0

0
0

文字

分享

0
0
0

這個男人,從攘夷烽火轉向物理救國--山川健次郎參上!(1)

物理雙月刊_96
・2017/11/26 ・5827字 ・閱讀時間約 12 分鐘 ・SR值 530 ・七年級

-----廣告,請繼續往下閱讀-----

  • 文/高崇文|中原大學物理系 教授

上一回的阿文開講提到了江戶時期的蘭學者以及蠻社之獄。雖然蘭學者賣力地吸收西洋新知,然而總像浮光掠影一般。真正讓西洋科學在日本生根茁壯的,還是明治一代的學者們。

雖然他們本身並沒有在學術上發光發亮,但是卻紮紮實實地讓日本邁入科學大國之林。在這些學者中,最讓人津津樂道的莫過於日本第一位物理教授.山川健次郎。據說幾年前 NHK 大河劇「八重之櫻」他也有出場呢!就讓阿文為各位介紹這位傳奇人物的一生吧。

山川健次郎。圖/ 九州大學 

攘夷浪人的烽火年代

就在黑船第二次來到江戶、讓幕府無奈地簽下日美親善條約的兩個月後,一個男嬰誕生在會津藩武士的家中。這位武士是會津藩祿高一千石的「國家老」山川重固。所謂「國家老」是指藩主到江戶參勤交代時留守在領國,負責政務的家老。健次郎六歲時父親過世,剛滿十五歲的大哥山川大蔵(後來改名為山川浩)繼承家督,兩年後他的大哥就跟著藩主松平容保到京都去。而健次郎則是開始到會津藩的藩黌日知館接受以朱子學為主的武士教育。

當時京都正值多事之秋,自從在外國的勢力威嚇屈辱開國後,幕府的威信就一落千丈,許多打著「尊皇攘夷」的浪人們企圖假藉朝廷之力來從事各樣的政治活動,尤其令幕府頭痛的是他們以天誅之名四處暗殺與幕府相善的人物。過去京都的治安是由京都所司代負責。幕府有感京都所司代無法控制治安,於文久二年(1862年)設置京都守護職作為負責京都治安的最高機構,京都所司代轉為京都守護職轄下,而松平容保就是擔任京都守護職。

-----廣告,請繼續往下閱讀-----

這是個將會津藩推入火坑的差事。當時會津藩正因為奉派負責蝦夷地的守備,早就財政吃緊,所以家臣們異口同聲地反對,而容保本人也再三地推辭,但是當時的幕府引用會津藩祖保科正之留下的家訓:「會津藩是為了守護將軍家而存在」,松平容保只好同意。據說當時聽到這消息的會津藩家臣在江戶藩邸互相擁抱肩膀慟哭地說:「由於這事會使會津藩滅亡(これで会津藩は滅びる)」。

保科正之是二代將軍德川秀忠的庶子,三代將軍家光的異母弟。家光臨死之際,把正之喚到枕邊,將四代將軍德川家綱託付給他。正之感念家光的重視之恩,在1668年時寫下了「會津家訓十五箇條」,其中第一條載明「會津藩是為了守護將軍家而存在,如有藩主背叛德川家則家臣不可跟隨(会津藩たるは将軍家を守護すべき存在であり、藩主が裏切るようなことがあれば家臣は従ってはならない)」。

會津家訓十五箇條。圖/江戶東京博物館

到了京都的會津藩與京都的「尊攘派志士」衝突不斷,尤其是會津藩招募的「新選組」更是被志士們視為眼中釘。最有名的一次衝突是「池田屋事件」。新選組因此事而聲名大噪,而尊王攘夷派則損失慘重,重要人物吉田稔磨、北添佶摩、宮部鼎藏、大高又次郎、石川潤次郎、杉山松助、松田重助死亡。桂小五郎(後來的木戶孝允)倖免於難。(池田屋在河原町三條附近,現在改裝成餐廳了。)長州藩在此事後為了替死去的同志而舉兵上京,引起禁門之變。結果長州大敗。尊攘激進派的長州,自此對公武合體派的會津和薩摩恨之入骨,稱之為「薩賊會奸」,從此會津與長州之間更是結下深仇大恨。

池田屋事件遺址位於京都(Wikimedia Commons, CC by 3.0)

到了慶應 2 年(1866年),支持幕府孝明天皇駕崩,幕府以及容保的立場逐漸變得不利。慶應 3 年(1867年),第 15 代德川幕府將軍德川慶喜實行大政奉還,隨後京都朝廷發出的王政復古大號令,使幕府、京都守護職、京都所司代等職遭廢。

-----廣告,請繼續往下閱讀-----

其後,容保隨德川慶喜撤至大坂;未久,幕府軍和容保麾的下會津藩兵,在鳥羽、伏見與明治新政府軍展開交戰(史稱鳥羽伏見之戰)。由於對著代表天皇的御錦旗(菊花旗)開火,使慶喜、容保等人相繼變成「朝敵」,加上戰況不利,德川慶喜暗自帶松平容保與其弟定敬(京都所司代)等人,脫離戰場,同乘幕府軍艦「開陽丸」回到江戶。

容保讓出藩主之位予養子喜德。由於將軍慶喜對新政府態度恭順,所以容保也跟隨將軍表示恭順。以仙台為首的奧羽越諸藩,對因擔任京都守護職而招致怨恨的會津藩寄予同情,向奧羽鎮撫總督府(新政府軍)提出寬大處理會津的請願。會津又在奧羽越諸藩的中介下,寫下數封謝罪陳情書。可是總督府卻提出苛刻謝罪條件:要求將藩主松平容保斬首。在沒有任何轉圜的餘地之下,會津藩在三月進行軍事改革,把藩士按年齡分成青龍隊、白虎隊、朱雀隊、玄武隊。

被調離前線的白虎隊少年

十五到十八歲的少年編入白虎隊。年方十五的健次郎自然也在其中。但是在訓練時發現十五歲這組的少年根本無法操作重槍而被藩的重臣將他們從白虎隊的訓練中排除。自然地,健次郎也失去了出陣的機會。

慶應 4 年(1868年)四月十日會津藩與庄內藩合組會庄同盟,其後與奧羽越列藩同盟聯手繼續對抗新政府軍,容保在會津戰爭中率領藩士、藩民及新選組與新政府軍交戰。在會津若松城被圍困情況下力戰一個月,死傷達三千多人。在若松城被包圍時擔任總指揮的正是健次郎的大哥。而白虎隊員們在看到若松城被冒著濃煙時,以為城被攻破了,由於不願投降,二十名成員在飯盛山自刃。筆者在高中時看到日劇「白虎隊」看到這一幕時,忍不住鼻酸啊!

-----廣告,請繼續往下閱讀-----

健次郎由於先前被從白虎隊訓練時被排除而沒有出陣,但是他在圍城戰時負責搬運彈藥,每天在槍林彈雨中穿梭,也算得上是出生入死。當九月連米澤藩都投降時,會津藩孤立無援,最後只好也投降了。幸虧薩摩軍監桐野利秋與長州軍監前原一誠為松平容保求情,最後容保免死但被送到東京囚禁,而由祿高 1500 石的家老萱野長修一肩擔起責任,切腹謝罪,因為地位更高的家老不是戰死就是下落不明。山川健次郎與其他投降的會津藩士都被囚禁在豬苗代,等候發落。

這時一件不可思議的事情發生在健次郎身上。在佔領會津的長州藩士中有一位名叫奧平謙輔,他與會津藩士秋月悌次郎在京都時就認識了。兩人雖身處敵對陣營卻惺惺相惜。秋月悌次郎想辦法與奧平聯絡上,他知道維新政府不會放過自己,卻向奧平請求將兩名會津藩的優秀少年當作他的書生帶到東京去。結果健次郎與小川亮兩人就在秋月悌次郎命令下,由在禁門之變曾救過長州藩士的僧人河井善順帶著他們逃出豬苗代與奧平會合。

抵禦來犯新政府軍進駐的會津若松城。圖/L’oeil étranger@Flickr

命運的巧合

後來健次郎跟著奧平到佐渡,明治二年五月他到了東京。這段時間健次郎拼了命地學習英語,而他的大哥以及姐妹們都跟著其他的會津藩士一起被送去斗南藩。名義上是三萬石,但是土地非常貧瘠,實收只有七千石。曾擔任過台灣軍司令官的柴五郎在斗南生活過,他曾回憶道當時一隻被獵人隔著河槍殺的狗,但是河冰太薄,獵人走不過來就丟在原地。他們家難耐飢餓,跟鄰居要了這隻死狗,吃了許多天後柴五郎嫌噁心吃不下去,柴五郎的父親大怒,罵道:

忘了你是武士的兒子嗎?我們被賊軍趕到這種窮鄉僻壤,會津武士要是餓死了,可是會被薩長那班小子笑話,會津國恥不除,這裡就是戰場!

柴五郎只能乖乖把狗肉吞下肚。山川大蔵雖然被任命為大參事,但是生活一樣非常辛苦,連自己的姐妹們都要出外勞動,才勉強維持溫飽,至於在東京寄人籬下的健次郎想來也是過得非常辛苦。

-----廣告,請繼續往下閱讀-----

沒想到幸運之神再次眷顧健次郎!明治三年北海道開拓使.黑田清隆,為了培養開發北海道的人才,準備派出留學生到西洋留學。特別的是,不像之前派出的留學生都是獨厚薩摩長州的子弟,黑田清隆宣稱:為了適應北國嚴寒,特別選拔會津、庄內這兩個藩的子弟各一名。在奧平謙輔的大力支持下,健次郎在明治四年元旦在橫濱搭上汽船,二十三天後到達美國舊金山。

這趟旅程讓他見識到西洋科技的進步,讓他為了祖國的將來憂心忡忡。尤其到了美國之後,他發現美國人居然把日本當成是清國的屬國,更令他非常氣憤。原本以復興會津藩為一生職志的他,不知不覺變成了決心捍衛日本國的愛國青年。就算到了五十年後,健次郎還回憶著說,美國物質文明與當時的日本的宵壤之別,讓這群留學生對於日本能不能獨立地存在於國際社會都深感悲觀。所以他們心懷悲願,一心只想讓未來的日本能與西洋列強並駕齊驅。也在此時,山川健次郎決定把物理當作一生奮鬥的目標。

攻讀物理救祖國!

這個選擇乍看相當奇怪,物理跟救國有什麼關係呢?其實在十九世紀末 Herbert Spencer 的社會達爾文主義蔚為風行,「適者生存」被延伸到國際政治上。對被列強欺凌的國家的留學生而言,一國的生存就端看其文明的能力,尤其是西洋在物理、化學在當時有長足的進步,使得當時的弱小民族的年輕人充滿「科學救國」的想法。時至今日,這種奇怪的想法在許多國家依然陰魂不散呢!

健次郎在修了一年的基礎學科後,進入耶魯大學理工學院的前身.Sheffield Scientific School。由於該校沒有物理系,所以健次郎選擇最接近物理的土木工學。健次郎除了修習一般土木工程所需的專業學問之外,他還特地修了德文與法文、一些高階的數學課和天文學,此外還修了地理學。

-----廣告,請繼續往下閱讀-----

對統計力學有重要貢獻的物理學家吉布斯(Josiah Willard Gibbs)從 1871 年起在耶魯任教,雖然他是 Department of Philosophy of Arts 的教授,但也有在 Sheffield Scientific School 教法文,所以山川健次郎應該上過吉布斯的課。事實上,吉布斯有將論文寄給國外同行的習慣,山川回日本後也收過吉布斯寄去的論文,但是找不到兩人交往的紀錄。倒是山川在學時間與任職在海軍天文台的天文學家 Simon Newcomb 建立交情,居中牽線的是在耶魯任教的 William Augustus Norton,Norton 為健次郎寫的介紹信還留在山川家呢。

山川在耶魯的修業也非一帆風順,入學一年半後他突然接到要他回國的命令,幸虧他的美國同學知道他的窘境,而商請其伯母出錢資助山川完成學業。明治8年 (1875) 健次郎終於完成學業,回到日本。隔年一月他到東京開成學校擔任助教(教授補)。開成學校的前身是安政四年 (1857) 創設的蕃書調所。文久二年 (1862) 改稱洋書調所,後又已稱開成所。明治維新之後多次更名,稱為東京開成學校,只有三年。其「開成」之校名,乃取自《易經.繫辭傳》中之「開物成務」,意即自蕃書調所時代之文獻研究中脫胎換骨,以進行實事實物之研究精神而命名。自一八七四年至一八七六年,即使只有一人在學亦依然開課之學科為法學、理學、化學、工業學、工學、物理學等。

東京開成學校之教師主要以外國教師為主;健次郎由於接受完整的西洋教育才能在此任教。隔年東京開成學校與東京醫科學校合併成立東京大學,這是日本第一所大學。健次郎除了要幫 Peter Veeder 教授上課外,還要編教科書、講義,連實驗課的器材也要由他來負責。當時日本並不平靜,不滿新政府的士族在各地舉事,明治九年冬天,對健次郎有再造之恩的奧平謙輔與前原一誠在荻企圖舉事,結果都被新政府砍頭,明治十年更爆發了以西鄉隆盛為首的薩摩軍起兵的西南戰爭。健次郎的大哥擔任征討軍的參謀立下不少功勞,而曾為會津藩主求情的桐野利秋澤與西鄉隆盛同一天戰死。隨著西鄉隆盛的死,明治時代進入下一個階段。

日本第一位物理教授

明治十二年(1879),健次郎成為日本第一位物理學教授。(註:兩年前,菊池大麓已經是日本第一個理學部(數學)教授,雖然菊池比山川年輕一歲,卻兩度前往劍橋,拿到碩士學位之故。)

-----廣告,請繼續往下閱讀-----

山川除了繼續繁忙的教學活動,還開始訓練年輕一輩的物理學者。他曾帶著學生上富士山頂作實驗,也曾派學生到北海道測量當地的重力。他所講授的內容包含熱學、光學、電學、磁學、音響學等。他的講義後來編成書《新選物理学 明治20年代の自筆草稿の翻刻》,有一百七十頁呢。他的助教田中舘 愛橘日後也成為東京大學的教授,而他的學生長岡半太郎更是第一位名揚海外的物理學者。田中舘曾多次前往歐洲,在1888到1890年間在蘇格蘭格拉斯哥大學跟隨開爾文男爵學習,並且曾在德國柏林洪堡大學學習物理學。長岡半太郎則是前往歐洲,在柏林、慕尼黑和維也納等地學習,並師從物理學家路德維希·波茲曼,回國後進入東京帝國大學任教。

除了教學之外,山川也積極貢獻他的專業,像是明治十四年他所編寫的《東京府下火災錄》就是他用科學方法研究過去江戶所發生的大火的紀錄,並提出預防對策的著作。從東大留下來的紀錄,他還寫過介紹繞射光柵的《分光器觀測法小引》,以及介紹 1884 年在巴黎萬國電器公會通過以 106 厘米長、截面為 1 平方厘米的水銀柱的電阻為 1 歐姆的決議。還有一篇關於測定大理石熱導率的新方法的文章登在《東京帝國大學紀要.理科》上。在當時,物理主要還是被當作是一門實驗科學。

分光器觀測法小引。圖/東京數學物理學會記事

明治19年(1886年),日本頒布了帝國大學令,東京大學改名為帝國大學,採用分科大學制,並開始設置研究生院,成為一所名符其實的大學。

隔年,日本發布了學位令,由文部大臣頒發包含數學、物理學、化學、生物學、地學五個學科的「理學博士」。1888年(明治21年),山川健次郎成為第一個被東京帝國大學授予理學博士的人。其間,各帝國大學紛紛冠上本地名稱,為示區別,帝國大學的名稱前面添上「東京」二字。這一年他與村岡範為馳共同編纂的《物理學術語:和英佛獨對譯字書》則是將物理名詞分別以日文、 英文、 法文、 德文列出。這對物理學在日本有非常重要的影響。

-----廣告,請繼續往下閱讀-----

村岡範為馳比健次郎年長一歲,他的父親是鳥取藩士太田静馬,是戊辰戰爭中用兵如神的大村益次郎的同學。他本人則在明治十一年(1878年)到史特拉斯堡大學留學。1881年(明治13年)他的炭素材料的電阻與溫度的關係的研究成果刊登在德文期刊《Annalen der Physik und Chemie》,讓他成為第一位出現在國際期刊的日本作者。這一年他拿到史特拉斯堡大學拿到博士學位。回到日本後他先在東京大學醫學部,後來到第一高等學校任教。編完字書後村岡再度赴歐,剛好聽到赫茲成功製造成電磁波的消息!回日本後他擔任過東京音樂學校的校長。之後他到京都新設的第三高等學校擔任教授,1897年(明治30年)京都帝國大學成立時,他轉到這裡擔任教授並且成立理學部物理學教室。跟山川健次郎算是一時瑜亮吧!

這一位白虎隊士轉身成為物理學者的奇人,在進入二十世紀後又會發生什麼樣的奇事呢?還請下回分解!

 

參考資料

  1. 中文、日文、英文維基相關條目
  2. 日本近代政治史 第二卷 信夫清三郎著 周啟乾譯
  3. 山川健次郎とSheffield Scientific School–初期日米科学交渉史の一面,渡辺正雄著
  4. 山川健次郎 
  5. 白虎隊士から東大総長へ(山川健次郎)

本文轉載自《物理雙月刊》 ,更多文章請見物理雙月刊網站

-----廣告,請繼續往下閱讀-----
文章難易度
物理雙月刊_96
54 篇文章 ・ 15 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
2

文字

分享

0
3
2
【2023 諾貝爾物理獎】什麼是「阿秒脈衝雷射」?能捕捉到電子運動的脈衝雷射?
PanSci_96
・2023/11/28 ・5966字 ・閱讀時間約 12 分鐘

林俊傑《江南》:「相信愛一天,抵過永遠,在這一剎那凍結了時間」

這一剎那持續了多久?這出自佛經的時間單位有多個解讀,其中最短,可以對應的國際單位制是阿秒。 1 阿秒又有多快呢? 1 阿秒等於一百萬兆分之一秒,是已經短到不行的飛秒的千分之一。在這段時間,別說是談戀愛了,連世界上行動最快的光,也只能移動一顆原子直徑的距離。

在阿秒的時間尺度裡,連光都得停下腳步,過去我們認為捉摸不定的電子,也終於將在我們眼前現身。 2023 年的諾貝爾物理學獎,正是頒給了三位帶領人類進入阿秒領域,探索全新世界的科學家。而這項技術,還可能讓電腦的運算速度加快一萬倍!

就讓我們一起來進入阿秒的領域吧,領域展開!

什麼是阿秒脈衝雷射?

今年諾貝爾物理學獎的三位得主分別是 Pierre Agostini 、 Ferenc Krausz 、和 Anne L’Huillier ,表彰他們對阿秒脈衝雷射實驗技術的貢獻。

-----廣告,請繼續往下閱讀-----
圖/X

所謂的阿秒脈衝雷射,指的是持續時間僅有數十到數百阿秒的雷射。當我們能使用脈衝雷射來觀察目標,就好比使用快門時間極短的相機對目標拍照,能捕捉到瞬間的畫面。

2018 年的諾貝爾物理學獎,就頒給了極短脈衝雷射的研究。短短 5 年後,雷射領域再次得獎,但這次是更快的阿秒雷射,能捕捉到電子運動的超快脈衝雷射。

世界上沒有東西能真正的觸碰彼此?看見電子能帶來什麼突破?

為什麼看見電子的運動那麼重要呢?我們複習一下原子的基本構造,在原子核之外,帶有微小負電荷的電子,被帶正電的原子核束縛住。量子力學告訴我們電子沒有確切的位置,而是以特定的機率分布在原子核周圍的不同地方,也就是所謂的電子雲。

圖/YouTube

雖然電子的體積比原子核小很多,但電子雲的範圍,卻占了原子體積的絕大部分。在物理或化學反應中,真正和其他原子產生交互作用的,幾乎都是這些外面的電子。在電影《奧本海默》中,當男女主角手心貼著手心,奧本海默這時卻說:「世界上沒有東西能真正的觸碰彼此,因為我們觸摸到的物體,都只是其中原子的電子雲和我們手上的電子雲產生的斥力。」

-----廣告,請繼續往下閱讀-----
圖/screenrant

對了,這種話也只有奧本海默跟五條悟可以講,一般人請不要隨便亂牽別人的手。

除了和心儀的他牽手,不同的電子排列狀態也會直接影響物質的化學活性、材料的導電導熱等基本性質,各種化學和物理過程都和電子息息相關。從非常實際的層面來說,電子可以說是物質世界最重要的基本單位。所以不難想像,如果我們能看見電子,甚至獲得可以操縱個別電子排列與能量的技術,我們能真正成為材料的創世神,許多不可能都將化為可能,是相當重大的突破。

捕捉電子運動有多困難?

但要操縱電子可不是什麼簡單的事,不只是因為電子非常小,更重要的是他們動得非常快。具體來說,電子在原子周圍跳動的週期時間尺度大約是十的負十八次方秒,也就是一阿秒。一顆原子的大小約是十的負十次方公尺,速度等於距離除以週期,換算下來,電子雲差不多是以光速等級的速度在原子核周圍跳動。

圖/wikipedia

如果要捕捉到阿秒尺度的電子運動,就必須將實驗的時間解析度也提升到阿秒等級,否則就會像是用長曝光鏡頭拍攝亞運競速滑冰比賽一樣,只能拍到一團糊糊的影像,而沒辦法分出勝負。

-----廣告,請繼續往下閱讀-----

可是,在 1980 年代,脈衝雷射最快只能達到十的負十五次方左右,還只有飛秒等級。而且光靠當時的技術和材料優化,已經沒辦法再縮短脈衝時間了,因此這時候,就要從原理上重新打造一套方法了。

如何製造更快的脈衝?

首先,要製造更快的脈衝並不是用頻率更高的電磁波就好。你想,我們在拍照時,想要讓曝光時間更短,要改善的不是把室內光源從可見光改成頻率更高的紫外光,而是調快快門的開闔速度,讓光一段一段進入感光元件中,變成影片一幀一幀的畫面。而這一段一段進入像機的光訊號,就像是我們的脈衝。

不論是皮秒雷射、飛秒雷射還是阿秒雷射,一直以來在做的都是同一件事,在整體輸出功率不變的情況下,讓每一次脈衝的持續時間更短,同時單一次的功率也會更高。簡單來說,就是要從無數次的普通攻擊,變成每一次都是集氣後再攻擊。

但要怎麼為光集氣呢?光和其他波動一樣,可以和其他波動疊加。把不同頻率的光疊加在一起,波峰和波谷會抵消,波峰遇上波峰則會增強。只要用特定的比例組合許多不同頻率的光,就可以在整體總能量不變的情況下,產生一個超級窄的波峰,其他地方全部抵銷。

-----廣告,請繼續往下閱讀-----

1987 年,本次諾貝爾獎得主之一的 Anne L’Huillier 教授發現,當紅外線雷射穿過惰性氣體時,氣體會被激發放出整數倍頻的光。也就是氣體放出許多不同頻率的光,而這些頻率都是原本光源頻率的整數倍,從兩倍三倍到三十幾倍以上的高倍頻光都有。而橫跨這麼大頻率範圍的光,就能組合出時間長度很短的脈衝光。

不過這聽起來未免也太好康了,真的有那麼簡單嗎?

這個看似魔法的實驗背後其實有著相當簡潔的物理圖像。電子原本是被電磁力束縛在原子中,當一道強度夠強的雷射通過氣體原子,原本抓住電子的電位能被雷射削弱。

雖然這道牆只是矮了一些可是還是存在,但此時,在電子的大小尺度下,量子力學發揮了作用。調皮的電子有機會透過量子穿隧現象,穿過這道束縛,暫時逃離原子核的掌控。關於量子穿隧效應的介紹,我們近期也會再做一集節目來專門介紹。

-----廣告,請繼續往下閱讀-----

但電子還來不及逃遠,雷射光已經從波谷翻到波峰。電磁波的波谷與波峰,不是指能量的高和低,而是指方向相反。因此在相反的電磁場方向下,不幸的電子被推回原子核附近,再度被原子核捕獲。但在這欲擒故縱、七擒七縱的過程後,電子並非一無所獲,他所得到的動能會以光的形式重新放出。

而因為這些能量最早都來自雷射,因此電子放出的光波長,也剛好會是雷射的整數倍。再說的細一些,你可以理解為這些電子在吸收一顆顆光子後,一口氣釋放這些能量,所以能量都是一開始光子的整數倍。

在 1990 年代,科學家已經掌握了這個現象背後的原理。但一直到千禧年過後。這次諾貝爾獎得主之一 Pierre Agostini 教授和他的研究團隊才終於在適當的實驗條件之下,利用高倍頻光打造出了一連串寬度只有 250 阿秒的脈衝。同時第三位得主 Ferenc Krausz 也使用不同方法,分離出 650 阿秒的脈衝。

最後,獲得阿秒脈衝這個祕密武器之後,我們的世界將迎來哪些變化呢?

-----廣告,請繼續往下閱讀-----

阿秒脈衝在各領域的應用

其實啊,有在關注諾貝爾獎都知道,諾貝爾獎通常不會頒給時下正夯的新興研究,前面講的研究,實際上都已經是二十多年前的往事了,而這些辛苦的科學家會在這麼多年後拿下諾貝爾獎的榮耀,正是因為阿秒雷射的發明經過了時間的考驗,成為非常普及的實驗技術,而且被大家公認為重要的科學貢獻。

當然,今年生醫獎的 mRNA 是個超快例外,有興趣的話,別忘了點擊下方影片,看看編劇都編不出來的 mRNA 研究歷程。

說了那麼多,阿秒雷射究竟對人類生活有什麼幫助呢?當然,它能讓我們更深刻了解物質還有光的本質,但是除了幫電子拍下美美的照片放在期刊的封面上,阿秒雷射可以用來做什麼?

在過去這二十年,許多研究已經找到了相當有潛力的應用。

-----廣告,請繼續往下閱讀-----

舉例來說,在醫療方面,阿秒雷射可以用來分析血液或尿液樣本。控制良好的超短脈衝可以精準的刺激生物樣本中的各種有機分子,讓這些分子震動並放出紅外線訊號。如果使用的脈衝長度太長,分子釋放的訊號就很容易和原本施加刺激的雷射混在一起,造成量測的困難。唯有阿秒等級的超短脈衝能夠實現這樣的量測。

這些紅外線光譜就像是質譜儀一樣,能幫助我們快速分析血液中的蛋白質、脂質、核酸等重點物質的關鍵官能基狀態。並透過機器學習的方式整合,成為個人化的健康狀態報表,或是做為診斷的依據,將精準醫療提升到全新的層次。

圖/attoworld

不只如此,發送超短脈衝的技術也可能革新當今的電腦運算。電腦運作的方式就是利用電晶體這種微小的開關,不斷的開開關關去發送一跟零的訊號,所以開關電流的速度便決定了你的運算速度。以半導體為基礎的電晶體,工作頻率通常不超過上百 GHz ,在時間上也就是十的負十一次方秒。

自從阿秒雷射技術普及之後,就有科學家想到:既然雷射脈衝的速度更快,那不如就別用半導體了,改用光學脈衝來控制電流作為運算的媒介。這個概念叫做光學電晶體(Optical Transistor)。

今年初,亞利桑那大學的團隊便發展示了如何利用小於十的負十五次方秒的超短雷射脈衝,來開關電流並傳送一與零的位元,這個頻率比現有半導體電晶體快了一萬倍以上。這顯示了光學方法的操作頻率可以有多快,或許能讓我們突破訊號處理和運算上的速度瓶頸。

看完這些便可以理解,阿秒等級的超快雷射脈衝的確是相當近代的一個科學里程碑。就像是科學革命時望遠鏡和顯微鏡的發明,讓人們看見那些最遠和最小的事物,超快脈衝用最快的時間解析度,讓我們看到許多人類從未看過的景象。

阿秒脈衝雷射的出現,是科學上的一個里程碑,讓我們能用更高的時間解析度,讓我們看到許多過去從未看到的景象。最後也想問問大家,在雷射這一塊,你最期待有哪些應用,或者最希望我們接著來講哪個主題呢?

  1. 為什麼醫美、眼科手術那麼喜歡用飛秒、阿秒雷射,真的有比較好嗎?
  2. 使用雷射脈衝的光學電晶體真的有可能取代傳統電晶體嗎?
  3. 除了光學電晶體,最近很夯的矽光子技術,聽說裡面也有用到雷射,可以一起來介紹嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
PanSci_96
1256 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。