Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

探求生命的起源-史丹利・米勒誕辰|科學史上的今天:3/7

張瑞棋_96
・2015/03/07 ・890字 ・閱讀時間約 1 分鐘 ・SR值 508 ・六年級

-----廣告,請繼續往下閱讀-----

圖/wikimedia

相較於其它荒涼死寂的星球,生機盎然的地球顯得獨一無二。但地球最初是如何孕育出生命的?宇宙創生時的大霹靂至少還留下宇宙背景輻射的足跡可以印證,然而化石留下的卻是已經成為生物的遺跡,無法透露生命起源的秘密。

那麼,如果模擬地球幾十億年前的環境,能重現生命誕生的事件嗎?當然,演化所需的時間甚於海枯石爛,無須妄想,但,至少或許有可能出現構成生命的有機分子,那也意義重大了。這正是當時仍是研究生的米勒想作的實驗,印證一下 1920 年代幾位科學家提出的假說:早期地球的大氣與海洋成分經由化學反應可以自然產生有機化合物,因而孕育出生命。

當米勒於 1952 年向教授尤瑞 (Harold C. Urey) 提出想法時,並未得到贊同,畢竟很有可能白忙一場以致無法準時畢業。但米勒仍執意想做此實驗,於是在尤瑞的指導下,他們在裝有電極的燒瓶中灌入水、甲烷、氨、氫氣與一氧化碳,以模擬原始大氣。再以管子連結到一個水是半滿的燒瓶;當然設備與水都經過殺菌處理才密封起來。然後米勒加熱裝著水的燒瓶以模擬產生水蒸氣的海洋,再對裝著氣體的燒瓶通電產生火花以模擬閃電。過了一個星期,果真就在水溶液裏發現有機化合物,包括胺基酸與醣類、脂質,而這些正是組成生物物質的必備材料。

1953 年,他們發表論文,轟動全世界。他們的實驗內容簡單明瞭,別人很容易就可以複製驗證,因此很快就獲得認可。這個後來稱為「米勒─尤瑞」的實驗成為歷史上的經典實驗之一,列入教科書內容,所有關於生命起源與演化的書籍也必定都會提及此實驗。

-----廣告,請繼續往下閱讀-----

當然,這並不代表地球的生命起源一定就是如此,畢竟他們模擬的實驗條件不見得與地球當初的環境一樣。但他們至少證明了組成生物的有機分子可以由簡單的無機化學分子自行形成,地球可以自行孕育出生命,無須托予隕石、外星人或上帝等外力。至於生命大河的幽遠源頭究竟在何處,就有待科學家繼續探訪了。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1031 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
從太陽發光到生命突變,一切都歸功於量子穿隧效應?
PanSci_96
・2024/10/19 ・1962字 ・閱讀時間約 4 分鐘

在這個充滿光與生命的宇宙中,我們的存在其實與一種看不見的力量密切相關,那就是量子力學。沒有量子力學,太陽將不會發光,地球上的生命將無法誕生,甚至整個宇宙的運行規則都會截然不同。這些微觀層次的奧秘深深影響了我們日常生活的方方面面。

其中,量子穿隧效應是一個看似違背直覺但至關重要的現象,從太陽的核融合反應到基因的突變,這種效應無處不在,甚至還牽動著當今的高科技產業。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子穿隧效應?

我們可以將量子穿隧效應比作一個奇妙的穿牆術。想像一下,你身處一個被高牆包圍的城市,牆外是未知的世界。通常,如果你要越過這道牆,需要極大的力量來翻越它,或者用工具打破它。然而,在量子的世界裡,情況並不如此。

在微觀的量子力學世界中,粒子同時具有波的特性,這意味著它們並不完全受限於傳統物理的規則。當一個微觀粒子遇到能量障礙時,即使它沒有足夠的能量直接穿過障礙,卻仍有一定機率能出現在障礙的另一邊,這就是「量子穿隧效應」。粒子彷彿直接在牆上挖了一條隧道,然後穿越過去。

-----廣告,請繼續往下閱讀-----

這聽起來像魔法,但它背後有深刻的物理學道理。這個現象的發生取決於量子粒子的波動性質以及能量障礙的高度和寬度。如果障礙較矮且較窄,粒子穿隧的機率就較高;反之,障礙越高或越寬,穿隧的機率則會降低。

太陽發光:核融合與量子穿隧效應的結合

量子穿隧效應的存在,讓我們能夠理解恆星如何持續發光。以太陽為例,太陽內部的高溫環境為核融合反應提供了所需的能量。在這個過程中,氫原子核(質子)需要克服極大的電磁排斥力,才能彼此靠近,進而融合成為氦原子核。

然而,單靠溫度提供的能量並不足以讓所有質子進行核融合。根據科學家的計算,只有約10的 434 次方個質子中,才有一對具備足夠的能量進行核融合。這是一個極小的機率。如果沒有量子穿隧效應,這種反應幾乎不可能發生。

幸好,量子穿隧效應在這裡發揮了關鍵作用。由於量子粒子具有波動性,即便質子沒有足夠的能量直接跨越能量障礙,它們仍然能透過穿隧效應,以一定機率克服電磁排斥力,完成核融合反應。這就是為什麼太陽內部的核融合能夠源源不斷地發生,並且持續產生光與熱,讓地球成為適合生命生存的家園。

-----廣告,請繼續往下閱讀-----

量子穿隧效應與生命的演化

除了恆星的發光之外,量子穿隧效應還對生命的誕生和演化起到了關鍵作用。地球上物種的多樣性,很大一部分源於基因突變,而量子穿隧效應則幫助了這一過程。

DNA 分子是攜帶遺傳訊息的載體,但它的結構並不穩定,容易在外界因素影響下發生變異。然而,即使沒有外界因素的干擾,科學家發現 DNA 仍會自發性地發生「點突變」,這是一種單一核苷酸替換另一種核苷酸的突變形式。

量子穿隧效應讓氫原子隨時可能在 DNA 結構中進行位置轉換,從而導致鹼基對的錯位,這在 DNA 複製過程中,可能會引發突變。這些突變若保留下來,就會傳遞給下一代,最終豐富了基因與物種的多樣性。

量子穿隧幫助促進 DNA 突變,協助生命的演化與物種多樣性。圖/envato

半導體技術中的量子穿隧效應

除了在宇宙和生命中發揮作用,量子穿隧效應還影響著我們的日常生活,尤其在現代科技中。隨著半導體技術的發展,電子設備的體積不斷縮小,這也讓電子元件的性能面臨更大的挑戰。

-----廣告,請繼續往下閱讀-----

在微小的電子元件中,量子穿隧效應會導致電子穿過元件中的障礙,產生不必要的漏電流。這種現象對電晶體的性能帶來了負面影響,因此設計師們需要找到方法來減少穿隧效應的發生,以確保元件的穩定性。

雖然這是我們不希望見到的量子效應,但它再次證明了量子力學在我們生活中的深遠影響。設計更有效的半導體元件,必須考慮到量子穿隧效應,這讓科學家與工程師們需要不斷創新。

量子力學是我們宇宙的隱藏力量

量子穿隧效應看似深奧難懂,但它對宇宙的運作和生命的誕生至關重要。從太陽的核融合反應到基因突變,甚至現代科技中的半導體設計,量子力學影響著我們生活的方方面面。

在這個充滿未知的微觀世界裡,量子現象帶來的影響是我們難以想像的。正是這些看似不可思議的現象,塑造了我們的宇宙,讓生命得以誕生,科技得以發展。當我們仰望星空時,別忘了,那閃耀的光芒,背後藏著的是量子力學的奇妙力量。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2419 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

6
1

文字

分享

0
6
1
什麼是「生命親緣樹」?古菌啟發人類對火星生命的想像——《穿越 4.7 億公里的拜訪》
三民書局_96
・2021/11/28 ・1682字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/前NASA太空任務科學家 李傑信

以目前人類擁有的火星知識推測,如果火星曾經有過生命,種類可能與地球最古老的生命接近。

什麼是地球最古老的生命呢?我們幾乎可以想像地球生命起源時的環境:無氧、地表熾熱、火山活動頻繁、甲烷廣布、硫磺濃湯漫流。如果生命在這種條件下起源,那最古老的細菌,也就是人類和所有地球生物的老祖宗,必得有耐高溫、厭氧、喜硫磺和甲烷等的古怪個性。

高溫、無氧又充滿甲烷與硫磺的海底熱泉,可能與原始的地球海洋十分相近;圖為香檳噴發口(Champagne vent)。圖/WIKIPEDIA

人類對地球生命的認識和分類,經過好幾個重要階段。18 世紀時,人類把生命分成動物和植物兩大類。這種分類法顯然過於粗糙,有些擁有葉綠體的單細胞生物,能蠕動或用鞭毛游動,它們究竟是動物還是植物?而真菌類一向被歸入植物類,但它卻無葉綠素。於是有一陣子,地球生命就被分成動物、植物、原生生物三大類。直到 20 世紀初,細菌分類學有了長足的發展,才將有核細胞生物(真核生物,包括動物、植物、真菌、原生生物)和無核細胞生物(原核生物)的細菌分開。

細菌雖然一般以形狀分類,如桿菌、球菌和螺旋菌等,但這種分類無法建立起它們之間的親緣關係,在當代是一件頭痛而無法解決的問題。一直到 20 世紀 60 年代,基因工程技術出籠,生物物理學家渥易斯(Carl Woese, 1928~2012)認為,核糖體核糖核酸(ribosomal ribonucleic acid, rRNA)排列順序保存了久遠的生物演化紀錄,並且這種排列順序變化緩慢,容易追尋親緣關係。他以這種排列順序為準,決定出各類細菌間的親疏遠近,發現總稱的細菌中含兩類截然不同的細菌,他分別命名為細菌和古菌兩大類。加上動物、植物、真菌、眼蟲、微孢蟲等所屬的真核生物,終於完成目前完整的生物三界說的生命親緣樹(universal phylogenic tree,圖9-1)。

-----廣告,請繼續往下閱讀-----
圖 9-1:渥易斯在1977年底發表了地球生命親緣樹。

渥易斯在 1977 年底發表的古菌域發現,是一項劃時代的成就。當作者第一次看到古菌所涵蓋的各類細菌時,的確被震撼了一下。古菌類皆厭氧,含甲烷嗜熱菌(methanothermus)、甲烷球菌(methanococcus)、嗜熱纖維菌 (thermofilum)、熱網菌(pyrodictium)、硫還原球菌(desulfurococcus)、硫球菌(sulfolobus)等,幾乎就是想像中伊甸園裡該有的生命。另外,生命樹根的所在,雖然還沒有完全確定,一般認為應在古菌樹幹的下面。

地球最原始的生命似乎是厭氧嗜熱菌,生活在攝氏 90 度以上的環境,使用硫、氫、二氧化碳等地質化學能量生長繁殖。如果溫度低於攝氏 80 度,則生長停止。所以,地球所有生物的祖宗,應是依賴化學合成能量、居住在熱泉裡的古菌。生命一旦開始,就能適應外界逐漸變化的環境。環境如果變得實在無法忍受,有的古菌就停止一切生命機能,進入亙古冬眠,等待佳機復甦。1992 年,美國國家研究委員會(National Research Council, NRC)報告,一個嗜鹽古菌(halophiles)冬眠 2 億年,經實驗室培養後,恢復生命活力[註1]。南柯一夢數億年,生命頑強力可見端倪。

圖為屬於古菌的 NRC-1 高度好鹽菌,每一細胞長度大約 5μm。圖/WIKIPEDIA

古菌域的發現,使人類對生命的看法煥然一新。生命原來可以適應那麼多種極端的自然環境,只要給予一線生機,生命就能蓬勃發展。我們對生命重新樹立起了更崇高的敬意。

地球古菌類的發現,照亮了人類探測火星生命的道路。地球古菌類的生活習性,能告訴人類它們起源時的生命環境。那種環境可能與火星 35億~38 億年前時相差不遠。火星那時也有水、火山活動及熱泉,地球能發展出生命,為什麼火星不能?

-----廣告,請繼續往下閱讀-----

註解

  • 註 1:“Biological Contamination of Mars,” National Research Council, National Academy Press, Washington, 1992.

——本文摘自《穿越4.7億公里的拜訪:追尋跟著水走的火星生命》,2021 年 7 月,三民

-----廣告,請繼續往下閱讀-----
三民書局_96
18 篇文章 ・ 12 位粉絲
創立於1953年,為了「傳播學術思想,延續文化發展」,60年來默默耕耘著書的園地。從早期的法政大學用書、三民文庫、古籍今注新譯叢書、《大辭典》,到各式英漢字典及兒童、青少年讀物,成立至今已出版了一萬多種優良圖書。不僅讀者佳評如潮,更贏得金鼎獎、小太陽獎、好書大家讀等諸多獎項的肯定。在見證半個世紀的社會與時代變遷後,三民書局已轉型為多元、綜合、全方位的出版機構。