0

2
1

文字

分享

0
2
1

「大霹靂」一詞的由來 │ 科學史上的今天:3/28

張瑞棋_96
・2015/03/28 ・1034字 ・閱讀時間約 2 分鐘 ・SR值 577 ・九年級

天文學家哈伯的觀測發現遠方的星系正在快速遠離我們。圖/NASA

1949 年的今天,BBC 廣播電台的一個常態性的文化講座節目輪到英國天文學家霍伊爾 (Fred Hoyle) 主講,他要來談談宇宙起源的問題。

這本來不是問題,因為大家原本一直以為銀河系就是宇宙全部,而宇宙從古至今就是這副樣子,亙古不變;就連愛因斯坦也是如此以為,才會在他的方程式中加入宇宙常數,使得求出的解符合穩定的宇宙。直到 1929 年,這個天真的想法被天文學家哈伯的觀測粉碎了:他發現遠方的星系正在快速遠離我們。也就是說,宇宙正在膨脹,它一點兒也不穩定!

於是這就導致宇宙起源的問題:時間往回推,宇宙是什麼模樣?

加莫夫 (George Gamow) 相信所有物質在宇宙初期都擠壓在一個密度極高的熾熱火球,他率領學生在四○年代陸續發表論文,解釋原始物質如何經由核反應產生各種元素,並在 1948 年那篇論文中預測這團火球的輻射仍遍布於目前的宇宙。

-----廣告,請繼續往下閱讀-----

霍伊爾這個人恰與幽默風趣的加莫夫相反,他戴著厚重的眼鏡,神情嚴肅,一板一眼。他喜歡穩定的架構,對於加莫夫的主張極為反感。但是宇宙膨脹的事實擺在眼前,四周的星系在古早以前若不是擠在一起,那它們會在哪裡?霍伊爾提出「穩態說」,認為隨著宇宙膨脹,新的物質會從擴張的空間中出現並凝聚成新的星系,因此宇宙的架構還是穩定不變的。憑空出現新的物質?這說法不會太離譜嗎?!霍伊爾來記回馬槍:假設宇宙所有物質都在很久以前的一次大爆炸中產生,這樣的理論就能解釋原始物質從何而來嗎?

是的,就是霍伊爾在這個廣播節目中用大爆炸 (big bang) 來描述加莫夫的理論,後來經由媒體不斷引用,最後這就成了正式的術語(我們又稍加美化,翻譯成「大霹靂」)。

霍伊爾如願取得勝利。在六○年代以前,他的穩態說一面倒地受到科學家的歡迎;宇宙無始無終,結構始終如一,這樣的理論多麼簡潔優雅,完全符合物理學家最尊崇的特性,就連哈伯都大表認同。而加莫夫的大霹靂理論本身也的確還有許多漏洞,於是就再也無人聞問了。

但這只是短暫的勝利,加莫夫預測的宇宙背景輻射於 1964 年被發現後,證實了宇宙的確誕生於大霹靂。霍伊爾一生還是都無法認同大霹靂理論,不過就像他無意間為之命名,他對於恆星內部如何形成新元素的研究後來也成為大霹靂理論的一部分。

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 945 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
2

文字

分享

0
5
2
來自137 億年前的訊息!透過重力波,一窺「宇宙誕生」的真相──《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》
台灣東販
・2022/08/09 ・4055字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

重力波不只能提供星體的資訊!

說到重力波,一般人可能會想到黑洞、中子星、超新星這三個引發話題的星體。不過,只有在這些星體事件發生的「瞬間」,才會產生重力波,就像宇宙中的一場秀一樣。而當重力波通過後,就無法再偵測到這些資訊。

discoveries GIF
圖/GIPHY

譬如,LIGO 在 2015 年 9 月捕捉到的就是「來自 13 億光年外星體的重力波」。不過,和宇宙年齡相比,這其實是相對較年輕的星體事件。

我們有沒有辦法捕捉到很久很久以前,宇宙剛誕生時產生的重力波,也就是暴脹時期產生的重力波呢?

為什麼宇宙正在急速膨脹?

138 億年前,宇宙在超高溫、超高壓下,以「火球」的樣貌誕生,這就是所謂的「大霹靂」。在這之後,隨著宇宙的急速膨脹,溫度與密度逐漸下降,然後演變現在的樣貌。

這就是大霹靂宇宙論,也是目前多數學者支持的標準宇宙論。

-----廣告,請繼續往下閱讀-----

那麼,為什麼會產生「火球宇宙」這個超高溫、超高壓的世界呢?為什麼宇宙不是一直保持原樣(不是保持相同大小),而是會急速膨脹呢?目前有一個較被接受的說法,那就是前面提過許多次的「暴脹理論

在這個理論中,宇宙初期並沒有任何物質或光,而是一個充滿能量的真空。透過這些真空能量,宇宙用比光速還快的速度,呈指數函數膨脹。

而在暴脹時期結束後,這些真空能量轉變成了光(火球),於是產生了超高溫、超高壓的宇宙,這就是所謂的大霹靂。

目前科學界的研究和觀測結果大多支持大霹靂學說。圖/NASA

不過,如果空間中存在許多能量的話,應該會存在像重力這樣使空間收縮的力才對。為什麼空間會以超越光速的速度迅速膨脹,進入暴脹時期呢?

-----廣告,請繼續往下閱讀-----

學者們用「暴脹子場」這種量子場中的真空能量,說明暴脹時期。

暴脹子場是個未證實存在的純量場。就目前而言,它的存在仍處於假說階段。

目前已知的純量場,譬如 2012 年時,由瑞士日內瓦的歐洲核子研究組織 CERN 在 LHC 實驗中發現並發表,由希格斯玻色子產生的希格斯場。研究者們也因此而獲得 2013 年諾貝爾物理學獎,各位應該還記憶猶新。

137億歲的宇宙,至今仍然不斷膨脹

暴脹子場與希格斯場在質量與粒子的結合力上,都有著很大的差異。暴脹子場的真空中,會產生長時間的負壓。而這個負壓會造成宇宙加速膨脹。

這點與目前的暗能量機制十分類似。有人猜想暗能量可能是未發現的純量場。與暴脹時期相同,目前的宇宙中可能存在著未知純量場的真空能量,就像暗能量般,佔了全宇宙能量的 70%。

-----廣告,請繼續往下閱讀-----

宇宙中佔了 30% 能量之物質,與佔了 0.1% 的光會產生引力,但比不過真空能量所產生的斥力,所以目前宇宙正在加速膨脹。

宇宙仍在不斷的擴大。圖/NASA

順帶一提,即使物質與光的能量佔宇宙的 100%,宇宙也只是減速膨脹而已,並不會收縮回去。因為膨脹初期的速度過快,所以宇宙只會持續膨脹下去。

宇宙誕生的第一步——「原始重力波」

暴脹時期結束後,空間能量會迅速轉變成物質能量,使宇宙轉變成超高溫、超高壓、充滿輻射的狀態。這就是大霹靂「火球」。暴脹理論說明了幾點。

首先是前面提到的「膨脹速度超越光速的宇宙」

-----廣告,請繼續往下閱讀-----

這造成了我們現在看到的(宇宙視界內的)宇宙溫度擁有各向同性,在 10 萬分之 1 的精度下,為絕對溫度 2.723K(約 3K 的宇宙微波背景輻射(CMB))。

在大霹靂學說中,宇宙微波背景輻射是宇宙誕生時所遺留下來的熱輻射。圖/ESA

第二,這個急速膨脹,使宇宙的形狀在幾何學上變得相當平坦,就像膨脹的氣球一樣。

再者,暴脹子場的量子擾動,是宇宙初期物質擾動的來源,也就是3K宇宙微波背景輻射所觀測到的溫度擾動。暴脹子場也含有量子的擾動。這些小小的擾動在短時間內暴脹過程中,急速膨脹,延伸至宇宙視界的彼端,造成現今宇宙中不同區域的密度差異,這也是形成星系的種子

CMB 觀測到的「溫度擾動」,正是暴脹時期產生之暴脹子場的量子擾動。

-----廣告,請繼續往下閱讀-----

另外,在重力波方面,暴脹時期不僅會產生前述密度(溫度)的擾動,也會產生「時空擾動」。急速膨脹的過程中,真空會一直變化,成對產生重力子,這與黑洞周圍產生霍金幅射的機制類似。

學者們認為這種重力波現今仍存在,稱其為「原始重力波」。因為整個宇宙都存在這種重力波,所以也叫做背景重力波。若能檢出這種背景重力波,不只能成為暴脹理論的證據,也會是宇宙起源相關研究的一大步。

原始重力波就像是背景雜訊一樣,在宇宙四處飄蕩

黑洞雙星的合併會產生重力波,不過當重力波通過地球,被 LIGO 觀測到時,該事件便已結束。不只是黑洞,中子星雙星的合併、超新星爆發也一樣。

不過,暴脹時期產生的重力波並非如此。當時整個宇宙充滿了重力波。不過這種重力波就像白噪音般的存在,很難分析這種波的狀態,所以也叫做背景重力波。若依波的種類來分,可以將其算在駐波。如何找到這種駐波,是我們現在的課題。

-----廣告,請繼續往下閱讀-----
重力波可以分成兩種,來自近期星體活動的重力波,以及來自宇宙誕生的背景重力波。圖/台灣東販

與光波不同,重力波的偏振方式可以分成十字形(+)與交叉形(×)2 種,如下圖所示。十字形的偏振會往縱向與橫向伸縮、交叉形偏振則會往斜向伸縮,如其名所示。這兩種波疊合後,會變成圖中右方的樣子,往外傳播。

隨著時間的經過,來自黑洞的重力波會持續前進;但暴脹時期產生的重力波為「背景重力波」,是一種駐波,就像噪音一樣充滿在整個宇宙中。如果能發現這種波,就能證明暴脹理論。

重力波由十字形、交叉型兩種偏振方式所組成。圖/台灣東販

宇宙之窗:暴脹子場是什麼?

暴脹時期產生的「暴脹子場」究竟是什麼樣的東西呢?

重複一次,暴脹子場被認為是某種未知、很重的純量場,其質量上限在 1013GeV 以下。目前這個低能量宇宙中,已經不存在暴脹子場。即使透過粒子對撞,產生目前可達到的最高能量(數 10TeV,相當於數 10 京度的溫度),也沒辦法產生這種場。

-----廣告,請繼續往下閱讀-----

每種基本粒子都有著伴隨其出現的「量子場」。

譬如希格斯場會伴隨著希格斯玻色子出現。就希格斯場這種純量場而言,其存在機率最高的期望值稱做場值(真空值),是希格斯玻色子的位置。而場值周圍存在所謂的量子擾動。這種量子擾動只有在微觀尺度下有意義。

在我們生活的巨觀尺度下,幾乎察覺不到任何量子擾動,所以我們平常的生活並不會意識到它們。

我們周圍有許多電路會用到二極體。在微觀尺度下看這些電路,會看到粒子般的電子周圍有量子擾動,這種量子擾動對二極體來說相當重要。

在這種量子擾動下,電流只能沿著電路中可跳躍量子擾動的方向流動,二極體才有如此特別的性質,可見量子論也是現代科技中的重要理論。

所以說,考慮初期宇宙中暴脹子場的量子擾動,可以知道當宇宙還很小時,暴脹並非在宇宙中的各個地方同時間發生。宇宙中各個地方開始暴脹與結束暴脹的時間都不一樣。

量子擾動除了會造成時間擾動,在某些條件下,我們也可以在巨觀視界下感受到密度和溫度的擾動。圖/台灣東販

量子擾動會造成時間擾動,不過在暴脹這種急速膨脹後,會轉變成超越視界的古典擾動,所以我們會在巨觀視界下觀察到,各個地方都有著不同的密度。這就是所謂的「密度擾動」或「溫度擾動」。

總而言之,最初產生量子擾動後,隨著空間的急速膨脹而迅速延伸,轉變成了空間性的密度擾動。

備註

  • 暴脹理論與大霹靂的名稱

1981 年,佐藤勝彥在大統一模型的框架下,提出真空相變會造成宇宙呈指數函數膨脹的理論。同年,古斯也發表了同樣的想法。自宇宙誕生的瞬間起(依大統一理論,約為 10−38 秒後~10−36 秒後)宇宙會以超越光速的速度,呈指數函數膨脹,然後轉變成大霹靂的「火球」宇宙。

1980 年時,為修正愛因斯坦的重力觀點,學者們提出了以指數函數膨脹中的宇宙。

而在 20 世紀初,多數學者認為「宇宙永遠不會改變」(宇宙穩態論),沒有開始,沒有結束,大小也永遠不會改變。不過宇宙穩態論的擁護者霍伊爾(Fred Hoyle)曾在某個廣播節目中說「宇宙的開始?那是大霹靂的觀點(the ‘big bang’ idea)」,於是「大霹靂」這個名稱就定了下來。

當時連愛因斯坦都相信宇宙穩態論,否定膨脹宇宙。不過在觀測結果陸續出爐後,哈伯(Edwin Hubble)、勒梅特(Georges Lemaître)等人成功說服了愛因斯坦接受宇宙正在膨脹。

——本文摘自《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》,2022 年 6 月,台灣東販,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 2 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

1

10
2

文字

分享

1
10
2
多重宇宙存在嗎?物理學的探索極限——《解密黑洞與人類未來》
天下文化_96
・2022/01/02 ・1880字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者 / 海諾.法爾克 (Heino Falcke)、約格.羅默(Jörg Römer)
  • 譯者 / 姚若潔

在今天已經建立的宇宙模型中,我們對無限的窺視終止於大霹靂。大霹靂開啟了我們的時間和歷史;所有將會發生的事物都包含在裡面。大霹靂是一種超額的密集能量。我們現在看見的所有事物(所有形式的物質或能量,甚至我們自己),最終都可以追溯回到這份原始能量。

現今宇宙中的各種天體、物質與能量,都可以追溯到大霹靂這份原始能量。圖/WIKIPEDIA

一個近乎無限小的空間忽然在 10−35 秒內指數膨脹。純能量和光的原始閃電誕生,基本粒子的量子糖漿從閃電中開始結晶成形。質子和電子形成,物質有了基本構成單元。過了三十八萬年,質子和電子配對形成氫,充滿了宇宙。物質和光忽然彼此區分,走向各自不同的道路。暗物質在自身的重力影響下變得集中:暗星系從大霹靂的殘骸中出現,並把氫聚集到自己周邊。星系就此形成,產生了發光的星星,創造出新的元素,並透過巨大的爆炸再度把這些元素擲回太空。

從這最早的恆星之灰中,誕生了新的恆星、行星、衛星與彗星。星辰的生命循環開始,最終也誕生出我們的地球。水落在地球上匯聚起來,加上星塵,形成了菌類、單細胞動物,還有植物。這些新生命改變了世界,大氣開始形成,雲朵綻開,動物演化。最後出現了人類,在日、月、眾星的俯視之下繁衍,征服地球,建造都市,瞭解世界、時間、太空,並寫了關於這一切的書——這都要感謝大霹靂帶來的宇宙級大騷動。

描述大霹靂後宇宙膨脹的藝術構想圖。圖/WIKIPEDIA

我們的宇宙竟然能夠運作,整件事實在太過驚人、太過不可思議。宇宙的產生就像是走在物理學的鋼索上,需要微妙的平衡。如果重力再強一點,恆星都會塌縮成黑洞;如果再弱一些,暗能量會使所有東西分崩離析。如果電磁力更強,恆星就不會發光。宇宙機制的各個齒輪彼此相互影響,而生命竟可能在此出現,是恆久以來最偉大的奇蹟。如果有人可以目睹大霹靂並預測自己將會從那堆混亂之中誕生,一定會被視為瘋子。物理學教科書不允許物質忽然開始思索自我,形成個性與觀點,甚至發揮創意——儘管如此,我們就在這裡。

-----廣告,請繼續往下閱讀-----

這道謎題有個解釋相當受人歡迎,就是宇宙實際上不只一個,而是許多個,它們就像原野上的花朵那樣誕生又凋零,只是每個宇宙都略為不同。我們只是正好出現在這裡,生活在這一個誕生了生命的宇宙,因為這是我們唯一可見的宇宙。

我們能否更把思考尺度變得更大?我們有沒有可能在自己的宇宙裡找到古老宇宙的遺跡,例如兩個宇宙相互碰撞後留下的大型結構?我自己願意如此猜測:超超大質量(hypermassive)的黑洞有可能是古宇宙留下來的化石——畢竟,像我們這種宇宙最後殘留下來的,應該就是超超大質量黑洞。目前為止還沒有人找到任何證據。不過,也還沒有任何跡象顯示平行宇宙真的存在,可以讓我們觀測。

黑洞, 黑色的, 洞, 虫洞, 虫, 量子, 物理, 爱因斯坦, 星系, 大量的, 无穷, 空间, 星光体
如果能找到超超大質量黑洞,或許能證明古老宇宙或是多重宇宙的存在。圖/Pixabay

另外,只因為我們的宇宙非常不可能存在,就要推論「必定有許多宇宙存在,才讓我們宇宙的存在成為可能」,這樣的關聯不見得正確。如果我的鄰居中了樂透,不表示他一定已經買過百萬次彩券。我們頂多可以說自己正好住在那個真實幸運兒的隔壁。如果我們只買過一張彩券,又不太清楚它的運作方式,那我們並無法論斷買了彩券的人有多少——或者有多少宇宙存在。

由於無從得知多重宇宙的證據,倒是引出這樣的問題:多重宇宙的存在與否,究竟屬於物理學還是形上學的問題?我們既無法回溯得比自己宇宙誕生的奇異點更早,也無法看穿宇宙的邊緣。就算主張多重宇宙不只是妄想,而是真實的物理學,這個問題仍然未解:多重宇宙是哪裡來的?我們所做的,只不過是把自己的無知推到物理學的無人之境。

——本文摘自《解密黑洞與人類未來》/ 海諾.法爾克、約格.羅默,2022 年 1 月,天下文化

-----廣告,請繼續往下閱讀-----
所有討論 1
天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。