0

0
0

文字

分享

0
0
0

蜻蜓

c7seagirl
・2011/11/27 ・331字 ・閱讀時間少於 1 分鐘
相關標籤: 蜻蜓 (7)

 

 

小蜻蜓˙大眼睛
視力不是一點零
敵人朋友分不清
想要幫牠配眼鏡
不知道
可行不可行

小蜻蜓˙身體輕
樹枝上頭停一停
這裡停停那裡停停
換來換去沒耐性
都是這樣
輕輕的停一停
輕輕的停一停
所以牠的名字叫
蜻蜓

-----廣告,請繼續往下閱讀-----
文章難易度
c7seagirl
10 篇文章 ・ 0 位粉絲

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
【成語科學】蜻蜓點水:所有蜻蜓都會點水產卵嗎?蜻蜓和豆娘怎麼分?
張之傑_96
・2023/08/04 ・1367字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

蜻蜓的幼蟲稱為水蠆,是環境指標生物之一。如果水中可以找到水蠆和蜉蝣幼蟲,表示水質沒有受到污染。如果只找到水蠆,沒找到蜉蝣幼蟲,表示水質輕度污染。如果找不到水蠆,那就表示中度或重度污染。

藍晏蜓 Aeshna cyanea (歐洲一種晏蜓科蜻蜓)的水蠆。圖/wikimedia

如今平地的河川或湖泊大多遭到中度或重度污染,難怪蜻蜓已難得一見。章老師小時候可不是這樣,那時溪流大多水質清澈,連最不耐受污染的蜉蝣幼蟲也到處都是,孩子們稱蜉蝣幼蟲為「水蟲」,還抓來當魚餌呢。

姬蜉蝣幼蟲。圖/嘎嘎昆蟲網

那時候,到了夏季,白天蜻蜓和豆娘在居家附近出沒。到了夜晚,拖著兩根長尾鬚的蜉蝣,因趨光性飛到紗窗上,有時飛進屋裡。這些昆蟲隨處可見,一點兒也不稀奇。

蜉蝣的幼蟲在水中約生活一年,羽化為成蟲,只能再活幾小時到幾天。成語「朝生暮死」,指的就是蜉蝣。其實,如果連同連牠們的幼蟲期,在昆蟲中壽命並不算短。

-----廣告,請繼續往下閱讀-----

話題拉回蜻蜓。到了夏季,蜻蜓在水面上飛行時,常用尾部輕觸水面,古人不明白其用意,於是產生了「蜻蜓點水」這個成語,用來比喻做事膚淺或不深入。讓我們試著造兩個句吧。

讀書要多溫習多思考,不能只是蜻蜓點水。

學習要踏踏實實,不能蜻蜓點水敷衍了事。

蜻蜓點水產卵,使得水面激起漣漪。圖/嘎嘎昆蟲網

其實對蜻蜓來說,點水是為了產卵。蜻蜓的幼蟲水蠆,在水裡生活 1-2 年,長大後爬出水面,羽化成蜻蜓。蜻蜓和豆娘的產卵方式大致分為兩類,一類產在水生植物上,一類邊飛邊把卵產在水裡。古人所觀察到的蜻蜓點水,指的就是後者。

棋紋鼓蟌將卵產在腐敗的枯葉或枯枝上。圖/嘎嘎昆蟲網

昆蟲綱的蜻蛉目,包含蜻蜓和豆娘兩類,兩者的形態和習性相近。那麼蜻蜓和豆娘怎麼區分?蜻蜓的身體較為粗壯,兩個複眼距離較近,停棲時翅膀平展。豆娘的身體較為纖細,頭部似啞鈴狀,兩側為明顯的複眼,停棲時上下翅疊合在一起。兩者的幼蟲都稱作水蠆,以捕捉孑孓、小魚、蝌蚪或其他水生昆蟲為食。
蜻蜓和豆娘的幼蟲屬於肉食性,成蟲也是。蜻蜓體型粗壯,除了捕食小型的昆蟲,也捕食蒼蠅、蜜蜂、蝴蝶、蛾、蟬等較大型的昆蟲,部分甚至捕食魚類。豆娘體型較小,飛行速度較慢,以捕食體型小的蚊、蠅和蚜蟲、介殼蟲、木蝨、飛蝨等為主。

由圖可見豆娘的啞鈴狀頭部(上)與蜻蜓距離較近的複眼(下)。圖/台北市立動物園
-----廣告,請繼續往下閱讀-----

0

1
0

文字

分享

0
1
0
雌蜻蜓如何躲避不想面對的追求者?未讀未回的終極應用技「裝死」
胡芳碩_96
・2018/04/11 ・1519字 ・閱讀時間約 3 分鐘 ・SR值 488 ・五年級

前陣子網路上出現很多關於「雌蜻蜓會裝死來躲避雄蜻蜓性騷擾」的文章、連J.K.羅琳都發了相關的Twitter,這個梗其實是出自於蘇黎世大學的 Rassim Khelifa 博士 2017 年 4 月發表於 Ecology 的短訊,標題翻成中文大概是:

「透過裝死來躲避雄性的霸王硬上弓:蜻蜓對於極端性衝突的解決辦法」。 (Faking death to avoid male coercion:extreme sexual conflict resolution in a dragonfly.)

到底這個短訊是在說什麼呢?研究者又是如何發現雌蜻蜓有這樣的行為的呢?先讓我們從頭開始說起吧!

蜻蛉目的交配競爭

蜻蛉目(Odonata)在交配後時常會在附近馬上產卵,這時多數種類的雄蟲會在雌蟲產卵時,在雌蟲上方巡弋以護衛雌蟲,防止其他雄蟲來嘗試與該隻雌蟲交配;也有些種類的蜻蜓雄蟲,在雌蟲產卵時,會持續的用攫握器抓住雌蟲,以防止其他雄蟲來把雌蟲搶走。

在產卵時,攫握器還抓著的脛蹼琵蟌(Copera marginipes)。

-----廣告,請繼續往下閱讀-----

而在這篇研究報告中卻發現,天藍晏蜓Aeshna juncea)的雄蟲沒有護衛的行為,在交配完後會直接飛離;雌蟲會透過裝死的方式來躲避其他雄蟲的性騷擾。

交配中的天藍晏蜓。圖/ wiki

研究的契機其實是起源於 Dr.Khelifa 所屬的實驗室的另一個關於蜻蜓稚蟲對溫度反應的研究;由於這個研究需要去阿爾卑斯採集蜻蜓卵,而採卵需要將雌蟲抓起來、將腹部插入水中才能促使雌蟲產卵,因此在當時他花了非常多的時間在池塘邊捕撈正要產卵的雌蟲。 某天,Dr.Khelifa觀察到了一個有趣的現象:在產卵的天藍晏蜓雌蟲發現在空中的雄蟲時,會飛離原本的產卵環境並墜落到地面上。當時研究者猜測雌蟲可能是無意識甚至是已經死亡,而就在他靠近這隻雌蟲時,神奇的事情發生了:雌蟲迅速飛離剛剛墜落的地點。於是Dr.Khelifa就懷疑,這種晏蜓的雌蟲難不成是透過裝死行為來躲避雄蟲的性騷擾嗎?

正在護衛雌蟲產卵的霜白蜻蜓 中印亞種(Orthetrum pruinosum neglectum)。

-----廣告,請繼續往下閱讀-----

觀察發現:超過八成會雌蟲會「裝死」

Dr.Khelifa 選了兩個地點來做實驗,實驗過程中總共紀錄了 35 隻產卵的個體,其中有 31 隻(88.6%)有裝死來躲避雄蟲的行為,而另外4隻沒有墜落裝死而繼續飛的雌蟲都被雄蟲攔截交配了。墜落的 31 隻個體中,有 22 隻(71%)的墜落地點是灌木叢及茂密的草叢中,另外 9 隻(29%)則墜落在空曠的地點。作者也同時觀察了27隻墜落的雌蟲個體,發現其中有 21 隻(77.7%)在墜落後,成功的欺騙雄蟲,讓雄蟲放棄飛離。

天藍晏蜓雌蟲裝死的過程圖。(點圖放大)圖/Rassim Khelifa

為檢測雌蟲是否真的為無意識狀態,作者也嘗試用手去抓墜落的雌蟲,在嘗試用手抓 31 隻個體後,有 27 隻(87%)成功的逃走了,結果支持裝死中的雌蟲仍是有意識的狀態且能躲避掠食者的攻擊。 這種為了同種異性而裝死的行為在動物界中並非首例,但仍不常見,過往僅在一種蜘蛛、兩種食蟲虻及一種螳螂被記錄過,這種行為被認為是擴展適應(exaptation)的結果。在過往的案例中,這種裝死的行為都只在節肢動物中被記錄(好啦其實我覺得人也是),究竟是調查過少、或是這種行為本身就不容易被觀察到,仍需後續的研究來證明。

原文亦刊載於作者粉絲頁蟲言蟲語&生態筆記,原文為《已讀不回算什麼,裝死才是王道》。

-----廣告,請繼續往下閱讀-----

參考資料:

-----廣告,請繼續往下閱讀-----
胡芳碩_96
6 篇文章 ・ 8 位粉絲
國立中興大學昆蟲學系畢業,現任臺灣研蟲誌編輯。研究興趣主要為隱翅蟲科 (Staphylinidae) 的系統分類學及擬鍬形蟲科 (Trictenotomidae) 之生物學等。研究文章發表於國內外各大期刊。