Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

果蠅基因兩性互相傷害?一個基因不夠,那就複製一個!

寒波_96
・2018/03/30 ・4615字 ・閱讀時間約 9 分鐘 ・SR值 524 ・七年級

現代形象的可愛版阿波羅與阿特米絲……來互相傷害啊!圖/取自 deviantart

同一個基因,在兩性間衝突

染色體承載著生命的遺傳訊息,又分為體染色體與性染色體。兩性生殖的生物中,性染色體是兩性有別,體染色體則沒有差異。以人類為例,性染色體有 X、Y 兩種;體染色體由 1 號到 22 號,女生和男生每一號各自配備兩條,兩條間沒有差別。

然而,兩性面對的演化壓力不同,體染色體上的同一個基因,在不同世代下有時扮演女生,有時候卻是男生,各自受到不同力量影響,同一個基因難道不會角色錯亂嗎?

當然會!同一基因在不同性別,分別受到不同外力影響而導致的衝突,稱作「性別衝突(sexual conflict)」。理論上,所有有性生殖的生物都有機會產生,不過以常理判斷,即使性別衝突存在,時間久了應該也會演化出解決之道;而無法解決兩性互相傷害的生物,大概早已自滅了。

同一基因在兩性間的性別衝突該如何解決?最近一項研究詳細探討了一種解決之道:基因複製。

-----廣告,請繼續往下閱讀-----
阿波羅與阿特米絲基因的排列順序。圖/取自 ref 1

阿特米絲與阿波羅

研究對象是最芭樂的黃果蠅(Drosophila melanogaster),不論垃圾桶或實驗室都很常見。黃果蠅的體染色體上有 2 個序列非常相似,以串聯排列的基因,論文將其取名為「阿特米絲(Artemis)」與「阿波羅(Apollo)」。[1]

基因的名號來自希臘神話中一對知名的姐弟。他們仙力強大、位高權重:姊姊是管理月亮的月神,弟弟是掌握太陽的太陽神。姐弟出身也十分尊貴:爸爸是宙斯,媽媽是勒托(Leto)。(阿特米絲就是羅馬神話中的戴安娜 Diana,或許知名度更高)。

古希臘形象雕像版的一家人,由左至右:爸爸宙斯、媽媽勒托、弟弟阿波羅、姊姊阿特米絲。圖/取自 Ancient History Encyclopedia

世界上有那麼多基因,為什麼研究它們?這兩個基因序列相似,意謂它們是關係密切的同源基因,而黃果蠅的近親,卻都只有一個基因;表示黃果蠅是在與近親分家以後,才由於基因複製而形成兩個基因。進一步研究發現,這兩個基因與生殖細胞的製造有關,而且兩性有別。

一個可以用,兩個會更好

黃果蠅的近親物種,如擬黃果蠅(Drosophila simulans)、塞席爾果蠅(Drosophila sechellia)都只有一個基因,此一基因會分別在女生的卵巢,與男生的睪丸表現。配備姐弟基因的黃果蠅,阿特米絲與阿波羅的表現模式不同,阿波羅會在睪丸,阿特米絲則於卵巢大量表現。

-----廣告,請繼續往下閱讀-----
兩個性別,不同物種,各組織的基因表現高低。圖/取自 ref 1

假如把黃果蠅的阿波羅基因,用 RNA干擾抑制表現,或是用 CRISPR-Cas9 基因改造直接消滅掉,能長大成蠅的男生比例將下降超過 20%,而且還會不孕,沒辦法傳宗接代。相對的,用同樣的方法處理阿特米絲,雖然長大成蠅的女生比例不變,卻也會通通不孕。

進一步的實驗發現,缺乏阿波羅的男生之所以不孕,理由是精子無法正常發育成形;而沒有阿特米絲,無法生育的女生,則沒有辦法製造正確的卵子。由細胞狀態看來,這兩個基因的功能是參與細胞骨架作用,進而影響精子或卵子的生成,所以沒有它們的果蠅,做不出正常的生殖細胞,也就無法繁衍。

上述結果,很符合演化學家對基因複製的想像。以吃便當舉例,「一個便當吃不飽,你可以吃兩個」,只有一個便當吃,不會餓死卻吃不飽,假如負擔得起兩個便當,不但不會餓死還能吃飽,當然比只能吃一個更好。基因複製狀況類似,若是一個基因工作繁重,甚至不同任務之間會彼此衝突,那麼複製出另一個基因,兩個基因一同工作,甚至是讓兩個基因分工,獨自專精一部份任務,豈不比只有一個基因忙到鬼打牆來得更好?

用同源基因建構的基因關係樹,和其他同源基因相比,黃果蠅的阿特米絲與阿波羅,彼此間更加接近。圖/取自 ref 1

在黃果蠅近親中,沒有阿特米絲、也沒有阿波羅,只有一個基因,而這一個基因要替女生製造卵子,還要替男生製作精子。黃果蠅卻有了兩個基因,其中一個專門製造卵子,另一個製作精子。演化上,把本來一個基因的工作拆成兩個,專業分工是否有優勢?由所有黃果蠅族群皆配備阿特米絲與阿波羅看來,擁有兩個基因,應該的確比只有一個更好。

-----廣告,請繼續往下閱讀-----

女生、男生,為什麼要互相傷害?

不過,事情沒這麼單純。阿特米絲參與卵子製造,所以沒有阿特米絲的女果蠅會不孕,男果蠅照理來說不受影響;可是實驗結果讓人吃驚,沒有阿特米絲的男果蠅,生育的後代竟然比本來更多!而阿波羅也是一樣,沒有阿波羅的男生會不孕,女生卻也能生下更多寶寶,達到多出 15% 之多。

出乎意料,分別替女生與男生辦事的阿特米絲與阿波羅,兩個基因會互相傷害另一個性別。這是很極端的兩性衝突,對女生有利、生殖時必需的基因,反而會傷害男生,反之亦然。

沒有阿波羅與阿特米絲之下,生殖後代的數目。圖/取自 ref 1

為什麼要互相傷害?由 DNA 序列判斷,變成兩個基因以後,阿特米絲改變較少,阿波羅變化較多;因此阿波羅對精子生成不可或缺,阿特米絲不再參與精子,只維持原本製造卵子的任務,應該是新演化的結果。

然而兩個基因的序列仍十分相似,預期與功能有關的關鍵位置也缺乏差異。由表現看來,男生的睪丸中,儘管阿波羅會大量表現,卻仍會製造阿特米絲;而女生的卵巢製造阿特米絲之外,也會表現微量阿波羅。推測是,睪丸中不需要的阿特米絲,會干擾阿波羅在精子發育時的角色,反之亦然。[2]

-----廣告,請繼續往下閱讀-----

以上只是公堂上的推論,具體機制仍不清楚,不過可以肯定這對姐弟基因,會用某種方式互相傷害,若是阿特米絲或阿波羅不存在,對男生或女生更為有益。看到這裡或許有讀者感到好奇:假如兩個基因會互相傷害,那麼保持本來一個基因不就沒事了嗎?

看不見傷害,不代表衝突不存在

換個角度看,兩個基因彼此間互相傷害,是兩性衝突所致,可是難道女生和男生共用一個基因時,衝突就不存在?恐怕衝突不但存在,還更加嚴重,只是隱沒於檯面之下,表面不容易看見而已。

本來只有一個基因,複製出另一個基因,再分別演化出性別特化功能。圖/取自 ref 2

同樣一個基因,若是分別替女生與男生服務,必需仰賴不同的調控方式。在其他種果蠅中,只有一個基因卻要執行兩項任務,顯然性別專一的控制不可或缺;男生使用一套男性專屬的調控機制,讓基因在睪丸表現,女生則需要另一套女性限定的調控,於卵巢作用,才能達成讓同一個基因,於兩性分別扮演各自角色的「兩性雙型性(sexual dimorphism)」。

這套女男有別的調控機制,解決兩性衝突的成效應該不差,至少我們能看到,其他果蠅物種都活得好好的。然而當黃果蠅發生傳送器意外(誤),複製出另一個基因以後,似乎就不再需要如此複雜的調控機制了;二號基因接管男生,成為專心製造精子的阿波羅,本來的一號基因繼續參與製作卵子,變成阿特米絲。如此一來,女生和男生即使都配備兩個基因,製造生殖細胞時,卻只需要使用較適合自己的一個。

-----廣告,請繼續往下閱讀-----

根據序列差異估計,阿特米絲與阿波羅大約誕生 20 萬年,相當年輕(粗估不見得準確,不過也老不到哪兒去)。或許是因為演化不久,兩者差異很少,還會互相干擾,使得本來看不見的兩性衝突上了檯面。但是對黃果蠅而言,擁有兩個基因應該還是 Z 大於 B,,能舒緩兩性間的衝突,否則我們應該會找到某些黃果蠅族群,走上一個基因的回頭路,而這並沒有發生。

一次、兩次、三次,是趨同演化嗎?

有意思的是,黃果蠅的基因複製並非特例。另一種果蠅 Drosophila willistoni 的這個基因,也由於基因複製變成兩個。而通往 obscura 支系的路上,此一基因也複製一次,使得 obscura 旗下的 Drosophila pseudoobscura 擁有兩個,然後它的近親 Drosophila persimilis 又複製一次,使得這種果蠅配備三個基因。

各種果蠅的親緣關係,以及出現基因複製的支系。圖/取自 ref 1

這幾次果蠅的基因複製,是彼此無關的獨立事件,而且 D. willistoni、D. pseudoobscura、D. persimilis 與黃果蠅的串聯複製(tandem duplication)不同,它們都是反轉錄轉位(retrotransposition),也就是原本基因轉錄表現出的 mRNA,又反轉錄成 DNA 插入基因組另一個位置,造成基因複製。

這三種果蠅中,這些基因是否也參與製造生殖細胞,並沒有直接的實驗證明。不過表現模式卻出奇一致,所有物種都和黃果蠅一樣,其中一個基因在睪丸表現較高,另一個基因在卵巢較多。由此推測,它們在基因複製以後,都經歷了兩性功能的專一性分化。

-----廣告,請繼續往下閱讀-----
兩個性別,不同物種,各組織的基因表現高低。圖 ref 1

不管新的基因怎麼誕生,事後全都演化成兩性有別的表現模式,實在很難是巧合。論文認為,這些重複上演的相似發展,佐證以下的論點:此一對生殖細胞發育不可或缺的基因,由於兩性衝突強烈,只要出現另一個複製品,都能很快演化出只專精於某一性別的角色,釋放原本基因的壓力,有效調和兩性之間的衝突。

衝突,無所不在

儘管過往早就知道,兩性有別的表現調控外,基因複製也是解決兩性衝突的一種方法,不過像這回研究般清楚的案例仍不多見。它也帶來許多值得深思之處,例如,每次細胞分裂都要複製一次全套 DNA 序列,很花成本,許多基因都不是必需,沒有它們也不會死掉,為什麼眾多生物要維持那麼龐大的基因組,攜帶那麼多基因?

阿特米絲與阿波羅的案例,大概像是本來只有一間共用廁所,後來多出一間,變成女生和男生各用一間。

為什麼基因組中,同時存在那麼多組功能類似,序列接近的同源基因?演化上不難解釋。多幾個長很像的基因,可以互相備份,即使一個壞掉,也有同類能夠救援。基因複製也能促進演化創新,在一個基因保持原有功能之餘,與其同源的基因還有餘裕開發新的角色。

而這個研究指出,基因複製對解決衝突也很重要。同一個基因分別於兩性作用的兩性衝突,只是其中一種矛盾而已,生物還要面對各式各樣的衝突。同一個基因,在不同細胞組織,如大腦、肝臟、皮膚;在不同成長階段,如果蠅的幼蟲、成體,人類的小孩、成人;在不同外在環境,如酷寒、乾旱、缺氧;勢必也面臨不同的壓力。假如基因複製能舒緩兩性衝突,那麼也會是解決其他情境衝突的辦法之一。

-----廣告,請繼續往下閱讀-----

基因組上這麼多基因,記錄著演化史上的利害糾葛,面對種種矛盾與困境,沒有完美解藥,只求生存下去。不過,要是沒有這些衝突交織,恐怕也不會演化出如此多彩多姿的生命世界了。

延伸閱讀:

參考文獻:

  1. VanKuren, N. W., & Long, M. (2018). Gene duplicates resolving sexual conflict rapidly evolved essential gametogenesis functions. Nature ecology & evolution, 1.
  2. Duplication resolves conflict

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
文章難易度
寒波_96
193 篇文章 ・ 1093 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
跨越百年障礙 擴張蠅腦的魔術
顯微觀點_96
・2025/06/23 ・1783字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

圖 / 顯微觀點

平價嶄新技術 擴張毫微蠅腦

2023 Taiwan顯微攝影競賽銀獎 Wiring the Brain,題材為果蠅大腦的多巴胺神經網路。蠅腦中比頭髮纖細數千倍的神經纖維與突觸,放大印刷到超過人腦直徑,依然清晰可數。

由於果蠅具有與人類高同源性的基因,也能表現複雜的行為(求偶、覓食、打鬥等),精密解析其腦部構造與整體運作方式,是科學家探索人心智奧秘的重要里程。果蠅的大腦尺寸約為 0.59mm × 0.34mm × 0.12mm,比針尖更細小。其中的神經纖維與突觸更細小數千倍,僅有數百奈米,有時小於光學顯微鏡 200 奈米的繞射極限。即使透過最精密的轉盤式雷射共軛焦顯微鏡,科學家也難窺全像。

到了 21 世紀,在突觸等級分析果蠅大腦仍是相當困難的工程。以掃描式電子顯微鏡(SEM)逐步分析被切成薄片的蠅腦樣本,提供奈米等級解析度的同時,也是侵入性極高,而且可能破壞神經原貌的耗時作法。在AI協助下,2018 年首先問世的立體果蠅全腦圖譜就是由大量平面電子顯微影像重建而成。

-----廣告,請繼續往下閱讀-----

對於持續探索腦神經真實立體結構的科學家,除了鑽研更極致的光學放大效果(如螢光消去顯微術、晶格層光顯微術等足以達到超解析影像,也需要昂貴設備的技術),也有人另闢蹊徑,擴張樣本以浮現原本被繞射極限遮蔽的細節。

果蠅全腦連接體 by Flywire.ai
2023 年 8 月發表的果蠅全腦連接體圖,來自大量電子顯微圖片,由超過 200 位科學家與 AI 合力打造。而果蠅腦部的超解析螢光顯微影像,可以用於協助校正主要由平面電子顯微影像重建的模型,是持續理解果蠅全腦運作機制的重要資源。Courtesy of Flywire Project.

2015 年,麻省理工的波伊登(E. Boyden)提爾貝里(P. W. Tillberg)與陳飛等科學家發表擴張顯微術,以實驗室常見的水凝膠(Hydrogel)、蛋白質水解酶(Protease)等材料,就能將螢光染色的組織均勻(Isotropic, 各方向等量均質)放大,以傳統光學顯微鏡就能觀察原本相距數百奈米的微小構造。

即使有擴張顯微術的幫助,建立果蠅的連接體圖譜仍是一番繁複工程。取出果蠅大腦的顯微手術,需要數周到數月的時間才能熟練。成功擴張的樣本也必然遭遇螢光訊號被稀釋,影像解析度降低的問題。

聚合、分解與吸水 尿布材質推動腦科學

擴張顯微術的基本步驟包含

-----廣告,請繼續往下閱讀-----

錨定 / Anchoring:將樣本浸泡於水凝膠(常用丙烯酸鈉,與尿布吸水部位相同的材料分子),讓水凝膠單體分子滲入樣本,與樣本的蛋白質黏合固定。

聚合 / Polymerization:加入藥劑,讓水凝膠單體間形成聚合並交聯(Cross-link),形成一個緊密滲入、黏合樣本的立體網狀結構。

分解 / Digestion:以蛋白質水解酶分解樣本中的蛋白質骨架,除去擴張時來自樣本的抵抗,但盡量保留螢光蛋白。

擴張 / Expansion:將水凝膠與樣本的結合體加入水中,讓聚合水凝膠吸水擴張,使樣本隨之擴大,每個方向可均勻擴張4到5倍。反覆吸水,各維度最多可擴張近 20 倍。

-----廣告,請繼續往下閱讀-----
擴張顯微術
擴張顯微術示意圖。Courtesy of addgene

2023 Taiwan 顯微攝影競賽銀獎得主劉柏亨分享,其中的「分解」步驟最為關鍵。如何除去樣本內部的拉力,又盡量保持螢光蛋白的訊號,就是實驗的技巧所在。除了使用蛋白質水解酶分解細胞骨架,也能採替代方案,以藥物將蛋白質骨架「變性(Denature)」減少原有的拉力,保留全部螢光蛋白。但是殘存的拉力也會影響擴張過程,使其失去各向同性(Isotropic)的均衡性質,導致樣本扭曲。

他的訣竅是,結合兩種途徑,在過程中不斷調整實驗溫度等變項,並使用「生物素化(Biotinylation)」在擴張前放大螢光訊號;或是使用鍵擊化學(Click Chemistry)在樣本擴張後染上螢光,在每次嘗試中逐步接近理想的解析度與信號強度。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
32 篇文章 ・ 6 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
1

文字

分享

0
1
1
貓咪也會學鳥叫?揭秘貓貓發出「喀喀聲」背後的可能原因
F 編_96
・2024/12/24 ・2480字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

貓是一種神秘而又引人注目的動物,牠們看似深居簡出,但擁有多元的聲音表達:從吸引人類注意的「喵喵叫」,到面對威脅時的「嘶嘶聲」與低沉的「咆哮」。

延伸閱讀:貓咪為什麼總愛對人喵喵叫?看貓如何用聲音征服人類的心

然而,細心的貓奴們可能會注意到,貓有時會對著窗外的鳥兒或屋內小動物玩具,發出一種獨特的「卡卡聲」或「咯咯聲」。這種聲音既像牙齒打顫,又好似一陣陣輕微的顫鳴,卻很難歸類到常見的喵叫或咆哮裡。這種名為「chatter」的行為,究竟在貓的生活中扮演什麼角色?目前科學界尚未對此有定論,但有幾種廣為討論的假說,或許能為我們提供一些思考方向。

卡卡叫:情緒的釋放或表達?

有些貓行為專家推測,貓咪在看到獵物(如窗外的鳥、老鼠)卻無法接近時,會因「欲捕無法」的挫折感或興奮感,發出這種「卡卡聲」。就像人類遇到障礙時,可能會發出抱怨的咕噥聲或乾著急的嘆息聲一樣,貓咪的「喀喀聲」也可能只是把當下的情緒外顯,並非有特別針對人或其他動物的溝通目的。

  • 情緒假說
    • 挫折:當貓看見鳥兒在窗外飛舞卻無法撲殺,內心焦躁,遂用聲音抒發。
    • 興奮:或許貓在準備捕獵時也感到高度亢奮,因此嘴部不自覺抖動並出聲。
貓咪的「喀喀聲」可能源於挫折或興奮情緒,表達捕獵受阻的內在反應。圖/envato

要在科學上驗證「情緒假說」並不容易,因為需要同時測量貓咪行為和生理指標。例如,研究人員可能需要測量貓咪在卡卡叫時的壓力荷爾蒙變化,才能確認牠們究竟是帶著正面興奮,或是負面挫折的情緒。不過,由於貓的獨立特質,實驗設計往往困難重重,樣本量要足夠也不容易,所以至今沒有定論。

-----廣告,請繼續往下閱讀-----

增強嗅覺?貓咪的「第二鼻子」

另一種說法則認為,貓咪發出「卡卡聲」時,可能同時開啟了其位於口腔上顎的「犁鼻器」(vomeronasal organ),也稱作「賈氏器官(Jacobson’s organ)」。這個感知器官能捕捉一般鼻腔聞不到的化學分子,如費洛蒙或特定氣味分子,因此對貓的求偶、社交和獵捕行為都非常重要。

  • 嗅覺假說
    • 張口呼吸:如果貓咪一邊「咯咯咯」地開合上下顎,可能在嘗試讓空氣(及其中所含的氣味分子)進入犁鼻器。
    • 蒐集更多環境資訊:在確定下手前,更完整的嗅覺分析或能提高牠們獵捕成功率,或是幫助判斷環境中是否有其他潛在威脅或機會。

然而,要科學驗證「增強嗅覺假說」同樣不簡單。研究人員不僅要觀察貓咪在卡卡叫時的行為,也需要測量牠們是否真的打開了更大的氣道,並在那個同時有效使用犁鼻器。這些行為與生理測量都必須在相對可控卻又不影響貓自由行動的實驗環境中進行,實務上難度頗高。

聲音模仿:貓咪的「偽鳥叫」?

貓咪的「卡卡聲」或許是為了模仿獵物的聲音,讓獵物降低警戒。圖/envato

第三種最有趣也最具「野性色彩」的假說,是「模仿獵物聲音」。在野外,一些中南美洲的小型貓科動物(例如:長尾虎貓,又稱美洲豹貓或瑪家貓,Margay)曾被觀察到,在捕獵小猴群時,發出類似猴子叫聲的音調;有些當地原住民族群也傳說,叢林裡的某些捕食者會模仿目標獵物的聲音來誘捕。由此推測,家貓看到鳥兒時發出的「卡卡聲」,可能包含些微模仿鳥兒啁啾的元素,試圖降低獵物警戒或甚至吸引獵物靠近。

  • 模仿假說
    • 案例參考:野生貓科動物曾出現學習或偽裝聲音的紀錄。
    • 家貓可能繼承的行為:家貓的祖先——北非野貓(African wildcat)及其他小型貓科物種,是否具備聲音模仿能力?這在生物演化研究上仍是未解之謎。
    • 缺乏大規模觀察:由於小型野生貓科動物研究資料有限,且家貓實驗更不易做大樣本長期追蹤,最終導致此理論尚未獲得廣泛實證。

貓咪行為研究的挑戰:野性祖先的重要性

探討貓咪行為,常常需要回溯至野生祖先的棲地環境。家貓(Felis catus)普遍被認為源自北非野貓(Felis lybica),然而,野貓習性的研究本就不多,尤其是關於聲音與捕獵策略更是資料有限。我們想知道「為什麼家貓會卡卡叫」,首先要確定:「牠們的野性祖先或其他小型貓科,也有同樣的行為嗎?」若有,家貓則可能繼承自古老基因;若無,則可能是家貓在與人類共處的環境中演化出的新行為。

-----廣告,請繼續往下閱讀-----
如果要探查家貓「卡卡叫」的原因,還需要了解其祖先或其他小型貓科是否具有類似行為。圖/envato

再者,貓在實驗室中的「不可控」因素相當多。貓不像狗般樂於服從人類指令,常有自己的規律與個性。要在實驗情境下穩定地誘發貓的「卡卡叫」行為、同時檢測牠們的生理和心理反應,並確保每隻貓的個體差異都被考慮到,這些都對研究團隊是極大考驗。

對於許多貓奴來說,貓咪坐在窗邊,一邊盯著外頭的鳥兒或松鼠,一邊發出獨特的「卡卡聲」,是一幕既可愛又神祕的風景。究竟牠們是在抒發情緒、強化嗅覺、抑或真的在「假扮鳥叫」以誘捕獵物?目前沒有確切的答案。然而,也正因為這層未知,貓貓才更顯得迷人。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃