4160.442kgw的重量,就連武林中的風雲人物李小龍,一也只能踢出700kgw的力量,再者以一個小學生的外表與肌肉量,想踢出超過4160kgw的力道,根本違反了人體工學,想做到幾乎不可能,但從成功的結果來看,應該要將一切歸功青山岡昌老師(名偵探柯南的作者)過人的想像力。

六、有朝一日

或許在未來科技的進步之下,宇宙並非遙不可及,但探索其奧秘的同時,勢必會有些負面的影響,例如大量的探測機要從宇宙帶回遙遠星球甚至星系的樣本,又或是突然有巨大太空垃圾撞擊地球時,一定會對地球造成傷害,但若科學家們能製做一台機器,讓某物體(例如足球)在極短的時間內獲得極大的加速度,藉此改變其落下的軌道,將能減少對地球的傷害。

更多2019數感盃青少年寫作競賽內容,歡迎參考 2019數感盃特輯、數感實驗室官網粉絲頁喔。

參考資料

文章難易度
數感實驗室_96
46 篇文章 ・ 18 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/


3

9
3

文字

分享

3
9
3

從數學、邏輯到審美,演算法的極限是何處?——《再.創世》專題

再・創世 Cybernetic_96
・2021/09/27 ・5256字 ・閱讀時間約 10 分鐘
  • 作者/魏澤人|陽明交通大學 智慧計算與科技研究所

在一般印象中,”美” 是與藝術、哲學、文學、音樂這些人文領域相連的。受到教育制度的影響,理工與人文,在普遍認知中是二元對立的。而數學,是理工科目中最硬核的部分。物理、化學實驗中,各種顏色的液體、晃動的單擺或本生燈的火焰,也許還隱隱約約帶有一絲美的影子,但冷冰冰的數學公式,在許多人的求學經驗中,與美根本就是互斥的概念。

但是,懂數學的人都知道,數學是美的。甚至可以說,美是數學中不可或缺的部分。

圖/Pexels

著名的英國數學家哈代(Godfrey Harold Hardy)說:”數學家的創造形式,與畫家及詩人一樣,必須是美的: 將概念(就像顏色及詞語)以和諧的方式組合起來。美是最重要的條件,醜陋無法長存於數學之中。”。哈代的著作 “一個數學家的辯白”(A Mathematician’s Apology),在數學圈外有一定的名氣,前面的那段話也出自本書。但讓他”出圈”的主要原因,是他發掘了傳奇數學天才拉馬努金(Srinivasa Ramanujan)。這個故事在 2015 年被拍成了電影 “天才無限家” The Man Who Knew Infinity)。

這也不是哈代獨創之見解,法國最偉大的數學家之一龐加萊(Henri Poincare)說:”研究自然不是因為有用,而是因為喜悅。而喜悅是因為美。”。其他比方像是羅素(Bertrand Russell)、艾狄胥(Paul Erdos)也留下不少關於數學與美的金句。

數學的美,不只是許多偉大的數學家的共同體驗。絕大多數的數學愛好者、數學工作者都有相同的體驗,只是比較不容易留下知名金句。Danica McKellar 也許不是能和羅素、龐加萊、艾狄胥比肩齊名的數學家,但她說過一句很有意思的話: “數學是唯一一個真與美是同義詞的世界”。

McKellar 是一位有知名度的美國演員,她曾演出過白宮風雲(The West Wing),也曾在 NCIS、宅男行不行(The Big Bang Theory)及追愛總動員(How I Met Your Mother)中客串。但真正讓她出名的,是 80 末、90 初的影集兩小無猜(The Wonder Years),故事主軸是主角凱文回憶少年成長的過程,而 McKellar 飾演主角的鄰居溫妮,兩人發展出分分合合的戀愛關係。用現代的話來講, McKellar 可以說是當時少年界的國民女友。另外 2010 開始,她也在動畫影集少年正義聯盟中為火星小姐配音。

Danica McKellar ,攝於2018。圖/WIKIPEDIA

演員什麼會與數學扯上關係呢?其實她大學就是學數學的,而且學得很好,在 1998 年以最傑出的成績取得加州大學洛杉磯分校的數學學士學位。不只如此,大學時期與教授 Chayes 及同學 Winn 發表了一篇統計力學的論文,其中的主要結果被稱為 Chayes-McKellar-Winn theorem. 在 2008 年,她出了一本針對中學女孩的數學書 “Math Doesn’t Suck: How to Survive Middle School Math without Losing Your Mind or Breaking a Nail.” ,頗受好評也很暢銷,之後也接續出版了許多書。她表示,她想讓女孩們覺得數學是「可親、有意義、甚至有點迷人」,用來對抗這個社會傳達「女孩不適合數學」的這類負面訊息。除此之外,她也參與影集 Project Mc2 的演出。 這部影節的目標是向全球的青少女們證明,科學、科技、STEAM(Science, Technology, Engineering, Arts, Mathematics)是有趣且平易近人的。

回到前面那句”數學是唯一一個真與美是同義詞的世界”。追求美是人之天性,但很多情境下,美或者美化這些詞,常常帶了一點隱藏真實的意味。像是修圖軟體、美顏相機、化妝(與素顏對比)、醫美、Autotune。當然明顯太假也不符合多數人的審美觀,真正美之極致,往往也需要展現事物的本質與真實特色。但現實是資源有限,平庸普通還是多數,不然,也不會有”這裡的風景美得像幅畫”一樣的形容詞方式了。一般日常中,美的實際執行過程還是得靠挑選和遮掩。「真」與「美」是需要取捨的。這也就是這句話耐人尋味的地方了,因為這句話如果成立,那在數學,也許就提供了現實世界中「真」與「美」之間內在衝突的解法了。

但問題是,數學家們感受到的美感是否真的是美?定理與證明真的可以用美或不美來形容呢?還是只是數學家們普遍缺乏人文薰陶產生的代償性錯覺呢?

2019 年時,英國巴斯大學管理學院的 Samuel G.B. Johnson 及美國耶魯大學數學系的 Stefan Steinerberger 發表了一篇論文 “Intuitions about mathematical beauty: A case study in the aesthetic experience of ideas”,其中的研究證據,支持一般人可能也跟數學家一樣,能感受到數學論證的美感。在其研究中發現,人們對數學的「美感」,就跟對古典鋼琴樂曲及風景畫產生的美感相似,有其內在的一致性。另外也發現這種數學美感的評判,跟與音樂、畫作美感一樣,和優雅性、深度、清楚性有關。

就像十九世紀英國數學家 James Joseph Sylvester 說的:「數學就是論證的音樂」。愛因斯坦也說:「純數學是一首以其自有方式將邏輯概念寫成的詩」。這句話出自他寫給 Emmy Noether 的訃聞。 Noether 是有名的德國數學家,對抽象代數有極大的貢獻,巧妙的利用升鏈條件來研究代數性質,此後符合這個條件的數學物件我們都會冠以 Noetherian 來稱呼,以紀念 Noether 的貢獻。此外,她的 Noether Theorem 也被稱之為影響物理學最重要的定理之一。

Noether 與兄弟們的合照。圖/WIKIPEDIA

除了主觀上對於美的感受外,數學與藝術之間,也有很多直接的關聯性。以音樂來說,音律就與數學上的對數(也就是大家所認識的 \(\log\))有關。人類發展音律有很長的歷史,因為這不是一個簡單的問題。我們現在知道,和弦時,不同音階的頻率要接近簡單的有理數倍聲音才會悅耳。傳說畢達哥拉斯經過一家鐵店,聽到鐵鎚打鐵的聲音,覺得很悅耳,他走入店裡,發現四個鐵鎚的重量比為 12:9:8:6,其中 9 是 6 與 12 的算術平均,8 是 6 與 12的調和平均, 9, 8 與 6, 12 的幾何平均相等這些巧妙的關係。這些鐵鎚之間的聲音配合起來非常悅耳。他進一步用弦樂器實驗驗證,得到的結論是,弦長為一些簡單有理數比的時候,會得到和諧的聲音。而後來更進一步改進而成的十二平均律,也反映出中國及歐洲在計算 \(\sqrt[12]{\frac{1}{2}}\) 的歷史進展。這背後還有更深刻的問題,因為很容易可以發現,\(\sqrt[12]{\frac{1}{2}}\) 並不是個有理數。對音樂或數學有興趣的朋友,可以繼續深入了解一下背後的學問。

另一個大家也觀察到的現象是,數學能力和藝術能力之間似乎有一些相關性,特別是音樂能力。常被拿來說的是愛因斯坦喜愛音樂且從小學習小提琴。可能你認識的人中,應該也有許多同時精通數理及音樂的人。過去一些研究也發現發現了數理能力及音樂能力中的相關性。但是,這個相關性會不會與能力本身無關呢?比方顯而易見,學科能力與學習音樂的條件,都與家庭背景與社經地位有關。

音樂教育學者 Martin J. Bergee 原本也是這樣認為的。他覺得只要能控制相關的根本性變因,如種族、收入、教育背景,就能夠破除音樂與數學能力相關性的迷思。於是他就設計並展開了研究。結果讓他非常震驚,兩者的關聯性不但沒有消失,而且還非常強。在 2021 年他的研究團隊發表了一篇名為 “Multilevel Models of the Relationship Between Music Achievement and Reading and Math Achievement” 的論文。他們調查了不同學區背景的一千多位中學生,在盡可能排除其他因素的干擾下,他們不得不承認音樂及數學能力之間的有統計上顯著的關聯。

音樂與數學能力被證實有很高的相關性。圖/Pixabay

他表示很抱歉實驗設計得非常複雜,”因為排除所有的相關影響並不容易,可能從個人、教室、學校、學區等等不同層級來產生影響。”。雖然他原本是支持相反的結論,但這個結果讓他思考了很多,”微觀技術來說,可能在音樂中的音準、音程、節拍,可能語言認知的基礎相關,而巨觀技術上的調式與調性,可能在心理學或神經學上與數學認知有關。”

除此之外,還有非常多的例證。比方 2015 年神經科學家 Semir Zeki 及艾提亞爵士(Michael Atiyah 當代最偉大數學家之一,費爾茲獎得主)發表的論文指出,經由 fMRI 掃描 15 名數學家的腦部,發現數學家在評斷數學式子美感時,動用到眼額皮質外側的 A1 區域,與察覺其他來源美感所動用到的區域一樣。而前面比較沒有提到數學與視覺藝術的關聯,因為這部分更為大家所熟知。像是從古希臘幾何就知道的黃金分割比,繪畫中的用到的透視原理、對稱性。可以說,美與數學並不是感性與理性的對立,而是互相包含。就像浪漫派詩人約翰濟慈所說:”美即是真,真即是美。這就是你在世上所知道和需要知道的一切”,而數學以及其背後的邏輯,就是人類對於”真”的具像。

評斷數學式子美感或觀察其他美感事物時,數學家大腦活耀的區域相同。圖/Pexels

可以說在知識份子階層中,數學即美是個主流觀點。當然主流不一定代表唯一或正確,像前述 Bergee 也試圖證明相關的主流看法是個迷思。但一旦理解了這種切入點,人工智慧是否能創造藝術作品這個問題,至少在心理層面就不是太大問題了。人工智慧遵照一些演算法運作,可以說就是數學及邏輯的程式碼實作。以近幾年最主流的深度學習神經網路來說,就是許多線性映射與激活函數的合成函數,藉由梯度下降法,收斂到的穩定數學解。既然數學即美,那由數學建構的人工智慧,能產生美的事物,也不是太不能接受的事。

生成模型也是近幾年深度學習熱門的領域之一。常見的生成任務就是藉由觀察抽樣的樣本,設法模仿出一樣的機率分佈。白話一點來講,就是給電腦看一些李白的詩,希望電腦能創造出新的李白風格的詩。給電腦聽一些貝多芬的音樂,希望電腦能創造出新的貝多芬音樂。現在的深度學習技術,已經能讓人工智慧能藉由學習,”創造”出視覺、音訊及語言的”作品”。

Inception 網路是一個有名的深度學習模型,其名稱取自於同名的電影(全面啟動),當時主要是在圖片辨識任務上,取得很好的成果。2015 年時, Google 工程師 Alexander Mordvintsev 巧妙的利用事先訓練好 Inception 模型,讓他將圖片變成夢一般的迷幻風格。他把這種方法取名叫 DeepDream。不久後,Leon Gatys 等人用類似的方法,設計一套演算法,能將畫家的畫風轉移到照片上,典型的例子是將風景、建築照片,轉成梵谷的星空風格。後面有很多後續的研究,一般稱為 Neural Style Transfer. 2016 年 Google 利用 AI 生出的畫作,拍賣得到進十萬美元。而其實早在 2014 年時, Ian Goodfellow 等人就提出了生成對抗網路(Generative Adversarial Network),是一個更廣泛而通用的生成模型。這個模型後續開啟了極大量的相關研究,現在的深度學習模型,在一些領域中,已經能生出非常高品質的成品。比方 Nvidia 研究的 StyleGAN 系列模型,能生出幾可亂真的人臉。現在,在手機上,能使用 APP,將你的照片轉成迪士尼的畫風。

讓生成模型想像生氣的亞洲人老醫生(自行 CLIP, StyleGAN2 生成)

2021 年時, OpenAI 釋出了 CLIP 模型,這是一個能整合圖片視覺及文字語意的模型。很多人嘗試利用 CLIP 和文字控制,來產生獨特和有創意的畫作。舉例來說,如果你畫了一張畫,或者拿到一張照片,你可以利用文字”更有喜感一點,更有亞洲風味一點”,來修改這張圖片讓人感受到”喜感”和”亞洲風”。在眾多嘗試中,大家試出了許多像”咒語”般的技巧,比方有個著名的 “unreal engine trick”,就是當你在控制產生圖片的句子中,加入 “unreal engine” 這個詞(unreal engine 是一個遊戲引擎),常常會讓產生品質更高的圖片。 乍看之下有點不明所以,但仔細一想,因為網路上會特別標明 unreal engine 的圖片,往往是強調其遊戲高畫質,久而久之, CLIP 看到這個詞,很自然就與高品質的含意產生連結。除了圖片外,人工智慧也能產生其他具有美的形式的作品,特別是文字作品。Open AI 開發的 GPT-3,已經能在用戶給出簡單的指示後,產生非常複雜的文字作品,除了詩、笑話、故事外,甚至連食譜、程式碼都可以。

讓生成模型想像亞洲的小甜甜布蘭妮(自行 CLIP, StyleGAN2 生成)

但這些,真的算是人工智慧的創作嗎?

在 2018 年時,由生成對抗網路生成的畫作 Edmond de Belamy,以美金 432,500 元賣出。這幅畫是誰創作的?這幅畫是由巴黎藝術集體 Obvious 生成的。而名稱 Belamy 的法語意思為”好朋友”,以致敬提出生成對抗網路的學者 Ian Goodfellow。而圖片右下角的簽名則是

\(\min_{\mathcal {G}}\max_{\mathcal {D}}E_{x}\left[\log({\mathcal {D}}(x))\right]+E_{z}\left[\log(1-{\mathcal {D}}({\mathcal {G}}(z)))\right]\) 這個數學式子,這個式子是生成對抗網路使用的目標函數,也就是引導模型訓練的數學式。而讓問題更複雜的是,生成這幅圖片的程式碼,是由與 Obvious 毫無關係的另外一位 AI 藝術家 Robbie Barrat 所寫的。甚至有人(如 AICAN)認為這個連創作都算不上。

人工智慧的創作《 Edmond de Belamy 》。圖/WIKIPEDIA

所以,這幅畫到底是誰的創作?物理學家海森堡曾說,即使在沒有足夠證據的支持下,”當自然引導我們得到極簡與美的數學式時”,”我們會不由自主的感受到,這就是自然真相被揭露的一角”。也許,真正創作者不是人工智慧,也不是人類,我們只是自然的一部分,有幸釋放了,並且有幸感受到了自然散發出的美之一角。

所有討論 3
再・創世 Cybernetic_96
955 篇文章 ・ 242 位粉絲
由策展人沈伯丞籌畫之藝術計畫《再・創世 Cybernetic》,嘗試從演化控制學的理論基礎上,探討仿生學、人工智慧、嵌合體與賽伯格以及環境控制學等新知識技術所構成的未來生命圖像。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策