0

0
0

文字

分享

0
0
0

蜻蜓的100種生活方式 ——《飛啊!蜻蜓》

PanSci_96
・2017/11/25 ・1984字 ・閱讀時間約 4 分鐘 ・SR值 435 ・四年級

文/槐真史|厚木市鄉土資料館研究員
譯/張東君

空中生活:蜻蜓

空中的蜻蜓,圖/by Chanzj@pixabay。

具有大大的眼睛、透明膠帶般的翅膀和細長腹部的蜻蜓,是很擅長在空中飛行的昆蟲。只有活生生的蜻蜓才具有的眼睛及身體的鮮豔色彩,和優雅的飛行翱翔姿態,讓每個看到的人都覺得感動——那箇中滋味只有看過蜻蜓的人才能體會。

雖然蜻蜓是在空中飛行的昆蟲,但在幼蟲時期,幾乎所有蜻蜓的幼蟲(水蠆)都是生活在水中,這就是為什麼常常可以在水邊看到蜻蜓。我們經常可以看到雄蜻蜓在同一場所來回不停飛來飛去,然後停在固定的樹枝前端等待的樣子,這是因為雄蜻蜓擁有自己的領域,牠們會在那裏等待雌蜻蜓。此外,也可以看到雄蜻蜓驅趕進入自己領域的其他雄蟲或是他種蜻蜓的行為;在領域中相會的雌、雄蜻蜓則會交配、產卵。

水中生活:水蠆

蜻蜓的幼蟲——水蠆,圖/by André Karwath aka Aka@wikipedia commons。

依物種的不同,水蠆的棲息場所也是五花八門:有些是抓著水中的植物莖或是漂浮物等,也有些會潛到泥中。水蠆是以小昆蟲等為食的肉食性動物,會花上幾個月到幾年的時間,經過八至十五次左右的蛻皮來讓身體長大。

在水中生活的水蠆,有著和成蟲不同的身體結構與機制,活動方式也不一樣:以呼吸為例,成蟲是以位於胸部或腹部、稱為「氣門」的管狀器官呼吸;水蠆則分成從腹部的前端讓水出入、以直腸呼吸,或是以位於腹部前端的三個像鰓般的器官呼吸的種類。

-----廣告,請繼續往下閱讀-----

在水中的移動,除了步行之外,還有把水貯存在直腸中,一口氣把水噴出的方式移動,或是扭動位於腹部前端的鰭或是身體來移動等。不同於成蟲以飛行來追捕獵物,水蠆是靜靜的坐等獵物自己上門——等獵物靠得夠近,再立刻伸出能夠伸展到跟自己的身體差不多長度的大顎加以捕捉。

變身時刻:羽化

一隻剛從幼蟲殼中蛻出的藍晏蜓(Aeshna cyanea),圖/by Böhringer Friedrich@wikipedia commons。

當身體已經長到夠大的時候,位於胸上的翅芽(會成為成蟲翅膀的部分)就會逐漸鼓脹,這就是羽化的信號。雖然羽化的場所會因蜻蜓的種類而異,不過季節大多數是集中在初夏。細蟌、綠胸晏蜓和白刃蜻蜓這類蜻蜓的羽化中意場所,是突出於水面上的植物的莖、葉,或木樁、枯枝、倒木等;而像春蜓類的蜻蜓,除在石頭或水泥護岸之外,也有那種只把身體從水面伸出一半左右就羽化的種類。除了在水邊,也有像無霸勾蜓那般在離開水邊幾公尺處的建築物壁面或是樹幹羽化的種類。

雖然羽化的經過就像這本繪本所描繪的一樣,不過我還是想要再做一點補充:即將羽化的水蠆,雖然會把頭和胸部從水中探出來靜靜的待著,這不僅是在判斷羽化場所跟氣溫等條件是否良好,也是配合羽化,將呼吸方式從水中改變成在空中呼吸的重要時期。

隨著羽化過程的進展,翅膀逐漸完全伸展,這時腹部前端就會流出數滴液體——這是用來把縮在一起的翅膀展開所用的體液,在翅膀完全伸展後就不再需要。當液體掉落後,蜻蜓的腹部也會變得纖細,成為神氣的蜻蜓。

-----廣告,請繼續往下閱讀-----

哪裡可以看到綠胸晏蜓呢?

綠胸晏蜓,圖/by 云中鸟@flickr。

這本繪本的主角綠胸晏蜓,是從日本北海道到沖繩縣之間,在各地的池塘和水田等都能夠看見(台灣的話,則可見於台北陽明山國家公園、花蓮太魯閣國家公園一帶的池塘及水邊。編按:台灣其實也蠻常見的喔,另外出現時間與日本不同,大約在9月到隔年3月左右)。牠們在 4~11 月左右出現,夏天以後,雄蜓會在水岸飛來飛去巡邏。雖然看起來像是在守護自己的領域,但當巡邏路線有人經過的時候,牠們的飛行路線就會變得相當迂迴。

由於綠胸晏蜓的眼力很好,所以應該也會把拿著捕蟲網的人看得很清楚吧。產卵是在雌、雄蜻蜓相連在一起時進行,把卵產在水中植物的莖或是漂浮物上——只要是柔軟的材質,即使是像保麗龍等人工製品,雌蜓也能毫不猶豫的產卵。孵化出來的水蠆會抓住水中植物的莖,有時候也會緩慢的在水底行走,牠們在感覺到危險的時候,會從腹部前端噴射出水來逃逸。

水對蜻蜓的影響很大,只要水質惡化或是水源地消失時,蜻蜓很快就會消失無蹤。不過由於成蟲的移動力很高,所以只要再重新建造水池環境,牠們就會立刻飛回來定居。覺得「生活周遭好像沒有蜻蜓呢!」的你,可以注意看看學校的池塘、公園的水灘,或放置在庭院中有雨水堆積的容器附近,難道都沒有蜻蜓造訪嗎?沒有從水面偷偷探出來窺伺的水蠆嗎?在某處,一定有著在等待你的蜻蜓喔。

本文為繪本《飛啊!蜻蜓》的導讀,出版社為青林出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
1

文字

分享

0
0
1
【成語科學】噤若寒蟬:為什麼蟬在冬天不會叫?
張之傑_96
・2023/10/18 ・1085字 ・閱讀時間約 2 分鐘

章老師寫這篇「噤若寒蟬」時,適逢 6 月初,住在美國東部的同學傳來十七年蟬的影片。一般的蟬,幼蟲在土裡生活 1-5 年;十七年蟬的幼蟲(若蟲)卻在地下生活 17 年!今年的大發生過後,下次是 2038 年。

十七年蟬大發生時,數以億計的蟬傾巢而出,鳴聲震天,排泄物落如雨下,這時人們出門都要打傘,在戶外舉行的婚禮、球賽和其他活動均被迫延期或改在室內。

十七年蟬大發生時,數以億計的蟬傾巢而出,鳴聲震天。圖/giphy

不過喧鬧不出 3 個星期,十七年蟬交配、產卵後就會死去,新的一輪生命週期又開始了。

蟬屬於半翅目、蟬科。一般的蟬,不會像十七年蟬般集體行動。到了夏季,幼蟲陸續的從土裡鑽出來,然後爬到樹上,抓著樹幹,脫掉蟬殼(蟬蛻),羽化為成蟲。蟬的成蟲壽命很短,通常不到一個月。雄蟬羽化出來後,一俟翅膀硬了,就開始大聲鳴叫,用來吸引雌蟬。雌蟬沒有發聲器官,不會鳴叫。

-----廣告,請繼續往下閱讀-----
日本暮蟬。圖/wikipedia

雄蟬的腹部有一對鳴器,裡面有發音肌、鼓膜和共鳴室。雄蟬求偶鳴叫時,發音肌會不停的收縮,使鼓膜上下振動,有如打鼓般發出聲響;共鳴室則有如擴音器,使鳴聲擴大。

蟬的發聲,和直翅目的蟋蟀、螽斯、蝗蟲不同,牠們以磨擦翅膀發聲。蟋蟀、螽斯的翅基部,有一條橫脈,上頭有齒,稱為「音銼」,左右翅磨擦,就會發聲。蝗蟲則是利用牠的腿節內側和前翅縱脈,互相摩擦而發聲。

當雌蟬被雄蟬的鳴聲吸引過來,交配過後,雌蟬將卵產在小樹枝上,夏季時大約經過一個月就可以孵化成幼蟲。接下去,幼蟲落到地面,鑽入土中,吸取植物根部的養分,經過若干年(視種類而異),才能長大成熟,然後鑽出地面,羽化為成蟲。

蟬經過若干年才能長大成熟,羽化為成蟲。圖/giphy

蟬是夏季活動的動物,從初夏到初秋,蟬的幼蟲陸續鑽出地面,羽化為成蟲,使得整個夏季都可聽到蟬聲。秋季才羽化的蟬,通常鳴聲較弱,如果天氣突然轉冷,就會凍得不再鳴叫,這個自然現象衍生為成語「噤若寒蟬」,比喻因某種原因而不再出聲。讓我們造兩個句吧。

-----廣告,請繼續往下閱讀-----

極權國家沒有言論自由,人們噤若寒蟬,不敢隨便發表意見。

爸爸嚴肅的眼神一掃過來,我們就噤若寒蟬,再也不敢吵鬧。

張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

1
0

文字

分享

0
1
0
【成語科學】蜻蜓點水:所有蜻蜓都會點水產卵嗎?蜻蜓和豆娘怎麼分?
張之傑_96
・2023/08/04 ・1367字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

蜻蜓的幼蟲稱為水蠆,是環境指標生物之一。如果水中可以找到水蠆和蜉蝣幼蟲,表示水質沒有受到污染。如果只找到水蠆,沒找到蜉蝣幼蟲,表示水質輕度污染。如果找不到水蠆,那就表示中度或重度污染。

藍晏蜓 Aeshna cyanea (歐洲一種晏蜓科蜻蜓)的水蠆。圖/wikimedia

如今平地的河川或湖泊大多遭到中度或重度污染,難怪蜻蜓已難得一見。章老師小時候可不是這樣,那時溪流大多水質清澈,連最不耐受污染的蜉蝣幼蟲也到處都是,孩子們稱蜉蝣幼蟲為「水蟲」,還抓來當魚餌呢。

姬蜉蝣幼蟲。圖/嘎嘎昆蟲網

那時候,到了夏季,白天蜻蜓和豆娘在居家附近出沒。到了夜晚,拖著兩根長尾鬚的蜉蝣,因趨光性飛到紗窗上,有時飛進屋裡。這些昆蟲隨處可見,一點兒也不稀奇。

蜉蝣的幼蟲在水中約生活一年,羽化為成蟲,只能再活幾小時到幾天。成語「朝生暮死」,指的就是蜉蝣。其實,如果連同連牠們的幼蟲期,在昆蟲中壽命並不算短。

-----廣告,請繼續往下閱讀-----

話題拉回蜻蜓。到了夏季,蜻蜓在水面上飛行時,常用尾部輕觸水面,古人不明白其用意,於是產生了「蜻蜓點水」這個成語,用來比喻做事膚淺或不深入。讓我們試著造兩個句吧。

讀書要多溫習多思考,不能只是蜻蜓點水。

學習要踏踏實實,不能蜻蜓點水敷衍了事。

蜻蜓點水產卵,使得水面激起漣漪。圖/嘎嘎昆蟲網

其實對蜻蜓來說,點水是為了產卵。蜻蜓的幼蟲水蠆,在水裡生活 1-2 年,長大後爬出水面,羽化成蜻蜓。蜻蜓和豆娘的產卵方式大致分為兩類,一類產在水生植物上,一類邊飛邊把卵產在水裡。古人所觀察到的蜻蜓點水,指的就是後者。

棋紋鼓蟌將卵產在腐敗的枯葉或枯枝上。圖/嘎嘎昆蟲網

昆蟲綱的蜻蛉目,包含蜻蜓和豆娘兩類,兩者的形態和習性相近。那麼蜻蜓和豆娘怎麼區分?蜻蜓的身體較為粗壯,兩個複眼距離較近,停棲時翅膀平展。豆娘的身體較為纖細,頭部似啞鈴狀,兩側為明顯的複眼,停棲時上下翅疊合在一起。兩者的幼蟲都稱作水蠆,以捕捉孑孓、小魚、蝌蚪或其他水生昆蟲為食。
蜻蜓和豆娘的幼蟲屬於肉食性,成蟲也是。蜻蜓體型粗壯,除了捕食小型的昆蟲,也捕食蒼蠅、蜜蜂、蝴蝶、蛾、蟬等較大型的昆蟲,部分甚至捕食魚類。豆娘體型較小,飛行速度較慢,以捕食體型小的蚊、蠅和蚜蟲、介殼蟲、木蝨、飛蝨等為主。

由圖可見豆娘的啞鈴狀頭部(上)與蜻蜓距離較近的複眼(下)。圖/台北市立動物園
張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。