0

0
0

文字

分享

0
0
0

世界最大虛擬光學望遠鏡

espa.taipei
・2012/03/07 ・506字 ・閱讀時間約 1 分鐘 ・SR值 541 ・八年級

歐洲南方天文台位於智利的帕瑞納爾觀測站日前成功地將甚大望遠鏡的4個主望遠鏡“串聯”,並將它們觀測到的影像信號整合為一個,堪稱目前世界最大的虛擬光學望遠鏡。

甚大望遠鏡是由歐洲南方天文台在智利阿塔卡馬沙漠中架設的。它共包括4個單獨的主望遠鏡,此次成功連接後,相當於形成了一個直徑達130米的“巨無霸”虛擬光學望遠鏡。

這個超級光學望遠鏡並不是表面上的簡單“串聯”,背後的關鍵技術是一種名為“干涉測量法”的技術,它將4個分望遠鏡的觀測信號進行整合,成為新的單一觀測影像。這樣望遠鏡的空間分辨率和變焦能力就會大大提高。

自2002年以來,帕瑞納爾觀測站的天文學家們就嘗試利用“干涉測量法”,將甚大望遠鏡的主望遠鏡連接,但最多時也只嘗試過將其中3個主望遠鏡以及4個小型輔助望遠鏡成功連接。去年3月,他們曾嘗試把4個主望遠鏡連接,但未成功。

-----廣告,請繼續往下閱讀-----

帕瑞納爾觀測站稱,此次“串聯”後各個儀器目前都工作正常。天文學家們將這次成功“串聯”稱作探尋宇宙秘密過程中的一個里程碑。

據介紹,甚大望遠鏡將向天文學界開放,在帕瑞納爾觀測站工作或者交流訪問的科研人員都可以利用其進行觀測。

原文出處:Largest virtual telescope operational in Chile[February 9, 2012]

-----廣告,請繼續往下閱讀-----
文章難易度
espa.taipei
12 篇文章 ・ 0 位粉絲
顯微攝影也可以是一門藝術!顯微鏡不是單單的工具而已,其實只要善加利用,也能變成一幅美麗的藝術作品!

0

2
0

文字

分享

0
2
0
地震之島的生存法則!921地震教育園區揭開台灣的防災祕密
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/20 ・4553字 ・閱讀時間約 9 分鐘

為什麼台灣會像坐在搖搖椅上,總是時不時地晃動?這個問題或許有些令人不安,但卻是我們生活在這片土地上的現實。根據氣象署統計,台灣每年有 40,000 次以上的地震,其中有感地震超過 1,000 次。2024年4月3日,花蓮的大地震發生後,台灣就經歷了超過 1,000 次餘震,這些數據被視覺化後形成的圖像,宛如台北101大樓般高聳穿雲,再次引發了全球對台灣地震頻繁性的關注。

地震發生後,許多外國媒體擔心半導體產業會受影響,但更讓他們稱奇的是,台灣竟然能在這麼大的地震之下,將傷害降到這麼低,並迅速恢復。不禁讓人想問,自從 25 年前的 921大地震以來,台灣經歷了哪些改變?哪些地方可能再發生大地震?如果只是遲早,我們該如何做好更萬全的準備?

要找到這些問題的答案,最合適的地點就在一座從地震遺跡中冒出的主題博物館:國立自然科學博物館的 921地震教育園區。

圖:跑道捕捉了地震的瞬間 / 圖片來源:劉志恆/青玥攝影

下一個大地震在哪、何時?先聽斷層說了什麼

1999年9月21日凌晨1點47分,台灣發生了一場規模7.3的大地震,震央在南投縣集集鎮,全台 5 萬棟房子遭震垮,罹難人數超過 2,400 人。其中,台中霧峰光復國中校區因車籠埔斷層通過,地面隆起2.6公尺,多棟校舍損毀。政府決定在此設立921地震教育園區,保留這段震撼人心的歷史,並作為防災教育的重要基地。園區內兩處地震遺跡依特性設置為「車籠埔斷層保存館」和「地震工程教育館」。

-----廣告,請繼續往下閱讀-----

車籠埔斷層保存館建於原操場位置,為了保存地表破裂及巨大抬升,所以整體設計不採用樑柱結構,而是由82根長12公尺、寬2.4公尺、重約10噸的預鑄預力混凝板組成,外觀為曲線造型,技術難度極高,屬國內外首見,並榮獲多項建築獎。而地震工程教育館保留了原光復國中受損校舍,讓民眾親眼見證地震的驚人破壞力,進一步強調建築結構與安全的重要性。毀損教室旁設有由園區與「國家地震工程研究中心」共同策劃的展示館,透過互動展示,讓參觀者親手操作,學習地震工程相關知識。

國立自然科學博物館地質學組研究員蔣正興博士表示,面積上,台灣是一個狹長的小島,卻擁有高達近4000公尺的山脈,彰顯了板塊激烈擠壓、地質活動極為活躍的背景。回顧過去一百年的地震歷史,從1906年的梅山地震、1935年的新竹-台中地震,到1999年的921大地震,都發生在台灣西部,與西部的活動斷層有密切關聯,震源位於淺層,加上人口密度較高,因此對台灣西部造成了嚴重的災情。

而台灣東部是板塊劇烈擠壓的區域,地震震源分佈更廣。與西部相比,雖然東部地震更頻繁,但由於人口密度相對較低,災情相對較少。此外,台灣東北部和外海也是地震多發區,尤其是菲律賓海板塊往北隱沒至歐亞板塊的隱沒地震帶,至沖繩海槽向北延伸,甚至可能影響到台北下方,發生直下型地震,這種地震因震源位於城市正下方,危害特別大,加上台北市房屋非常老舊,若發生直下型地震,災情將非常嚴重。

除了台北市,蔣正興博士指出在台灣西部,我們特別需要關注的就是彰化斷層的影響,該斷層曾於1848年發生巨大錯動。此外,我們也需要留意西南部的地震風險,如 1906 年的梅山地震。此兩條活動斷層距今皆已超過 100 年沒活動了。至於東部,因為存在眾多活動斷層,當然也需要持續注意。

-----廣告,請繼續往下閱讀-----

我們之所以擔心某些斷層,是因為這些區域可能已經累積了相當多的能量,一旦達到臨界點,就會釋放,進而引發地震。地質學家通常會沿著斷層挖掘,尋找過去地震的證據,如受構造擾動沉積物的變化,然後透過定年技術來確定地震發生的時間點,估算出斷層的地震週期,然而,這些數字的計算過程非常複雜,需要綜合大量數據。

挑戰在於,有些斷層的活動時間非常久遠,要找到活動證據並不容易。例如,1906年的梅山地震,即使不算久遠,但挖掘出相關斷層的具體位置仍然困難,更不用說那些數百年才活動一次的斷層,如台北的山腳斷層,因為上頭覆蓋了大量沉積物,要找到並研究這些斷層更加困難。

儘管我們很難預測哪個斷層會再次活動,我們仍然可以預先對這些構造做風險評估,從過往地震事件中找到應變之道。而 921 地震教育園區,就是那個可以發現應變之道的地方。

圖:北棟教室毀損區 / 圖片來源:劉志恆/青玥攝影

921 後的 25 年

在園區服務已 11 年的黃英哲擔任志工輔導員,常代表園區到各地進行地震防災宣導。他細數 921 之後,台灣進行的六大改革。制定災害防救法,取代了總統緊急命令。修訂了建築法規,推動斷層帶禁限建與傳統校舍建築改建。組建災難搜救隊伍,在面對未來災害時能更加自主應對。為保存文化資產,增設了歷史建築類別,確保具有保存價值的建築物得到妥善照料。

-----廣告,請繼續往下閱讀-----

最後,則是推行防災教育。黃英哲表示,除了在學校定期進行防災演練,提升防災意識外,更建立了921地震教育園區,不僅作為教育場所,也是跨部門合作的平台,例如與交通部氣象署、災害防救辦公室、教育部等單位合作,進行全面的防災教育。園區內保留了斷層線的舊址,讓遊客能夠直觀地了解地震的破壞力,最具可看性;然而除此之外,園區也是 921 地震相關文物和資料的重要儲存地,為未來的地震研究提供了寶貴的資源。

堪稱園區元老,在園區服務將近 19 年,主要負責日語解說工作的陳婉茹認為,園區最大的特色是保存了斷層造成的地景變化,如抬升的操場和毀壞的教室場景,讓造訪的每個人直觀地感受地震的威力,尤其是對於年輕的小朋友,即使他們沒有親身經歷過,也能透過這些真實的展示認識到地震帶來的危險與影響。

陳婉茹回憶,之前有爸媽帶著小學低年級的小朋友來參觀,原本小朋友並不認真聽講,到處跑來跑去,但當他看到隆起的操場,立刻大聲說這他在課本看過,後來便聚精會神地聽完 40 分鐘的解說。

圖:陳婉茹在第一線負責解說工作 / 圖片來源:921地震教育園區

除了每看必震撼的地景,園區也透過持續更新策展,邀請大家深入地震跟防災的各個面向。策展人黃惠瑛負責展示設計、活動規劃、教具設計等工作。她提到,去年推出的搜救犬特展和今年的「921震災啓示展」與她的個人經歷息息相關。921 大地震時的她還是一名台中女中的住宿生,當時她儘管驚恐,依舊背著腿軟的學姊下樓,讓她在策劃這些展覽時充滿了反思。

-----廣告,請繼續往下閱讀-----

在地震體驗平臺的設計中,黃惠瑛強調不僅要讓觀眾了解災害的破壞力,更希望觀眾能從中學到防災知識。她與設計師合作,一樓展示區採用了時光機的概念,運用輕鬆、童趣的風格,希望遊客保持積極心態。二樓的地震體驗平臺結合六軸震動臺和影片,讓遊客真實感受921地震的情境。她強調,這次展覽的目標是全民,設計上避免了血腥和悲傷的元素,旨在讓觀眾帶著正向的感受離開,並重視防災意識。

圖:地震體驗劇場 / 圖片來源:921地震教育園區

籌備今年展覽的最大挑戰是緊迫的時間。從五月開始,九月完成,為了迅速而有效地與設計師溝通,黃惠瑛使用了AI工具如ChatGPT與生成圖像工具,來加快與設計師溝通的過程。

圖:黃惠瑛與設計師於文件中討論設計/ 圖片來源:921地震教育園區

蔣正興博士說,當初學界建議在此設立地震教育園區,其中一位重要推手是法國地質學家安朔葉。他曾在台灣指導十位台灣博士生,這些博士後來成為地質研究的中堅力量。1999年921大地震後,安朔葉教授立刻趕到台灣,認為光復國中是全球研究斷層和地震的最佳觀察點,建議必須保存。為紀念園區今年成立20週年,在斷層館的展示更新中,便特別強調安朔葉的貢獻與當時的操場圖。

此外,作為 20 週年的相關活動,今年九月也將與日本野島斷層保存館簽署合作備忘錄(MOU),強化合作並展示台日合作歷史。另一重頭戲則是向日本兵庫縣人與自然博物館主任研究員加藤茂弘致贈感謝狀,感謝他不遺餘力,長期協助園區斷層保存館的剖面展品保存工作。

-----廣告,請繼續往下閱讀-----
右圖:法國巴黎居禮大學安朔葉教授。左圖:兵庫縣立人與自然博物館主任研究員加藤茂弘
/ 圖片來源:921地震教育園區

前事不忘,後事之師

盡力保存斷層跟受創校舍,只因不想再重蹈覆徹。蔣正興博士表示,921地震發生在車籠埔斷層,其錯動形式成為全球地質研究的典範,尤其是在研究斷層帶災害方面。統計數據顯示,距離車籠埔斷層約100公尺內,住在上盤的罹難率約為1%,而下盤則約為0.6%。這說明住在斷層附近,特別是上盤,是非常危險的。由於台灣主要是逆斷層活動,這一數據清楚告訴我們,在上盤區域建設居住區應特別小心。

2018年花蓮米崙斷層地震就是一個例證。

在921地震後,政府在斷層帶兩側劃設了「地質敏感區」。因為斷層活動週期較長,全球大部分地區難以測試劃設敏感區的有效性,但台灣不同,斷層活動十分頻繁。例如 1951 年,米崙斷層造成縱谷地震,規模達 7.3,僅隔 67 年後,在 2018 年再次發生花蓮地震,這在全球是罕見的,也因此 2016 年劃設的地質敏感區,在 2018 年的地震中便發現,的確更容易發生地表破裂與建築受損,驗證了地質敏感區劃設的有效性。

圖:黃英哲表示曾來園區參訪的兒童寄來的問候信,是他認真工作的動力 / 圖片來源:921地震教育園區

在過去的20年裡,921地震教育園區不僅見證了台灣在防災教育上的進步,也承載著無數來訪者的情感與記憶。每一處地震遺跡,每一項展示,都在默默提醒我們,那段傷痛歷史並未走遠。然而,我們對抗自然的力量,並非源自恐懼,而是源自對生命的尊重與守護。當你走進這座園區,感受那因地震而隆起的操場,或是走過曾經遭受重創的教室,你會發現,這不僅僅是歷史的展示,更是我們每一個人的責任與使命。

-----廣告,請繼續往下閱讀-----

來吧,今年九月,走進921地震教育園區,一起在這裡找尋對未來的啓示,為台灣的下一代共同築起一個更堅固、更安全的家園。

圖:今年九月,走進921地震教育園區 / 圖片來源:劉志恆/青玥攝影

延伸閱讀:
高風險? 家踩「斷層帶、地質敏感區」買房留意
「我摸到台灣的心臟!」法國地質學家安朔葉讓「池上斷層」揚名國際
百年驚奇-霧峰九二一地震教育園區|天下雜誌

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
3

文字

分享

0
0
3
體循環與肺循環為何非要這樣連不可?--《科學月刊》
科學月刊_96
・2015/12/29 ・4238字 ・閱讀時間約 8 分鐘 ・SR值 516 ・六年級

陳妙嫻/畢業於臺大教育學程;任教於板橋高中;加入思辨教學團隊後,才發現竟然可以對著生物課本問出這麼多的問題,非常開心。

「左心室、主動脈、小動脈、微血管、小靜脈、右心房……」你或許曾為了應付考試背誦過這段文字,但可能從沒想過血管、心臟、所有器官為什麼非得這樣接。

「左心室、主動脈、小動脈、微血管、小靜脈、右心房⋯⋯」即使是將近二十年前的事情了,我還記得當初上生物課時,老師要全班一起朗誦三次、好加強記憶的情景。體循環、肺循環是中學生物課程的重點,也是學生最頭痛的地方之一。看看那張複雜的路線圖,還真不知道該從哪個構造認識起呢!本文要挑戰學生們老是抱怨「生物有好多要死背」的刻板印象,以理解和推理的方式,輕鬆地認識複雜的血管線路!

6216013369_7d8de01d3b_o
人體循環系統。 Source: flickr

-----廣告,請繼續往下閱讀-----

血管和器官為什麼這麼相連

你一定很熟悉這樣的考題:若護士從手臂靜脈注射藥物,循環至發炎處會經過哪些血管?然後賭氣地想,從手臂長一根血管通到發炎處不是很好嗎?為何要繞來繞去?這是一個非常好的反問──血管和器官之間為什麼要這樣相連?

循環是以心臟搏動為動力、血管為通路、血液為載體,將細胞所需的養分和氧氣送到器官。器官相連的直接想法,就是心臟將血液打出來後,先到第一個器官,再到第二個器官、第三個⋯⋯這樣不是很簡單嗎?

但是這個安排不太理想。第一,排在前面的器官比較幸運,可以獲得比較多的養分或氧氣;而後面的器官,甚至還會「吃到」前面排放的廢物!第二,這種線路有個致命的危險,只要一個地方斷掉,就全部完蛋了!第三,進入器官之後,血管會分支成更多的微血管,此時血壓下降、血流變慢。若血液要再流到下一個器官,恐怕會有血壓不足的問題。

器官一個接一個的相連方法,稱作「串聯」。若器官以「並聯」的方式相連,就可以解決上述問題。這就是為什麼從血液從心臟打出來之後,要經過「主動脈、小動脈、微血管、小靜脈、右心房⋯⋯」,這個過程稱作「體循環」。若考慮到人類體型的限制,並聯的方式會有一些變形。離開主動脈後,先分成四個分支;其中三個分支往上至頭、頸、上肢,最後一個分支往下到軀幹、下肢;而各個分支到該器官部位時,再分支成較小動脈進入器官內。

-----廣告,請繼續往下閱讀-----

2000px-Resistors_in_parallel.svg
如果單純把每個器官當作電阻的話,心臟是電池而血液是電流。若器官從「串聯」改成「並聯」的方式,則所有器官會獲得相同的血壓,且「等效電阻」將會變小,血液的流速將會加快,但這樣你的心臟所負擔的功率也會大增!圖為並聯電路。Source: wiki

引入特別的器官—肺

從全身器官回流的血液,應該缺少氧氣和富含二氧化碳。此時考慮引進肺這個器官,將氧氣加入血液中,且排出二氧化碳。肺臟也與其他器官並聯,這樣好嗎?

並聯會使得肺臟每次只能清除少部分的血液,而當充氧血從肺臟流出時,卻必須跟其他器官的少氧血混在一起。因此,若將肺臟放在大靜脈的位置,似乎能解決上述問題。也就是說,讓肺臟跟其他器官串聯,但如此一來,又有串聯產生的問題。然而在肺臟並不存在第一、二個問題,真正有困難的是血壓不足。那麼,就在肺臟前面再加一個幫浦,推動血液。

可是人並沒有兩個心臟啊?其實我們雖然只有一個心臟,卻可說具有兩個幫浦!這兩個幫浦就是人類心臟中的左心和右心。當心臟收縮時,充氧血從左心打出,流經體循環,少氧血再流回右心;而同時間,少氧血從右心打出,流經肺臟加氧、排除二氧化碳,充氧血流回左心,如此循環不已。

-----廣告,請繼續往下閱讀-----

小腸和腎臟該怎麼與其他器官相連

除了肺臟是特殊的器官外,小腸和腎臟也與身體的代謝有關。前者負責將養分(如葡萄糖)加入血液中,後者負責將含氮廢物排出體外。那麼,小腸和腎臟該怎麼與器官相連呢?

在思考小腸和腎臟的位置時,先回溯肺臟的情況。肺臟的功能為加氧氣和排除二氧化碳,前者與小腸的吸收養分功能相當,後者則與腎臟排除含氮廢物類似。我們以兩個理由排除了並聯的可能。第一,從肺臟出來的充氧血,流至靜脈時,會與少氧血混合;第二,每次只能排出身體部分的二氧化碳,效率較差。

我們將第一個理由套用到小腸中──從小腸出來的血液,充滿了各種養分,如葡萄糖;而流至靜脈時,會跟缺乏養分的血液混合,但這樣的混合到底有什麼問題?混合的結果是使該溶質的濃度下降,但是該物質的莫耳數(或顆粒數)並沒有減少。也就是說,使用並聯的方式來加氧或養分,都不會影響身體獲得氧或養分的「量」。所以說,小腸和其他器官是並聯就可以了,這樣還能避免血壓或其他串聯的問題。

不過,這麼反駁不是自己打自己的臉了嗎?文章前頭還振振有詞地說明肺臟必須串聯的理由。身體還因此多了一個幫浦(右心),為的就是要解決血壓的問題。看看小腸的例子,似乎也不需要嘛。

-----廣告,請繼續往下閱讀-----

但仔細想想,氧氣和養分的情況其實並不相同。氧氣從肺泡至肺泡微血管、組織微血管和組織細胞間的交換,是以擴散的方式進行。而擴散的快慢與兩側氧分壓的差異有關,差異越大,擴散速率越快。因此,在並聯的情形下,充氧血與少氧血混合後又再循環至肺,會減少微血管和肺泡間的分壓差異,使氧氣擴散的速率下降。而全身器官也有相同情形。另外,由於氧氣對水的溶解度很低,人體以血紅素來運輸氧氣。然而血紅素與氧氣的結合率,與氧分壓的高低有關,當氧分壓上升時,血紅素與氧氣的結合率也會上升;因此,若充氧血和少氧血混合時,也可能造成氧合血紅素釋出氧氣,使氧氣的運輸量減少。

小腸上皮細胞是以主動運輸的方式吸收葡萄糖,因此吸收速率無關乎兩側的濃度差異。再者,身體中有嚴密控制血糖含量的機制。當血糖過低或過高時,可藉由肝醣的分解或合成來調控,因此「充養血」和「少養血」混合,造成的問題似乎沒有那麼嚴重。

在消化系統的循環中,另外有個有趣的部分。也就是「肝門循環」中,從小腸離開的靜脈,並沒有直接匯集到下大靜脈,而是由肝門靜脈進入肝臟。也就是說,小腸與肝臟串聯!

為什麼小腸要與肝臟串聯呢?方才提到血糖的調節與肝臟有關,因此由小腸吸收的葡萄糖,先送到肝臟儲存,以維持血糖的恆定;另外,肝臟有解毒和代謝的功能,由消化器官吸收的有害物質,會先送到肝臟去解毒;而胺基酸也會送至肝臟,作為製造血漿蛋白的原料。肝臟等於是消化系統的後端處理器官,在消化道分解後的養分,先送至肝臟做初步的處理,能藉此調節養分在血液中的含量。

-----廣告,請繼續往下閱讀-----

那麼,有關串聯的困難又怎麼解決呢?肝臟就在小腸之後,自然沒有得不到養分的問題。肝臟有自己的肝動脈,可送來充足的氧氣;而血管內的平滑肌若接受神經或激素的影響,也可調節局部血壓,使血流推進至肝臟的微血管。

如果血管可藉由平滑肌收縮調整局部血壓,使得器官彼此之間可以串聯,那麼前面為什麼又說器官必須彼此並聯呢?可能的原因是,大規模的局部血壓調節可能較為複雜,雖然還是辦得到,卻不如並聯來得容易。而且串聯的其他問題──後面的器官無法獲得充足的養分和氧氣、後面的器官「吃到」前頭的廢物、一個地方斷掉就全數完蛋,依舊無法解決。若以體循環之並聯為架構,可以一次解決所有問題。而若有特殊的需求或功能,局部器官串聯也並非完全不可能。

肺臟為何非串聯不可

既然一個器官的血壓問題可以由靠血管解決,那麼肺臟為什麼不行?之前提過,除了血壓不足外,肺臟並沒有其他因串聯引伸出來的問題。

或許可以從以下現象獲得啟示:在脊椎動物中,呼吸器官與其他器官的串聯關係,從魚類就存在了。而魚的心臟只有一個幫浦在鰓之前,從鰓流出的血液接下來會流向全身器官(體循環);但是在流向體循環前,並沒有流回心臟再度加壓,這樣的循環稱之為單環。不過在某些魚類中,體循環之前有由動脈特化而來的「輔助心臟」,以幫助血液流入身體的器官,但輔助心臟的收縮能力沒有心臟那麼強。由這個現象可知,鰓的循環對血壓的要求高於身體其他器官,後來脊椎動物登陸後才逐漸扭轉。至於為什麼鰓需要較高的血壓,有可能是因為呼吸器官為了增加氣體交換的速率,因此有廣大的表面積,因而具規模較其他器官大的微血管網,需要較大的推動力。另外,陸生脊椎動物要將來自全身器官的血液推送至肺,和僅來自小腸的血液推送至肝臟相比,兩者的血量應該有滿大的差距,所需的推動力也不一樣。

-----廣告,請繼續往下閱讀-----

總而言之,肺臟之所以要串聯的原因,主要可能是交換和運輸氧氣的限制;而串聯又會造成血壓不足的問題,並且無法用動脈解決,則必須使用比動脈更強而有力的心臟推動。

腎臟也是體循環的一支

若腎臟與其他器官並聯,那麼每次循環都只能排除部份的含氮廢物,效率不彰。因此要以串聯才能解決。不過,就人體的構造來看,腎臟僅是體循環的一支,與其他器官並聯。

較有可能的原因是,在魚類中,排泄含氮廢物的器官主要是鰓,腎的功能則與水份和鹽類的恆定有關。若是考慮到滲透壓的恆定,其實沒有串聯的必要。因此,腎臟的並聯可能是演化的痕跡。再者,前面的討論發現串聯造成的問題較多,而肺臟從魚類開始就已經與其他器官串聯。可由此推測氧氣的取得造成的演化壓力較大,而丟棄含氮廢物的效率,對生存的影響沒有大到非串聯不可的程度。

不過脊椎動物登陸後,丟棄含氮廢物的壓力就增加了。因為環境中缺乏水分,廢物必須在體內暫存一段時間才能丟棄。也無法像魚類一樣,直接靠呼吸器官擴散。但此時腎臟已經與器官並聯,因為這個「歷史共業」,登陸後的脊椎動物將氨轉變成尿素或尿酸,讓毒性降低,彌補效率不彰造成的毒性問題。

-----廣告,請繼續往下閱讀-----

學習科學的方法

本文示範了一種學習科學的方法,也就是──對現象問問題、提出可能的看法、反駁、再提出可能的理由、再反駁⋯⋯直到獲得到暫時的答案為止。學習科學時,重要的是要成為主動的思考者,而非被動的接受者;才能以理解代替死背,從諸多生物學細節中理出一種「看的方法」。而這個看的方法,其實是達爾文催生現代生物學的關鍵──演化。

備註: 本文依照人本創新教學專案小組教案〈血液循環之道〉施行。

2015-02-cover〈本文選自《科學月刊》2015年2月號〉

延伸閱讀:
體內的推理
中樞神經系統中的淋巴管

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3700 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。