0

0
0

文字

分享

0
0
0

真菌才是積木高手:它們如何組合出結構複雜的天然物?

研之有物│中央研究院_96
・2018/02/19 ・3196字 ・閱讀時間約 6 分鐘 ・SR值 537 ・八年級

執行編輯|林婷嫻 美術編輯|張語辰

天然物研究

科學家竟能看到你看不到的?別怕,這不是恐怖故事,而是存在於大自然的「微觀世界」。中研院生物化學研究所的林曉青助研究員,拿出分子模型帶你一同想像:真菌是如何像玩樂高,組合出結構複雜的天然物。

林曉青拿著真菌培養皿、像樂高的 okaramine 分子模型。這兩者藏著真菌殺蟲的秘密。 圖/張語辰攝影

微觀世界

「印象深刻的實驗,反而是最害怕的實驗!」林曉青一句話刺破一般對科學家的幻想泡泡。「高中同學解剖著牛蛙,我就躲在遠遠的地方看……」

要養成一名科學家,有各種途徑,而擅長「天然物(Natural product) 」生物合成研究的林曉青,並非從實驗室裡冒著泡泡的「化學物 X 」溶液中誕生,反而是「最不化學」的場域──家鄉宜蘭的田野。

在宜蘭田野中長大,更精確地說,是還沒被農舍民宿佔據的宜蘭田野中長大,讓林曉青有許多機會接觸自然環境,國小最有興趣的就是自然課。當時的《國語日報》中每天都有自然科學專欄,介紹一些動植物、昆蟲、自然現象,報紙前方林曉青睜著圓滾滾的大眼睛,興味盎然地探索這個世界。

-----廣告,請繼續往下閱讀-----
在還喜歡看卡通的年齡,《人體大奇航》這部動畫佔據了林曉青家中的電視機。 圖/youtube

《人體大奇航》這部卡通是在講人體的微觀世界,把每種細胞擬人化。每一集有不同主題,像是人體被細菌攻擊後,白血球啟動防禦;或是人體吃東西後,醣類及脂肪如何代謝。」雖然觀看的時間已有些久遠,回憶起動畫內容,林曉青仍像個充滿好奇心的小孩。

林曉青小時候想像著我們看不到的微觀世界,長大後也發現很多微觀世界自成系統,例如天然物的合成途徑。

天然合成的產物

要解釋天然物(Natural product)這種有機化合物,可以像教科書搬出一幅幅如外星人秘語的化學結構圖,然而林曉青換了個方式:「避免失憶的銀杏、我們常喝的咖啡,它們對人體有一些特定作用,都是源於天然物。」

這些「特定作用」是天然物的生物或藥理活性,但會如何影響人體,是生產天然物的真菌、細菌、植物們始料未及的。因為一開始它們生產天然物是為了自己與環境,例如趕走環境中的勁敵,或是幫助共生的宿主。

天然物,是生物體互相交流的「工具」,可能是用來相親相愛,或是互相傷害。

例如 okaramine 這種天然物,是一種含氮的生物鹼,有其特殊的「交流用途」。「okara」是日文「豆渣」的意思,「amine」是含有氮原子的化合物。過往的科學家發現 Penicillium 屬的真菌會生長在豆渣上,並生產這種 okaramine 天然物。其他化學家進一步發現, okaramine 天然物具備選擇性的「殺蟲」生物活性。

-----廣告,請繼續往下閱讀-----

用白話文來說,該真菌在豆渣上生長、生產 okaramine 天然物,意思就是跟其他會競爭生存的蟲蟲嗆聲:「這裡只有我可以生長!亂闖者格殺勿論!」

微觀世界裡這個熱鬧搶地盤的景象,看在化學家眼中饒富趣味。化學家思考著,這種天然物能否被人工合成出來呢?但至今仍未發展出完整的化學合成方法。想找出方法,首先得了解──究竟生物是運用哪些原子、透過哪些途徑,像玩樂高般蓋出這個天然物結構。

用樂高思維組出 okaramine

Penicillium 屬的真菌運用單純的胺基酸,組合出結構複雜的 okaramine 有機化合物。  圖/Biosynthesis of Complex Indole Alkaloids: Elucidation of the Concise Pathway of Okaramines.  圖說重製/林婷嫻、張語辰

林曉青比喻,研究天然物就像在「玩樂高」。有機原子「碳、氫、氧、氮」等就像一塊塊樂高積木,一開始科學家看到真菌組好了一台樂高戰艦(天然物),可以對抗入侵生存環境的蟲蟲敵人,但卻不知道中間是透過什麼方法組裝。

於是科學家依樣逆推,用相同的「碳、氫、氧、氮」等樂高積木,在實驗室中推測中間發生了什麼事,才能組出這台樂高戰艦。

距今一百多年前開始,科學家在實驗室中試著用「化學合成」的方法,也就是用高反應性的化學物質、在高溫或高壓的反應條件中進行化學反應,嘗試組合出複雜結構的化合物。

-----廣告,請繼續往下閱讀-----

而自然界的生物體中,存在各種功能的「酶(enzyme)」,用來催化各種化學反應。不同生物體有自己的基因序列,酶具有什麼功能都寫在 DNA 中。隨著近年來「基因體定序」技術的進步,科學家有機會知道自然界是以哪些基因、哪些酶進行生物合成反應,產生各種化合物。

除了基因組探勘,再加上基因剔除、異源性表達、化學結構解析等技術,讓林曉青團隊得以進入微觀的世界,觀察生物體內負責合成化合物的關鍵基因、關鍵酶是什麼,於合成過程中發揮什麼功能。並再於模仿自然界的常溫、一般氣壓環境下,在放了受質、輔因子的水溶液中,試驗催化生物合成反應。

「我們的生物合成方法,不同於早期的化學合成方法,不需要用到高反應性、毒性較強的化學物質。」林曉青說明。

林曉青想要了解的天然物合成方法,是自然界實際使用的方法。

林曉青拿出像樂高玩具的 okaramine 化合物模型,可以看見黑色的碳原子、藍色的氮原子、紅色的氧原子如何鍵接。如下圖黃圈處,真菌在組合 okaramine 時,透過 OkaE 這種「酶」催化合成反應,像樂高關節般「咔咔」地,將原本分離的兩個碳原子組合起來,與另一個碳原子、氮原子組合成四環。

-----廣告,請繼續往下閱讀-----
okaramine 化合物結構。放入試管的 OkaE 酶就像樂高關節,將原本分離的兩個碳原子催化組合成四環(黃圈處)。 圖/Biosynthesis of Complex Indole Alkaloids: Elucidation of the Concise Pathway of Okaramines. 圖說重製/林婷嫻、張語辰

林曉青拿著 okaramine 化合物模型,徒手嘗試組裝兩個碳原子時,費了點力穩住結構才能將模型接上。「用手就需要點力氣了,在真菌體內要接上四環,也需要點能量,而自然界就派出 OkaE 酶負責催化這個過程。這是我們團隊最先發現的喔!」林曉青露出開朗的笑容。

自然真理只有一個

雖然天然物的催化酶已知仍有限,自然界的生物合成途徑也尚未被透徹了解,但林曉青認為這正是研究天然物的樂趣:還有好多未知等著被發現。

「而且研究天然物,會覺得…..真理只有一個!」眼前的林曉青,瞬間變成眼鏡反光的柯南。

某個酶的功能,用各種實驗證明結果都會是同一個,這是一個不變的定律。

團隊努力研究天然物的另一個動力,是未來的藥學潛能。以用於治療癌症的紫杉醇(Paclitaxel)為例,紫杉醇也是一種天然物,除了從太平洋紅豆杉(Taxus brevifolia)樹皮可分離取得,後來發現由另一相近樹種(Taxus baccata)的葉部可分離得到中間物,進而以半合成(semi-synthesis)方式合成紫杉醇。然而天然生產的量非常少,造成當時研發成為臨床用藥的瓶頸,並延長了藥物發展的時程。

-----廣告,請繼續往下閱讀-----

若能了解大自然合成天然物的途徑、參與的基因與酶等知識,未來可望由合成生物學的方式進行製備、並取得藥物來源。

大量人工合成天然物,會影響自然環境嗎?林曉青慎重地思考後回覆:「不同天然物有不同的生物活性,若決定大量做出某種有機化合物,要先想清楚做的目的。」並補充道,天然物原本就合成於自然,自然必定也存在對應的生物降解機制。

即使肉眼看不到,或許現在窗外那棵樹、身邊附近的某個真菌,在微觀世界正熱鬧地玩著「樂高」,生產各種天然物。

延伸閱讀:

本著作由研之有物製作,原文為《真菌也會玩樂高?還組合出「天然物」戰艦!》以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3461 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

1
0

文字

分享

1
1
0
找回擁有食物的主導權?從零開始「菇類採集」!——《真菌大未來》
積木文化
・2024/02/25 ・4266字 ・閱讀時間約 8 分鐘

菇類採集

在新冠肺炎(COVID-19)大流行後,馬斯洛「需求層次理論」裡的食品與安全在眾目睽睽下被抽離出來,變成後疫情時代最重要的兩個元素。對食物的焦慮點燃人們大腦中所有生存意志,於是大家開始恐慌性地購買,讓原本就已經脆弱、易受攻擊的現代糧食系統更岌岌可危。

值得慶幸的是,我們的祖先以前就經歷過這一切,留下來的經驗值得借鏡。菇類採集的興趣在艱難時期達到顛峰,這反映了人類本能上對未來產生的恐懼。1 無論是否有意,我們意識到需要找回擁有食物的主導權,循著古老能力的引導來找尋、準備我們自己的食物,如此才能應付食物短缺所產生的焦慮。

在新冠肺炎大流行後,馬斯洛「需求層次理論」裡的食品與安全在眾目睽睽下被抽離出來,變成後疫情時代最重要的兩個元素。圖/pexels

我們看見越來越多人以城市採集者的身分對野生菇類有了新的品味,進而找到安全感並與大自然建立起連結。這並不是說菇類採集將成為主要的生存方式,而是找回重新獲得自給自足能力的安全感。此外,菇類採集的快感就足以讓任何人不斷回歸嘗試。

在這個數位時代,菇類採集是讓我們能與自然重新連結的獨特活動。我們早已遺忘,身體和本能,就是遺傳自世世代代與自然和諧相處的菇類採集者。走出現代牢籠、進入大自然從而獲得的心理和心靈滋養不容小不容小覷。森林和其他自然空間提醒著我們,這裡還存在另一個宇宙,且和那些由金錢、商業、政治與媒體統治的宇宙同樣重要(或更重要)。

-----廣告,請繼續往下閱讀-----
在這個數位時代,菇類採集是讓我們能與自然重新連結的獨特活動。圖/unsplash

只有願意撥開遮蓋的落葉並專注尋找,才能體認到菇類的多樣性和廣泛分布。一趟森林之旅能讓人與廣大的生態系統重新建立連結,另一方面也提醒我們,自己永遠屬於生命之網的一部分,從未被排除在外。

腐爛的樹幹不再讓人看了難受,而是一個充滿機遇的地方:多孔菌(Bracket Fungi)──這個外觀看起來像貨架的木材分解者,就在腐爛的樹幹上茁壯成長,規模雖小卻很常見。此外,枯葉中、倒下的樹上、草地裡或牛糞上,也都是菇類生長的地方。

菇類採集是一種社會的「反學習」(遺忘先前所學)。你不是被動地吸收資訊,而是主動且專注地在森林的每個角落尋找真菌。不過度採集、只拿自身所需,把剩下的留給別人。你不再感覺遲鈍,而是磨練出注意的技巧,只注意菇類、泥土的香氣,以及醒目的形狀、質地和顏色。

只有願意撥開遮蓋的落葉並專注尋找,才能體認到菇類的多樣性和廣泛分布。圖/unsplash

菇類採集喚醒身體的感官感受,讓心靈與身體重新建立連結。這是一種可以從中瞭解自然世界的感人冥想,每次的發現都振奮人心,運氣好的話還可以帶一些免費、美味又營養的食物回家。祝您採集愉快。

-----廣告,請繼續往下閱讀-----

計畫

菇類採集就像在生活中摸索一樣,很難照既定計畫執行,而且以前的經歷完全派不上用場。最好的方法就是放棄「非採集到什麼不可」的念頭,持開放心態走出戶外執行這項工作。菇類採集不僅是享受找到菇的滿足感,更重要的是體驗走過鬆脆的樹葉、聞著森林潮濕的有機氣味,並與手持手杖和柳條筐的友善採菇人相遇的過程。

菇類採集很難照既定計畫執行,最好的方法就是放棄「非採集到什麼不可」的念頭。採集過程幾乎就像玩捉迷藏,只不過你根本不確定自己在找什麼,甚至根本不知道要找的東西是否存在。圖/unsplash

你很快就會明白為什麼真菌會有「神秘的生物界」的稱號。真菌無所不在但又難以捉摸,採集過程幾乎就像玩捉迷藏,只不過你根本不確定自己在找什麼,甚至根本不知道要找的東西是否存在。但還是要有信心,只要循著樹木走、翻動一下原木、看看有落葉的地方,這個過程就會為你指路。一點點的計畫,將大大增加你獲得健康收益的機會。所以,讓我們開始吧。

去哪裡找?

林地和草原,是你將開始探索的兩個主要所在。林地底層提供真菌所需的有機物質,也為樹木提供菌根關係。橡樹、松樹、山毛櫸和白樺樹都是長期的菌根夥伴,所以循著樹種,就離找到目標菇類更近了。

林地底層提供真菌所需的有機物質,也為樹木提供菌根關係。圖/pexels

草原上也會有大量菇類,但由於這裡的樹木多樣性和環境條件不足,所以菇類種類會比林地少許多。如果這些地點選項對你來說都太遠了,那麼可以試著在自家花園或在地公園綠地當中尋找看看。這些也都是尋菇的好地方。

-----廣告,請繼續往下閱讀-----

澳洲新南威爾斯州奧伯倫

澳洲可以說是真菌天堂。與其他大陸隔絕的歷史、不斷變化的氣候以及營養豐富的森林,讓澳洲真菌擁有廣大的多樣性。澳洲新南威爾斯州(New South Wales)的奧伯倫(Oberon)就有一座超過四萬公頃的松樹林,是採集菇類的最佳地點之一。

在那裡,有廣受歡迎的可食用菌松乳菇(又稱紅松菌),據說這種真菌的菌絲體附著在一棵歐洲進口樹的根部,而意外被引進澳洲。 1821 年,英國真菌學家塞繆爾・弗里德里克・格雷(Samuel Frederick Gray)將這種胡蘿蔔色的菇命名為美味乳菇(Lactarius deliciosus),這的確名符其實,因為「Deliciosus」在拉丁語中意為「美味」。如果想要在奧伯倫找到這些菇類,秋天時就要開始計劃,在隔年二月下旬至五月的產季到訪。

位於澳洲新南威爾斯州的奧伯倫就有一座超過四萬公頃的松樹林,是採集菇類的絕佳地點。圖/unsplash

英國漢普郡新森林國家公園

在英國,漢普郡的新森林國家公園(Hampshire’s New Forest)距離倫敦有九十分鐘的火車車程。它由林地和草原組成,當中有種類繁多的植物群、動物群和真菌可供遊客觀賞,甚至還有野生馬匹在園區裡四處遊蕩。

這片森林擁有兩千五百多種真菌,其中包括會散發惡臭的臭角菌(Phallus impudicus),它的外觀和結構就如圖鑑中描述般,與男性生殖器相似且不常見。還有喜好生長於橡樹上,外觀像架子一樣層層堆疊的硫色絢孔菌(Laetiporus sulphureus ,又稱林中雞)。該國家公園不允許遊客採收這裡的菇,所以請把時間花在搜尋、鑑別與欣賞真菌上。如果幸運的話,該地區可能會有採集團體可以加入,但能做的也僅限於採集圖像鑑別菇類,而非採集食用。

-----廣告,請繼續往下閱讀-----
在英國,漢普郡的新森林國家公園由林地和草原組成,當中有種類繁多的植物群、動物群和真菌可供遊客觀賞。該國家公園不允許遊客採收這裡的菇,所以請把時間花在搜尋、鑑別與欣賞真菌上。圖/unsplash

美國紐約市中央公園

甚至紐約市的中央公園也有採集菇類的可能性。雖然在 1850 年代公園建造之時並未刻意引進菇類物種,但這個占地八百四十英畝的公園現已登錄了四百多種菇類,足以證明真菌孢子的影響之深遠。

加里・林科夫(Gary Lincoff)是一位自學成才、被稱作「菇類吹笛人」2 的真菌學家,他住在中央公園附近,並以紐約真菌學會的名義會定期舉辦菇類採集活動。林科夫是該學會的早期成員之一,該學會於 1962 年由前衛作曲家約翰・凱吉(John Cage)重新恢復運作。凱吉也是一位自學成才的業餘真菌學家,並靠自己的能力成為專家。

甚至紐約市的中央公園也有採集菇類的可能性。雖然在 1850 年代公園建造之時並未刻意引進菇類物種,但這個占地八百四十英畝的公園現已登錄了四百多種菇類。圖/wikipedia

進行菇類採集時,找瞭解特定物種及其棲息地的在地專家結伴同行,總是有幫助的。如果你需要一個採集嚮導,求助於所在地的真菌學會會是一個正確方向。

何時去找?

在適當的環境條件下(例如溫度、光照、濕度和二氧化碳濃度),菌絲體全年皆可生長。某些物種對環境條件較敏感,但平均理想溫度介於 15~24 ℃ 之間,通常是正要進入冬季或冬季剛過期間,因此秋季和春季會是為採集菇類作計畫的好季節。

-----廣告,請繼續往下閱讀-----
秋季和春季是為採集菇類作計畫的好季節,但因為菇類受溫度變化模式和降雨量的影響很大,所以每年採菇的旺季時間會略有不同。圖/unsplash

當菌絲體從周圍吸收水分時,會產生一股破裂性的力量,讓細胞充滿水分並開始出菇。這就是菇類通常會出現在雨後和一年中最潮濕月份的原因。牢記這些條件,就可以引導你找到寶藏。但也要記得,因為菇類受溫度變化模式和降雨量的影響很大,所以每年採菇的旺季時間會略有不同。

註解

  1. Sonya Sachdeva, Marla R Emery and Patrick T Hurley, ‘Depiction of wild food foraging practices in the media: Impact of the great recession’, Society & Natural Resources, vol. 31, issue 8, 2018, <doi.org/10.1080/08941920.2 018.1450914>. ↩︎
  2. 譯注:民間傳說人物。吹笛人消除了哈梅林鎮的所有老鼠,但鎮上官員拒絕給予承諾的報酬,於是他就吹奏著美麗的音樂,把所有孩子帶出哈梅林鎮。 ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

所有討論 1

1

0
2

文字

分享

1
0
2
素肉怎麼做?讓菌絲體開啟素食新境界!——《真菌大未來》
積木文化
・2024/02/23 ・2964字 ・閱讀時間約 6 分鐘

以菌絲體作為食物

意外誕生的美食?

人類應用發酵已有很長一段歷史,也產生許多令人驚訝的結果,其中一個令人愉快的意外之作就是天貝(tempeh)。天貝是 1800 年代初起源於印尼的一種素食主食 1。歷史學家經考究認為,天貝是無意間產生的食物,很可能是在試圖將大豆隔夜保存免受熱影響時被發現的。2

天貝是 1800 年代初起源於印尼的一種素食主食。圖/wikipedia

在保存大豆的過程中,少孢根黴菌(Rhizopus oligosporus)的孢子落到大豆上,引起發酵過程並形成天貝的緻密餅狀物。少孢根黴菌將大豆或其豆類基質結合在一起,形成 100 % 可食用又富含蛋白質、礦物質和維他命的網狀棉質菌絲體。

靠真菌製造的最佳素食漢堡?

諾馬餐廳(Noma)前發酵負責人大衛・齊爾伯(David Zilber)將天貝帶往新的境界。素食運動的推動,讓世界各地的廚師都在嘗試使用肉類替代品來複製漢堡中的牛肉餅。齊爾伯開發出一種由藜麥製成的天貝,作法是將藜麥穀物接種菌絲體,並在露天下發酵以降低水分含量,只留下足以在烹飪時保持多汁的水分,最後在天貝上塗抹一層諾馬餐廳以真菌發酵自製的酵母魚醬和蠶豆醬油,就大功告成了。

這款漢堡被品評專家譽為「最佳素食漢堡」。齊爾伯對此評論:「三種真菌和一種穀物,證明也許只要掌握一點技巧,好的烹飪就可以幫助拯救和養活一個需要療癒的世界」。3

-----廣告,請繼續往下閱讀-----
天貝富含蛋白質、碳水化合物、來自大豆的脂肪以及種人體無法合成的必需氨基酸、纖維、維他命和礦物質,熱量低且不含膽固醇。圖/unsplash

是什麼讓天貝富含營養?又為什麼,它會成為一種神奇的食物?天貝不僅含有飲食中的一些基本成分,也就是蛋白質、碳水化合物和來自大豆的脂肪,其中的菌絲體,更提供類似於菇類的益處:富含全部九種人體無法合成的必需氨基酸、纖維、維他命和礦物質,熱量低且不含膽固醇。天貝的例子讓我們瞭解到,不僅菇類可以吃,菌絲也是可以吃的。最棒的是,一些真菌菌絲體與肉的質地非常相似,成為素食饕客餐盤裡的熱門選擇。

菌絲體革命:植物肉的新面貌

溫斯頓・丘吉爾(Winston Churchill) 1931 年發表的文章〈五十年後〉(Fifty Years Hence)裡,他預測「將發展出新的微生物菌株,並為我們量產化學物」,並總結道「當然,未來也將會使用合成食品」。4 現在看來,丘吉爾的說法完全正確。

1985 年,馬洛食品(Marlow Foods)推出闊恩素肉(quorn),這是一種以真菌菌絲體製成的素食派餅產品系列,品牌名稱為「真菌蛋白」(Mycoprotein)。「真菌蛋白」的商業成功歸功於鑲片鐮孢菌(Fusarium venenatum),其能迅速將澱粉轉化為高含量的蛋白質。

該公司對這種生產工藝的專利已在 2010 年過期,所以其他有興趣的廠商可以進入生產真菌蛋白的領域了。然而,如今闊恩素肉在超市中仍隨處可見,且提供越來越多的無動物肉類和大豆成分所製造的禽肉、牛肉和魚肉。

-----廣告,請繼續往下閱讀-----
如今闊恩素肉在超市中仍隨處可見,且提供越來越多的無動物肉類和大豆成分所製造的禽肉、牛肉和魚肉。圖/pexels

艾本・拜耳(Eben Bayer)和蓋文・金泰爾(Gavin McIntyre)於 2007 年創立生態創新生物技術公司(Ecovative),正利用真菌製造用於包裝、紡織品和肉類替代品的菌絲體材料。他們最新的獨創觀念是「最終食品」(atlast food),也就是控制溫度、氣流、二氧化碳供應和濕度,藉以促使菌絲體的纖維組織長成各種形狀的合成肉。這個複雜過程也是一種發酵形式,使菌絲體在十天內就能形成具有不同質地、強度和纖維的成分,口感類似於動物肉。

菌絲體肉的開發,是希望能減輕畜牧業對地球造成的負擔。「最終食品」的生產設施由垂直農業基礎設施組成,與傳統肉類生產相比,土地需求少了十倍、產生的二氧化碳也降低許多。「最終食品」的第一個產品「菌絲體培根」,其用水量就比傳統豬肉生產少了一百倍。

菌絲體肉的開發,是希望能減輕畜牧業對地球造成的負擔。「最終食品」的第一個產品「菌絲體培根」,其用水量就比傳統豬肉生產少了一百倍。圖/unsplash

生物技術的進步使該工業能找到可行的解決方案,為未來創造永續的食物來源。如果可以使用更少的資源,且對自然造成更少的傷害來人工種植食物,就不必再從大自然中做擷取。當時拜耳對所有等待菌絲體肉的人們說,希望三年內就能實現全球供應。5 菌絲體革命即將到來。

如何自製維他命 D 營養補充品?

只要十五分鐘,幫你補充滿滿維他命 D?

維他命 D 對於保持骨骼、牙齒和肌肉健康來說相當重要。《澳洲醫學雜誌》(The Medical Journal of Australia)建議,如果無法曬太陽,那每天至少要補充 400 IU6 的維他命 D。對於照射陽光不足的人來說,菇類是唯一天然、非動物性的維他命 D 來源。只要將菇類暴露在陽光下就可以產生維他命 D 7,這是在家裡就可以辦到的工作。

-----廣告,請繼續往下閱讀-----
把菇類放在窗臺上讓菌褶朝向陽光,放置 15 分鐘後再烹調,這樣的簡單步驟即可將菇類變成維他命 D 的絕佳來源。圖/pexels

把菇類放在窗臺上讓菌褶朝向陽光,放置 15 分鐘後再烹調,這樣的簡單步驟即可將菇類變成維他命 D 的絕佳來源。僅 84 公克新鮮、暴露於紫外線的洋菇,就含有超過 600 IU 的維他命 D,且與維他命 D 營養補充品一樣容易被身體吸收。8

註解

  1. William Shurtleff and Akiko Aoyagi, History of Tempeh and Tempeh Products (1815– 2020): Bibliography and Sourcebook, Soyinfo Center, Lafayette, 2020, p. 351. ↩︎
  2. Marianna Cerini, ‘Tempeh, Indonesia’s wonder food’, The Economist, 23 January 2020, <economist.com/1843/2020/01/23/ tempehindonesias-wonder-food>. ↩︎
  3. @david_zilber, ‘Biomimicry is a fascinating way⋯’ [Instagram post], David Chaim Jacob Zilber, 26 May 2020,<instagram.com/p/ CAptR8qpN-T> . ↩︎
  4. Winston Churchill and Steven Spurrier, ‘Fifty years hence’, Strand Magazine, issue 82, no. 49, 1931. ↩︎
  5. 摘自作者於 2020 年對艾本・拜耳的訪談。 ↩︎
  6. IU 為國際單位,用於計算或測量維他命 效力和生物有效性的標準化單位之一。 1 IU = 0.025 微克麥角鈣化醇(維他命 D2 )。 ↩︎
  7. Mary Jo Feeney et al., ‘Mushrooms— biologically distinct and nutritionally unique’. ↩︎
  8. Victor L Fulgoni III and Sanjiv Agarwal, ‘Nutritional impact of adding a serving of mushrooms on usual intakes and nutrient adequacy using National Health and Nutrition Examination Survey 2011–2016 data’, Food Science and Nutrition, vol. 9, issue 3, 2021, <doi.org/10.1002/fsn3.2120>. ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

所有討論 1