0

4
2

文字

分享

0
4
2

熱力學第二定律萬歲:能量從哪裡來?又往哪裡去?——《詩性的宇宙》

PanSci_96
・2017/11/19 ・3481字 ・閱讀時間約 7 分鐘 ・SR值 569 ・九年級

這裡有必要檢視一下,這種壯闊的物理理論構思,在生物實務作用中如何施展。地球此處的生命,以一種稱為腺苷三磷酸(adenosine triphosphate)的分子(縮寫為 ATP),做為基本的動力電池。這裡我們所說的「電池」從廣義來看,意指某種能儲存自由能量供後續使用的事物。

ATP的結構。source:wikimedia

設想 ATP 是種受壓擠的彈簧,那麼它可以在壓力釋開時彈開,使用它的能量來做有用的運用。結果也確實有用:儲存在 ATP 裡的自由能量,用來收縮肌肉、運輸分子和細胞到全身各處、合成 DNA 和 RNA 與蛋白質,經由神經細胞發送信號,還有其他不可或缺的生化機能。生物體能四處移動並且自我存續,ATP 扮演了關鍵角色。薛丁格也點出,這兩項能力就是生命的定義特徵。

能量從 ATP 釋出,通常發生在有水(H2O)的情況下。ATP 的三磷酸各含一顆磷原子(P),周圍是氧原子(O),見下頁圖左側——當中一個磷酸從 ATP 分離出來,我們就剩下腺苷二磷酸(adenosine diphosphate, ADP)。接著該磷酸鹽便與附近水分子的一顆氧原子連接,而剩下的 OH 便會與 ADP 結合。

圖/由作者提供。

最後這些產物的總能量,低於原始的 ATP 分子;因此該歷程同時釋出自由能量(用來進行某種有用的生化功能)以及無序的能量(熱)。所幸,ATP 是種可充電的電池,透過身體接著使用外來能源,好比陽光或糖,把磷酸鹽和 ADP 轉換回水和 ATP,ATP 又可以再次投入做功。

-----廣告,請繼續往下閱讀-----
圖/由作者提供。

發生在你體內的所有能量活動,都會消耗龐大數額的 ATP;普通人每天運轉消耗的 ATP 數量,等於他的身體質量。當你屈曲二頭肌來舉起啞鈴或一杯酒,來自 ATP 而用來收縮你肌肉的能量就會猛然釋開,促使你肌肉纖維所含的蛋白質相互滑動。構成 ATP 的個別原子並不會耗盡;各分子只會分裂然後又重組,每天發生數百次。

ATP 從何而來?

從低熵 ADP 製造出 ATP 的自由能量是從哪裡來的?它的最終源頭是太陽。當某個植物或某微生物的葉綠素分子吸收可見光的光子,它的能量會鬆動一顆電子,這時就會發生光合作用歷程。高能量電子經由名叫電子傳遞鏈(electron transport chain)的連串分子穿過一道膜,導致膜的一側所含的電子數大於質子數,形成一種電荷梯度(electrical gradient),且一側帶淨負電,另一側則帶淨正電。

這就是生命灌注能量的基本做法;膜的一側所含質子彼此互推分開,有些經由一種稱為 ATP 合成酶(ATP synthase)的酵素逸出。試圖逸出的質子最終進入了合成酶,為它供應能量,而讓 ADP 合成為 ATP,這種歷程稱為化學滲透作用(chemiosmosis)。其中有些能量免不了要化為無序能量,並以低能量光子形式還有周遭原子的熱量顫動(熱)的方式釋出。

製造 ATP 的胞器-粒線體,1 : 內膜;2 : 外膜;3 : 羽冠;4 : 基質,圖/by wikipedia commons

你我都不親自進行光合作用。我們的自由能量並不直接取自太陽,而是得自葡萄糖和其他糖類以及脂肪酸。我們有種微小胞器稱為粒線體,這就是細胞的動力機房,它使用固鎖在這些分子中的自由能量,把 ADP 轉換成 ATP。不過,我們取食的這些糖類和脂肪酸所含的自由能量,追根究底仍是經由光合作用得自於太陽。

-----廣告,請繼續往下閱讀-----

這種基本配置對於地球此處的生命似乎一體適用。目前已擬出一個專有名詞,專門描述 ATP 合成酶透過流經其中的質子來驅動的作用,稱為「質子驅動力」(proton-motive force)。這機制在 1960 年代由彼得.米切爾(Peter Mitchell)和珍妮芙.莫伊爾(Jennifer Moyle)兩位英國生化學家發現。米切爾是個有趣的人物;他因為工作壓力釀成嚴重健康問題,只能辭去學術崗位的職務,最後在一處叫做格林之家(Glynn House)的地方,建立了一個私營實驗室。他獲頒 1978 年諾貝爾化學獎,嘉許他提出質子驅動力經由化學滲透作用促成 ATP 合成的理論。

圖/由作者提供。

布朗氏力的驅動

細胞是生命的基本單元;那是一批具功能性的子單元和胞器,漂懸在一種黏性液體裡面,整個由一層細胞膜包覆。沉浸於技術性工業社會的我們,往往會把細胞想像成微小的「機器」。不過真實的生物系統和我們習慣應付的人造機器之間的差異性,與雙方的類似性同樣都很重要。

source:wikimedia

這些差異有很大部分根源於一項事實,那就是機器一般都是針對某個特定目的而製造。基於這事實,機器往往只擅長處理它們的派定目的,此外就別無長處。設計往往是針對特定目標,不具有彈性,一旦事情出了差錯——你汽車的一個輪胎爆胎,或者你的手機電池用光——機器就完全不靈了。有機生物體則是歷經歲月發展成形的,心中沒有特定目的,一般較具彈性,能因應多重目的,還能自行修復。

細胞不只能耐受混沌,它們還駕馭混沌。它們沒有選擇餘地,這只要看看微生物學的發生環境就知道了。

我們的人類尺度世界比較寧靜祥和又可預測。在好天氣的日子拋球,你可以很有自信地估算球會飛多遠。相較而言,細胞是在幾十億分之一公尺的奈米尺度運作,那個世界的狀況是由隨機運動和噪音所支配——生物物理學家彼得.霍夫曼(Peter Hoffmann)稱這種現象為「分子風暴」(molecular storm)。單憑一次大混亂中的普通熱量顫動,我們體內的分子每秒互撞數兆次,就可讓尋常的暴風雨自慚形穢。放大到人類尺度想像一下,這就像是住在能與細胞分子風暴相提並論的氣候環境中,嘗試在不斷被其他球體轟擊的情況下拋球,而那些球體攜帶的能量,數億倍於你的手臂所能傳送的能量。

-----廣告,請繼續往下閱讀-----
模擬的大顆粒塵埃粒子碰撞到更小的粒子,而其以不同的速度在不同方向移動的布朗運動。

這樣的環境,看來並不適合舉辦任何微觀的運動賽事,或是從事細胞生態系的任何細密作業。細胞怎麼有辦法在這種情況下進行這樣的有組織活動?

這種大混亂之中有許許多多能量,不過全都是無序能量;並不能直接用來從事諸如拉動肌肉或發送養分到全身各處等工作。周遭分子處於一種近似平衡態,彼此隨機碰撞彈開。不過,細胞能利用匯集在 ATP 裡的低熵自由能量——不只直接投入工作,還能凝聚周遭介質裡的無序能量。

粒子的立體空間進行布朗運動的示意圖,圖/by wikipedia commons

考量一個棘輪—齒偏向一側的齒輪。讓該棘輪承受往復的隨機顫動——布朗氏力(Brownian force),名稱得自植物學家羅伯特.布朗(Robert Brown)。他在 19 世紀早期,指出細小灰塵顆粒漂懸水中時,往往依循不可預測的方式四處移動,這種現象如今我們歸因於其他個別原子和分子對它們的持續轟擊。布朗棘輪本身一般不會偏向任一方向運動;它以不可預測的方式往復漂移。

不過,想像我們棘輪的齒並不固定,而且我們可以從外部予以控制。當棘輪朝向我們希望的方向運動,我們就把角度壓低,讓它容易移轉過去;當它朝另一方向移動,我們就放大角度,讓它較難移轉。這樣我們就得以將隨機的不定向布朗運動,變換成有定向的有用運輸作業。當然了,這需要某種外力介入,而且那種外力本身必須是低熵且遠離平衡的。

-----廣告,請繼續往下閱讀-----

這種布朗棘輪是生物細胞內部眾多分子馬達的一種簡單模型。沒有任何外部觀察者會為了因應特定目的而改變分子形狀,而是有自由能量由 ATP 攜帶四處移動。ATP 分子能與細胞機具的移動束縛在一起,在恰當時機釋出能量,從而容許朝一個方向的變動,同時抑制朝向另一方向變動。在奈米尺度完成工作,完全關乎如何駕馭你周遭的混沌。

熱力學第二定律萬歲

薛丁格關於生命有機體消耗自由能量來維持其結構完整性的寫照,精彩顯現於真實世界的生物學。太陽為我們送來自由能量,那是相當高能量的可見光光子。那些光子由植物和單細胞生物體捕獲,用來進行光合作用,並製造 ATP 供自己使用,此外還有糖與其他可食化合物,這些都能儲存自由能量,並供動物運用。這種自由能量能用來保持生物體的內部秩序,同時讓它運動、思考並做出反應,也就是讓生物有別於無生命事物的所有事項。我們一開始從太陽能入手,現在它一路逐漸劣化,轉變成熱形式的無序能量。那項能量化為較低能量的紅外線光子,最終輻射回歸宇宙,熱力學第二定律萬歲。

這段故事的基本成分,我們討論核心理論時已見過了:光子、電子和原子核。有鑑於我們的日常生活和現代物理學似乎相隔遙遠,因此瞭解我們如何進食、呼吸和生活,我們才有辦法和它底層的粒子與力面對面接觸。

  • 本篇選自本書第 30 章

 

本文摘自泛科學2017年11月選書《詩性的宇宙:一位物理學家尋找生命起源、宇宙與意義的旅程》,八旗文化出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1266 篇文章 ・ 2626 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
翻越性別高牆 打破生乳營養迷思 埃凡斯促成牛奶滅菌(2)
顯微觀點_96
・2024/08/13 ・2351字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

顯微鏡後的女性科學家系列

他像是一艘船在河中航行;四處遇到阻礙,唯獨一面通暢;在那,所有的障礙都消失了,他徐徐地穿越著深深的航道,進入無盡的海洋。

——愛默生

埃凡斯在動物工業局的研究興趣集中到一種致流產的傳染性微生物。

丹麥獸醫伯納.班(Bernhard Bang) 在 19 世紀末發現了一種導致乳牛流產的病菌,而這種病菌多年來已知存在於受感染的乳牛乳房中。

而農業工業局病理部的施洛德(Schroeder) 和卡登(Cotton)在 1911 年從看似健康的牛隻的牛奶樣本中分離出這種病菌;幾乎同時,另一組研究人員史密斯(Theobeld Smith)和費比恩(Febyen)也在 1912 年從牛奶中分離出同樣的病菌。因此埃凡斯開始思索這類致牛隻流產的病菌是否也會導致人類生病。

-----廣告,請繼續往下閱讀-----

與此同時,蘇格蘭病理學家布魯斯(David Bruce)分離出了會使人類發燒和肌肉疼痛的波浪熱(或稱馬爾他熱,Malta fever)的病菌,且發現可透過羊奶傳染給人類。

當時的科學家都認為透過羊奶傳染給人和導致牛流產的是不同的病菌。透過羊奶傳染馬爾他熱的是羊微球菌;引起牛流產的則是流產芽孢桿菌。

但埃凡斯透過觀察,認為這兩種來源的細菌形態相似:這些細胞呈桿狀,但有不同的長度;有些細胞很短,在顯微鏡下看起來呈球形。

經過細菌鑑定以及將病菌接種在動物身上的對比試驗,埃凡斯推斷這兩者其實是同一種桿菌,並將這些發現於 1917 年 12 月在美國細菌學家協會(the Society of American Bacteriologists)年會上報告,並發表於 1918 年 7 月的《傳染病雜誌》(The Journal of Infectious Diseases)。而後來為紀念首先研究這病症的布魯斯,這個病原菌被定名為「布氏桿菌」(Brucella abortus)。

-----廣告,請繼續往下閱讀-----

同時埃凡斯基於研究發現也提出質疑:「我們是否確信,人類不會因為飲用生牛奶而偶爾發生腺熱(glandular fever)、流產或可能的呼吸道疾病?」

Alice Evans 1945。圖片來源:wiki

避免人畜傳染 推動牛奶滅菌

1864 年,法國生物、化學家.巴斯德(Louis Pasteur)描述了如何透過加熱保存液體的系統,也就是巴氏殺菌。但當時這樣的滅菌法應用於葡萄酒或啤酒,而不是牛奶,因為人們認為牛奶只要不被污染就是安全的。

當時牛奶的問題在於變質的速度。過去,有些乳牛場為了解決變質,會建在城市,以縮短生產和消費之間的時間;而有些則使用摻假物,例如碳酸氫鹽、糖、糖蜜甚至粉筆,來掩蓋乳品腐敗的狀況。

對於埃凡斯提出喝生牛乳可能致病的質疑,不但未被採納,還遭到其他科學家、醫師和酪農業等各界的批判。

-----廣告,請繼續往下閱讀-----

一來是科學家普遍相信發現結核菌的德國生物學家柯霍(Heinrich Hermann Robert Koch)所提出的觀點:同一種病菌會同時造成動物與人類的共同疾病。

柯霍曾在 1901 年提出儘管結核病是牛隻常見的疾病,產出的牛奶含有大量的「結核菌」,但這種牛型結核病不會傳染給人。

他說,如果牛結核桿菌能夠感染人類,就會出現很多病例,尤其是脆弱的兒童;但大多數醫護人員認為案例數並不多並非如此。他甚至認為,採取措施保護人類免受牛結核病的侵害是不明智的。

二來是科學家們不相信埃凡斯這樣沒有博士學位的女性,能提出如此「重大的發現」。對酪農和乳製品業而言,埃凡斯則被認為在圖利巴氏殺菌設備。

-----廣告,請繼續往下閱讀-----

所幸,埃凡斯的發現在 1920 年後陸續得到梅耶(Karl Friedrich Meyer)等人的研究支持,被認為是可信的科學發現。 美國衛生局(USPHS)也從 1924 年開始制定了一項名為《標準牛奶條例》(Standard Milk Ordinance)的示範法規,由州和地方掌控乳製業機構自願採用。之後又陸續頒布行政和技術細節,修改成 A 級巴氏滅菌牛奶條例(Grade A Pasteurized Milk Ordinance),提供全國統一的牛奶衛生標準。

重要貢獻鼓勵後進女科學家

為了表彰埃凡斯的成就,美國細菌學家協會(現為美國微生物學會,the American Society for Microbiology,ASM)於 1928 年推舉她成為首位女性主席。

然而儘管有豐富的實驗室經驗以及預防措施,但埃凡斯仍在 1922 年感染布氏桿菌,並在往後幾年反覆發作。她曾在回憶錄中提到,「完全喪失能力和康復的時期交替出現,最後一次致殘的病情惡化發生在 1943 年夏天,距感染之日已近 21 年」。

更慘的是,當時對疾病沒有夠多的認識,因此她和其他布氏桿菌患者一樣,被診斷為「神經衰弱」,認為這些症狀是被幻想出來的,被誤解為騙子,是在「詐病」。但埃凡斯說,慢性症狀方面的經歷使她有機會親眼觀察這種疾病及其影響。

-----廣告,請繼續往下閱讀-----

不過她也漸漸將研究目光轉向溶血性鏈球菌,一直致力於此直到 1945 年退休。1975 年 9 月 5 日埃凡斯於維吉尼亞州亞歷山大市逝世,享年 94 歲。她的墓誌銘刻著::「溫柔的獵人,追趕並馴服她的獵物,穿越到了新的家園」。

雖然埃凡斯並未取得博士學位,又曾因女性身分導致科學發現不被認可。但美國微生物學會於1983年為表彰埃凡斯在微生物學領域的參與以及傑出貢獻,設立了「埃凡斯獎」(The Alice C. Evans Award),以表揚後進致力於微生物科學領域的女性。

查看原始文章

參考資料

推薦閱讀

顯微鏡後的女性科學家:甘居配角仍不減貢獻 微生物學家安娜‧威廉斯

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

1

7
7

文字

分享

1
7
7
薛丁格的貓是死是活?再不懂點量子就落伍了!——《我們的生活比你想的還物理》
商周出版_96
・2022/12/06 ・2327字 ・閱讀時間約 4 分鐘

奧地利的物理學家薛丁格最初閱讀愛因斯坦和德布羅意的論文後,也注意到物質波的概念,並進而闡釋發展成波動力學,促成量子力學誕生。薛丁格的波動力學是後來量子力學的具體論述之一, 薛丁格波動方程式更是量子力學最重要的方程式之一,也是現代人研究發展量子電腦的重要思維。

繼續討論薛丁格的想法前,容我「插播」兩種說法,一種是「哥本哈根詮釋」,一種是「愛因斯坦悖論」。

萬物受機率支配?愛因斯坦可不這麼認為

前面提到電子的雙狹縫干涉實驗,說明在微觀世界的電子具有波動性。在電子的雙狹縫干涉實驗中,為何被觀測到的電子只有在屏幕的一點留下痕跡呢?照理說,在屏幕的任意地方都能發現電子的蹤跡。然而,當我們「觀測」到屏幕的一「質點」的電子的瞬間,電子的波函數立即「塌縮」。

物理學家解釋這是因為電子的波函數與發現機率有關,亦即觀測電子時,電子波會縮小分布範圍, 呈現電子的粒子形式。活躍於哥本哈根的波耳等人認同這種融合「波函數塌縮」和「機率詮釋」的想法,因此成為「哥本哈根詮釋」。至於「電子波為何會塌縮?」是一個未解之謎。

-----廣告,請繼續往下閱讀-----

自然界真的受到機率的支配嗎?真的大哉問啊!

愛因斯坦儘管預言光子存在,提出光量子論,但他強烈反駁「機率論」的觀點。對於哥本哈根學派的「機率詮釋」和「波的塌縮」,愛因斯坦以「上帝不玩擲骰子的遊戲」批判哥本哈根詮釋, 完全不能接受哥本哈根學派主張「決定一切事物的上帝竟然會依照擲出骰子出現的點數決定電子的位置」。

「上帝不玩擲骰子的遊戲」批判哥本哈根詮釋。圖/GIPHY

愛因斯坦也指摘「幽靈般的超距作用」。他認為未來已經確定,反駁「自然界曖昧不明」的不確定性,進一步指出「自然界並非曖昧不明,而是量子論還不完備,無法正確闡述自然界的緣故」。以上所提,是量子力學發展歷程的觀點論戰的故事,包含 1935 年,愛因斯坦和共同研究者波多斯基(Boris Podolsky)、羅森(Nathan Rosen)聯合發表觸及量子論矛盾的「EPR 悖論」(Einstein-Podolsky-Rosen paradox)。

迄今,我們已經知道微觀世界,電子等粒子會自己旋轉,具有「自旋」的物理量,或直接用專業術語「自旋角動量」,自旋的方向依據量子論會以多個狀態同時存在,並存或疊合。

愛因斯坦等人認為,對於相距非常遙遠的電子,不可能無時間限制,瞬時互相影響;根據狹義相對論的說法,沒有任何物體的飛行速度比光速還快。觀測相距遙遠的兩粒子之一,竟然會在瞬間同時決定兩者的狀態,這樣特殊奇妙的現象,愛因斯坦稱之為「幽靈鬼魅般的超距作用」。

-----廣告,請繼續往下閱讀-----

沒錯!又要提那隻貓了

薛丁格曾以「量子糾纏」解釋愛因斯坦論文中的悖論現象,指出互相遠離的粒子的性質,並非各自獨立,而是成組決定,無法個別決定,這個現象是 2022 年諾貝爾物理學獎得獎主題的「量子糾纏」。如果能這樣思考,那麼就不會認為粒子是瞬間傳送並影響到遠方粒子,有如「幽靈般的超距作用」。

貓同時是活和死的「疊加」。圖/維基百科

談到量子力學,「薛丁格的貓」此知名想像實驗必定會浮現在讀者的腦海中吧?此實驗探討一隻貓的狀態究竟是活或死的,而實驗結果是:貓同時是活和死的「疊加」。如果以古典物理學來思考,會顯得極其荒謬;但若以微觀世界視之,這項理論其實符合電子波粒二象性的機率概念。

根據 1927 年量子力學學派的詮釋,觀察一個量子物體時,會干擾其狀態,造成其立即從量子本質轉變成傳統物理現實。原子及次原子粒子的性質,在量測之前並非固定不變,而是許多互斥性質的「疊加」。此觀念的知名例子就是「薛丁格的貓」實驗。

在這個想像的實驗中,一隻貓被鎖在一個箱子中,並有一個毒氣瓶,在量子粒子處於某狀態下毒氣瓶會破裂,但若該粒子處於另一狀態,則毒氣瓶會完好無損。如果將箱子封閉,此粒子的量子狀態是兩種狀態「共存」的情況,也就是說,毒氣既是已從瓶中放出,又被封存在瓶中,也因此,箱中的貓同時既是活的也是死的。當箱子打開時,由於此量子疊加狀態瓦解了,因此在那瞬間,這隻貓或許被毒死,或許得以保命。

-----廣告,請繼續往下閱讀-----
當箱子打開的瞬間,這隻貓或許被毒死,或許得以保命。圖/《我們的生活比你想的還物理

物理小教室

  • 索爾維會議

量子力學是近代物理學的重要基石,與相對論被認為是近代物理學的兩大基本支柱,許多物理學理論和科學,如原子物理學、固態物理學、核物理學和粒子物理學,都以其為基礎。物理學界往往會在物理重要會議激盪出重要的論述,例如 1927 年第 5 次索爾維會議,此次會議主題為「電子和光子」,當時世上最重要的物理學家,都聚集在一起討論新的量子理論。

1927 年第 5 次索爾維會議,此次會議主題為「電子和光子」。

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。