Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

在太空中發現固態球碳

臺北天文館_96
・2012/02/29 ・905字 ・閱讀時間約 1 分鐘 ・SR值 498 ・六年級

-----廣告,請繼續往下閱讀-----

英國基爾大學(Keele University)天文學家Nye Evans等人,利用史匹哲太空望遠鏡(Spitzer Space Telescope),首度在太空中發現固體型式的巴克球(buckyball),也就是球形的富勒烯(Fullerene),或球形、中空的碳60,故又稱球碳。在此之前,太空中僅發現過氣態的微型球碳。

中空、球形的巴克球在地球上是極佳的導電或化學應用材料。科學家們利用史匹哲太空望遠鏡,在距離地球約6,500光年的蛇夫座XX星(XX Ophiuchi)雙星周圍偵測到一些細小的粒子,是由層層疊疊的球碳所組成的,球碳的含量非常多,可相當於10,000座聖母峰的體積。

由於新發現的這些球碳層層疊疊,形成固體狀態,就像在大木箱裡的柳橙一樣。不過,這些球碳疊成的微粒都非常小,遠小於人髮的直徑,但每一顆微粒中包含了數百萬個球碳。

天文學家首度在2010年藉由史匹哲確認球碳存在於太空中(請參考天文新知 2010-11-04 史匹哲在行星狀星雲中發現大量球碳),後來又確認球碳可存在於不同太空環境中(請參考天文新知  2011-08-11 天文學家可能在太空中找到石墨烯),最讓天文學家驚訝的是所發現的球碳含量相當於15個月球之多。在先前所有發現案例中,球碳均為氣體型態。但Evans等人在蛇夫座XX雙星周圍偵測到的卻是固態微粒,顯示在某些太空環境中所出現的球碳數量多得驚人,才會擁擠到彼此可串連而形成固態微粒。

-----廣告,請繼續往下閱讀-----

Evans等人之所以可以辨別蛇夫XX雙星周圍的球碳是固態型式,是因為它們發射出的輻射型態相當獨特,與氣態球碳不同。這項發現也讓天文學家確定球碳在太空中的含量,遠超過先前的預期。因此,這些遍佈全宇宙的球碳可能是非常重要的碳元素型態,而且是一種最基礎的生命建造型態。

地球上的球碳有各種不同的型式,例如燃燒的蠟燭產生的是氣態的球碳,不過在某些岩石中則是固態的型式,例如在俄羅斯發現的次石墨(硬瀝青,shungite)礦物,或是在美國科羅拉多發現、因閃電擊中地面而產生的閃電熔岩這種玻璃質岩石等。而在試管中,這種固態球碳則呈現為一種深棕色的黏性物型態,相當有趣。

資料來源:NASA’s Spitzer Finds Solid Buckyballs in Space[2012.02.22]

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
2

文字

分享

0
5
2
柔軟的導電革命:前所未見的無序高分子導體
linjunJR_96
・2022/12/30 ・1995字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

只有金屬會導電?

怎麼樣的材料能導電?這個問題的答案或許將永遠改寫。

怎麼樣的材料能導電?金屬?這個問題的答案或許將永遠改寫。圖/pexels

芝加哥大學的研究團隊發現了一種新的合成材料,擁有塑膠般柔軟的非晶體結構,同時又有金屬般的導電性質。

講到導體,首先會想到的是老字號的金屬家族。金銀銅鐵這類材料是由單一金屬原子排列成整齊的晶格,自由電子可以穿梭其中。大約從十八世紀開始,科學家便知道常見的金屬可以用來傳導電荷,並將物質分為導體和橡膠這類的絕緣體。利用金屬電纜和元件,人們打造了公共電力網和電力火車頭,將人類社會帶進了電氣時代。

利用金屬電纜和元件,人們打造了公共電力網和電力火車頭,將人類社會帶進了電氣時代。圖/pexels

相隔許久後,二十世紀後半幾次意外的實驗讓科學家發現聚乙炔這種高分子聚合物在摻雜了些許碘原子之後,也能表現出良好的導電性。這完全顛覆了人們對於導體的認知:

-----廣告,請繼續往下閱讀-----

原來除了金屬材料之外,塑膠聚合物也可以作為導體。

和傳統無機材料比起來,導電聚合物的製程簡單便宜,也有較好的可塑性,被俗稱為「導電塑膠」。這種突破性的材料帶來了新一波的電子產品,像是有機發光二極體(OLED)螢幕、有機太陽能電池、以及有機半導體科技等等。

儘管有著導電塑膠的響亮名號,但是導電聚合物和金屬導體一樣,都有緊密整齊的晶格結構,讓特定能量的電子可以順暢地流通。事實上,現代的固態理論認定固態材料必須要有這些整齊排列的晶格,才能有效地傳導電力。像是玻璃、黏土、橡膠這些結構無序的非晶體材料則肯定無法導電。

從左到右分別是有序的晶體、無序的非晶體、和氣體。圖/ Encyclopædia Britannica

再一次超越想像,無序材料也能導電

不過芝加哥大學博士生 Jiaze Xie(現為普林斯頓大學博士後研究員)近期發現了另外一種可能性。他選擇了 TTFtt 這種高分子作為嘗試的目標。TTF 結構本身在數年前就已經被發現可以作為導電高分子的組成單元,但因為合成技術困難,並沒有受到研究圈的關注。Jiaze Xie 將鎳原子鑲在碳原子和硫原子組成的長鏈上,合成出全新的 NiTTFtt,開始了一系列的實驗。

在實驗室中,NiTTFtt 展現了不錯的導電性。但最令人驚訝的是,X 射線繞射結果顯示它的分子結構是無序的,沒有整齊的晶格結構。它是一種理論上不該存在的「無序高分子」導體。

-----廣告,請繼續往下閱讀-----

事實上,NiTTFtt 的質地就像是小朋友的玩具黏土一樣,只要將一坨 NiTTFtt 黏在電路上,就可以開始導電。這表示它有著幾乎無人能敵的可塑性。除此之外,它還十分的穩定。實驗人員將它加熱到攝氏兩百多度、放在潮濕的空氣中幾十天、在它身上滴強酸強鹼,想盡各種方式考驗它,但它的導電性在各種條件下幾乎都能保持穩定,顯示其實際應用的潛力不容小覷。

這種被現有理論排除的材料為什麼有辦法存在呢?研究團隊利用掃描式電子顯微鏡和 X 光繞射的探測結果建構出了下圖的原子結構模型,企圖對這種前所未見的材料提出解釋。

每個綠色的鎳原子為基準可以看出一個個扁平的組成單元,他們首先組成長長的一維長條。圖/參考資料

以每個綠色的鎳原子為基準可以看出一個個扁平的組成單元。他們首先組成長長的一維長條(左),平行堆疊成千層派一樣的結構(中),並橫向排列形成立體的材料(右)。注意到每個長條排列的方向雖然一樣,但是並不需要有規律的秩序。

透過理論計算和電腦模擬,研究團隊發現長條之間即使經過平移或是扭曲,電子活動的範圍還是能維持足夠的重疊,讓電子能夠穿過不規則排列的千層派結構。也就是說,NiTTFtt 的特殊原子結構使得其導電性能在非結晶結構下屹立不搖。

-----廣告,請繼續往下閱讀-----

獨一無二的特性,或許可以帶來更多的突破

NiTTFtt 獨一無二的材料性質顛覆了固態物理的既有認知,讓這份研究登上了《自然》期刊。由於電子產品是如此無所不在,任何關於導電材料的發展都會帶來無限的可能性。NiTTFtt 的可塑性以及耐溫耐濕耐酸鹼的超人特性開啟了許多傳統導體無法想像的機會。

研究團隊向全世界示範了有機分子只要有適當的結構,就可以在非結晶排列下維持金屬般的導體性質。他們也期待「無序高分子」導體能夠像金屬導體和導電聚合物兩位大前輩一樣,為人類社會帶來革命性的科技突破。

-----廣告,請繼續往下閱讀-----

1

8
7

文字

分享

1
8
7
化學家的分子車輪:富勒烯(巴克球)──《改變世界的碳元素》
PanSci_96
・2020/12/06 ・2299字 ・閱讀時間約 4 分鐘 ・SR值 616 ・十年級

-----廣告,請繼續往下閱讀-----

化學家無不有著「想要製作極小機械」的願望。說到極小的機械,那就是僅由 1 個分子作成的機械,世界上不存在比這更小的機械。「這有可能實現嗎?」雖然有些人會抱持懷疑,但在 8-3 出現的分子夾,就算不能說是「機械」,也可作為「工具」。

既然如此,何不索性用 1 個分子組成汽車?基於此概念作成的就是單分子汽車。是不是非常符合碳元素王國的國王「專車」呢?

單分子單輪車

一開始便想要用分子製作「汽車」,門檻好像有點過高,所以一步步按照單輪車、雙輪車的順序來嘗試吧。首先,以一個分子組成一個輪子的汽車,能夠做出單分子單輪車嗎?

實際上化學家已經做出來了。雖然外觀跟常見的單輪車不同,但馬戲團小丑踩踏的球,也可說是一種單輪車?如此想來,可以使用前面 2-3 所說明的球狀分子,把 C60 富勒烯當作球本身,這樣便可製出單分子單輪車。

-----廣告,請繼續往下閱讀-----

單分子雙輪車

接著是單分子雙輪車。這個也很簡單,只要將 2 個富勒烯與直線狀的分子連接就行了,可以利用直線狀分子乙炔 HC≡CH。如此一來,也可製作出單分子雙輪車來。

用一個富勒烯製作單分子單輪車。以直線狀分子乙炔 HC≡CH 連接兩個富勒烯,可製成單分子雙輪車。圖/《改變世界的碳元素》

單分子三輪車

如下圖所示,也可製作出單分子三輪車來,但這跟現實中的三輪車有些不同,3 個「車輪(富勒烯)」鍵結成放射狀。結果,這台三輪車沒辦法向一定方向前進,僅能在固定位置旋轉。

以三鍵連接 3 個富勒烯,勉強可製成單分子三輪車。圖/《改變世界的碳元素》

化學家利用這個富勒烯單分子三輪車,置於黃金的晶體上,觀測到的動作如同預想,單分子三輪車僅在原地不停旋轉。

繼續研究下去。為什麼這台三輪車會持續在固定位置旋轉呢?如果此分子的動作僅是熱振動,或者在黃金晶體表面滑動,應該不會產生旋轉運動。如同預期,「旋轉運動」這件事證明了,作為車輪的富勒烯確實發揮車輪的功能,產生旋轉運動。這在化學上可說是意義非凡。

-----廣告,請繼續往下閱讀-----

我們知道人們「需要讚美」,化學也是如此。在發表實驗結果的時候,重要的是最大限度解讀結果中的意義,「讚美」實驗結果。如此一來,即使實驗結果沒有震驚全世界,也是對研究人員的一種肯定。「雖然是項無趣的實驗結果,還請容許我在此向各位報告」若是這麼說,就太辜負研究人員的努力了。

單分子四輪車

右頁上圖是單分子四輪車,目前已經實際合成出來了。這個分子有一個「工」字型底盤,上面帶有4個輪子,沒有少掉任何部分,是完全的單一分子。右頁下圖是該分子置於黃金晶體上的移動軌跡。重點在於,分子僅沿著短軸的方向移動,若要改變行進方向,此時分子會自動旋轉。這表示車輪的確有轉動前進。

以三鍵連接 4 個富勒烯,可製成單分子四輪車。圖/《改變世界的碳元素》
分子會旋轉,能夠改變行進方向。改編自 Y.Shirai, A.J.Osgood, Y.Zhao, K.F.Kelly, J.M.Tour, Nano Lett, 5, 2330 (2005)。圖/《改變世界的碳元素》

自力移動的「單分子汽車」

遺憾的是,以上的「汽車」皆沒有引擎,沒辦法獨立移動,需要有外物拉引才能移動,感覺像是令人懷念的人力車。

那麼,我們是否無法製造自發性移動的分子汽車?不,自己發動、自力移動的單分子機械已經製造出來了。

-----廣告,請繼續往下閱讀-----

2017年,舉辦了集結世界各地單分子汽車的國際賽事。會場設於法國土魯斯(Toulouse),稱為「奈米車賽」(Nano Car Race),共有 6 台車報名競賽,其中也有來自日本的分子車。

各位讀者覺得如何呢?雖然一時可能覺得難以置信,但這絕對不是在開玩笑。碳元素王國如此進步,已經進步到無論想要製作什麼樣的分子都不是問題。

然而,如下圖的簡單四角形分子環丁二烯(cyclobutadiene),至今卻沒有辦法合成。

四角形分子的環丁二烯,過去多次嘗試合成皆失敗。現在已經證明,這個分子的集合體,理論上無法合成。圖/《改變世界的碳元素》

這並不是因為化學不發達,而是根據前面的「前緣軌域理論」(參見 2-5),理論上無法做到。然而,這僅只是「分子的集合體不可能合成」,但若在周圍沒有其他東西,假設「宇宙空間中僅有這 1 個分子」的狀態,已經證實是有可能製作出來。實際上,學者已在實驗的狀態下成功合成了環丁二烯分子。能夠在理論上證明這件事,也是碳元素王國實力的一環。

-----廣告,請繼續往下閱讀-----
──本文摘自《改變世界的碳元素》,世茂出版,2020 年 09 月 30 日
-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。