0

0
0

文字

分享

0
0
0

它才不是鳳梨!地表最強植物「空氣鳳梨」的歷史與應用

彭士桓_96
・2017/11/27 ・2316字 ・閱讀時間約 4 分鐘 ・SR值 469 ・五年級

-----廣告,請繼續往下閱讀-----

空氣鳳梨是啥?能吃嗎?不!他不能吃。它跟我們常吃的關廟鳳梨同屬鳳梨科(Bromeliaceae),但不同屬。吃的鳳梨為鳳梨屬(Ananas),空氣鳳梨則為鐵蘭屬(Tillandsia)。空氣鳳梨(又稱空氣草、鐵蘭花)被人稱為「地表最強植物」,是因為它不需要土壤,只要給予水分及陽光就可以正常生長。你常常把植物養死嗎(黑手指 4 ni)?是時候認識這神奇的植物,讀完後不妨可以養一顆來增強你成為綠手指(green thumb)的信心吧!

多種型態的空氣鳳梨(左上方為新台幣 10 元硬幣),圖/作者提供。

空氣鳳梨成員——松蘿鳳梨的發現

埃爾南多德索托(Hernando De Soto)[2]。

那是誰發現了這神奇的植物呢?根據歷史的描述,最早發現的鐵蘭屬植物為松蘿傳說西班牙探險家 埃爾南多德索托(Hernando De Soto, 1500-1542)隨著軍隊進入了印加都城(中南美洲)以及美國南方,在探險的過程中他發現了一位原住民女性,追逐的過程中女子爬上了一棵橡樹躲藏;而這位探險家的山羊鬍誤了他的好事,鬍子纏上了樹、女子便趁機逃跑。在解開鬍子的過程中,他發現鬍鬚上多纏了一些綠色植物,便將之取名為西班牙苔蘚(Spanish moss),也就是我們所熟知的松蘿(Tillandsia usneoides)[1]。

松蘿。source:Wikipedia

突然進入了「松蘿鳳梨小教室」,關於松蘿鳳梨你不可不知的五件事[3]是:

  1. 這種植物其實並非苔蘚,它屬於鳳梨科鐵蘭屬,也就是「空氣鳳梨」大家族的成員之一。
  2. 它並非產自西班牙,而是原生於墨西哥、加勒比海及美國中南部(大部分的空氣鳳梨都發現於這些地區),會附生於樹木、電線桿上。
  3. 松蘿鳳梨也被原住民稱之為「樹的頭髮」,但它並非寄生,而是靠植物表面鱗狀組織吸收水分。
  4. 松蘿鳳梨的種子類似浦公英,如同白色的棉絮,可以藉由風或鳥類散佈。
  5. 松蘿鳳梨雖無營養價值,但可做為多種用途,原住民用其作成衣物、繩子、桶子、床墊、屋頂,乾燥後當作燃料。對於動物,則是很好的棲息地,鳥類築巢、青蛙與蜘蛛的居住、地面上蛇類的躲藏處等等。

Tillandsia 的命名

林奈氏分類系統的雙名法(屬名+種名)由瑞典動植物學家/醫生 Carl von Linné (1707-1778)所建立,為了紀念瑞典出生的芬蘭醫生兼植物學家 Elias Tillandz (1640–1693)在植物學上的成就,並將鐵蘭屬的植物以其作為命名。有趣的小故事,據說當 Elias Tillandz 還是學生時,從芬蘭圖爾庫搭船至瑞典斯德哥爾摩旅遊,由於他極度嚴重的暈船使他返航,並沿著波的尼亞灣步行約一千公里前往目的地,這也是為何他改名從 Tillander 改名為 Tillandz,瑞典語的意思是「藉由陸地、在陸地上」[4]。截至目前為止已經約莫有 650 種鐵蘭屬植物被發現命名。

-----廣告,請繼續往下閱讀-----
Elias Tillandz 的簽名[5]。

為何空氣鳳梨如此惹人憐愛?

空氣鳳梨除了相對好養之外,吸引人的原因還包含多種不同的形態(每種都有不同的中文綽號)、人為交種的樂趣、開花時的婚姻色(這時整株植株從翠綠轉為紅、黃或橘色)、側芽的生長、還有看它陪你慢慢生活的每一天(不過空鳳的生長速度很慢,需要極大的耐心)。臺灣並沒有原生種的空氣鳳梨,所以價格自然較為昂貴。

現在由於玩家明顯增多,因此除了網購之外,在大型的花市都可以見到攤販在販售,而常見且適應台灣氣候的品種價格也多為新台幣 50-250 元不等,而稀有或特別進口(主要的來源為:雨林、國際、鳥岩和熱帶)的品種則高價且較難養殖(建議新手不要隨意嘗試)。

是否可以養得好,最重要的就是環境,最好是通風的空間、恰當的溫度(10-32度)、適宜的光線(日照長短取決於不同品種)、傍晚至夜間給予水分(可給予低量的液肥)、避免紅蜘蛛攻擊等等。目前網路及坊間也有許多專門介紹空鳳養殖的書籍和資料可供參考。雖說是非常容易養的植物,但還是會因溫度過高、水分過多等因素而死亡,另外,最重要的就是避免強風將你的空氣鳳梨吹走,不然就變成「鳳飛飛」囉。

空氣鳳梨能作為空污監測器?

空鳳除了作為觀賞植栽之外,2002 年義大利教授 Luigi Brighigna 利用兩種空氣鳳梨[Tillandsia caput-medusae (女王頭)及 T. bulbosa (章魚),見下圖]在義大利佛羅倫斯進行空氣中多環芳香烴碳氫化合物(polycyclic aromatic hydrocarbons, PAHs)污染監測[6]。主要的實驗方法是利用 GC/MS 氣相色譜質譜儀來測定殘留在這兩種植物上的 PAHs 量,並且與儀器所記錄的雨量及懸浮微粒(PM10)進行比較。

-----廣告,請繼續往下閱讀-----

結果顯示,空氣中的污染粒子的確會吸附在空氣鳳梨表面,甚至進到空鳳內部,附著於空鳳的污染物也的確與儀器監測的結果形成正相關。由於空氣鳳梨相當容易養殖,且在南美及中南美洲生長,因此研究作者認為空氣鳳梨的確可以作為低成本的生物空汙監測器。

上為章魚,下為女王頭(左上方為新台幣十元硬幣)圖/作者提供。

你經常喜歡澆水嗎?你喜歡把玩這有趣的植物嗎?你煩惱陽台太小無法種植植物嗎?你很懶得換盆嗎?你想要有生命與你常相廝守嗎?是時候去瞧瞧這神奇的植物,讚嘆大自然的奧妙啊!感恩大自然,讚嘆大自然~

參考資料:

  1. Tillandsia usneoides Spanish Moss | Tropical Biodiversity. 
  2. Sider, S. Handbook to life in Renaissance Europe. (Oxford University Press, 2007).
  3. 10 Things You Should Know About Spanish Moss | Mental Floss. (Accessed: 19th October 2017)
  4. Tillandsia butzii.  (Accessed: 19th October 2017)
  5. Elias Tillandz Signature.  (Accessed: 19th October 2017)
  6. Brighigna, L. et al. The use of tropical bromeliads (Tillandsia spp.) for monitoring atmospheric pollution in the town of Florence, Italy. Rev. Biol. Trop. 50, 577–84 (2002).
  7. Bennett, B.C. (1986) The Florida Bromeliads: Tillandsia usneoides.      Journal of the Bromeliad Society 36: 149-151
-----廣告,請繼續往下閱讀-----
文章難易度
彭士桓_96
14 篇文章 ・ 0 位粉絲
生活即是科學,科學即是生活。臺大分醫所博士,虔誠信科學者。希望透過文字介紹有趣的科學,並期望自己在有限度的生命中,創造無限的價值。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

4
1

文字

分享

1
4
1
臺灣的空污問題與眾不同,如何使空污預報更精確?先瞭解大氣邊界層和感測物聯網吧!
研之有物│中央研究院_96
・2022/10/16 ・6113字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/陳儀珈
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

你以為的大氣,不是真實的大氣!

大氣邊界層是人類的生活範圍,也是大部分空氣污染物存在的地方。然而,傳統氣象學模擬的大氣邊界層結構並不符合臺灣的真實情況,因此真實的空氣污染現象和理論的模擬預測間往往存在顯著的差異,導致污染防制策略缺乏精確的指引。

中央研究院「研之有物」專訪院內環境變遷研究中心研究員兼空氣品質專題中心執行長周崇光,他是建立空品專題中心的主要推手,研究團隊從大氣結構出發,試圖改善臺灣空氣品質的診斷及預報,這項計畫集結了來自民生公共物聯網國家高速網路與計算中心環境保護署等跨部門的資源,以下讓我們一起看周崇光怎麼說。

中研院環變中心研究員兼空品專題中心執行長周崇光。圖/研之有物

根據國際貨幣基金組織(IMF) 2021 年的報告,臺灣位列全球第 22 大經濟體,這個只有 3.6 萬平方公里的小小島國,一年內卻可以創造出高達 7,855.89 億美元的市場價值。

-----廣告,請繼續往下閱讀-----

在美國國家航空暨太空總署(NASA)公布的地球夜景照中,我們彷彿可以看見,高樓一棟棟升起、工廠一座座建成、百貨一間間林立,在又長又窄的西半邊,從北到南形成臺北、臺中和高雄三大都會區。

西部臨海,東部靠山,這個寬度可能不到 100 公里的窄長地區,不僅聚集了臺灣 2,300 萬人的極大多數人口,凝聚出商業與工業的巨大產能,更集結了大量、複雜的「空氣污染物」。中研院「研之有物」專訪周崇光研究員,請他從空氣品質與都市氣象學的角度,細細剖析空污議題在這座海島上的獨特之處。

ASA 在 2016 年 12 月 31 日拍攝的夜景照,可看出臺灣有北、中、南三大亮區。圖/NASA

臺灣雖然小,但空汙問題好複雜!

臺灣國土面積僅有 3.6 萬平方公里,以大氣尺度來看非常的小,然而,我們在空氣污染面臨的挑戰卻異常艱鉅。

臺灣不僅處於許多境外污染源的下風處,接受來自各方的空氣污染物,各大都會區也因為地形的關係吃足了苦頭,整個中西部更是在窄長的地域中,面臨來自山、海的多重影響。

-----廣告,請繼續往下閱讀-----

以下圖的臺中都會區為例,臺中位處於中央山脈西側的中央,本身是一個有數個開口的盆地,被多重大氣動力機制所影響,包含季風、海陸風、山谷風以及熱島環流,形成極度複雜的區域環流。

盆地內的空氣污染物原本就不容易擴散,再加上複雜的大氣環流和大氣化學反應,讓臺中的空氣品質狀況非常、非常的複雜,無法使用現有的大氣理論進行簡單的描述,使得大氣科學家極為不易於觀測和研究臺中的空污情形。

「這裡就像是巫婆煉湯一樣。」周崇光這麼說。

臺中位處於中央山脈西側的中央,本身是一個有數個開口的盆地,被多重大氣動力機制所影響,包含季風、海陸風、山谷風以及熱島環流,形成極度複雜的區域環流。圖/研之有物(資料來源/周崇光)

臺灣在東北風的影響下,不適合傳統的高煙囪理論

周崇光笑著說,到處觀察「煙囪」是他的職業病。

-----廣告,請繼續往下閱讀-----

大陸環境的大氣結構相對簡單,自歐洲工業革命開始,傳統大氣科學的理論都告訴人們:越高、風越大,只要把煙囪建得高高的,就可讓風把污染物吹散、吹到很遠的地方。

平坦的大陸環境中,把煙囪建高可以讓煙流擴散及傳輸至很遠的地方。圖/rawpixel

「到了大陸國家,你會發現他們煙囪排出來的煙,經常是非常穩定的水平煙流,可以飄得很遠,這種煙流挾帶著空氣污染物飛到 10 幾公里外都不是問題!」,然而反觀臺灣的煙囪,卻很少出現這樣的水平煙流。

中研院空品專題中心對臺中火力發電廠的煙流觀測顯示,傳統高煙囪設計反而容易讓煙流進入「污染累積區」,在高度 450~800 公尺左右,橘色區域的空氣層風速僅有 0.5~3 公尺/秒。不同折線表示有兩個時段,分別是觀測當天凌晨 1 點到 3 點(紅線),以及晚上 19 點到 21 點(黃橘線)。圖/研之有物(資料來源/周崇光)

根據中研院空品專題中心對火力發電廠的煙流觀測資料,如果臺灣的煙囪蓋得跟大陸國家一樣高,有時候反而容易造成空氣污染物的累積。

從上圖可知,當臺灣處在微弱東北風的大氣環境之中,西部沿海風速最快的大氣區域(藍底),大約落在 200~400 公尺高之間,此區的風速大約為 5~6 公尺/秒左右,以東北風為主,是空氣污染物的「最佳擴散區」。

-----廣告,請繼續往下閱讀-----

若是再往上,到了 450~800 公尺左右,風速驟然下降(橘底),僅有 0.5~3 公尺/秒。這個區域的大氣就像是被下層的東北風與上層的南風「夾擊」一樣,在兩個不同方向的風的對切之下,形成一個風速很低的「污染累積區」。

因此,若臺灣真的按照傳統的大氣理論建造高煙囪時,反而會讓煙囪的高溫煙流進入污染累積區;換個做法,如果煙囪低一點,才可以被強風吹散。

不過周崇光話鋒一轉:低煙囪設計要相當謹慎,也很難推行。高溫煙流排出去會有很明顯的白煙(水蒸氣凝結),一般人都不喜歡看到白煙離居住地太近,因此實務上還會特別做加熱設計,讓煙流先往上浮,再擴散,等於加高了煙囪的高度,這在工程上稱為「有效煙囪高度」。降低煙囪高度除了有視覺污染的問題,污染排放點離民眾越近,當工廠發生緊急異常排放時,異常事件的衝擊風險也會越大。

和傳統理論不一樣?那就做出臺灣自己的資料吧!

這麼經典的高煙囪理論,為什麼不能用在臺灣?

-----廣告,請繼續往下閱讀-----

周崇光表示,大氣科學的理論大都源自於美國、歐洲,使得傳統大氣理論都更適用於大陸環境之下,因此難以直接應用於臺灣地狹人稠的海島結構,而中研院空品專題中心的目標之一,就是發展出屬於臺灣的「空污氣象學」。

周崇光提到:「臺灣跟大陸國家的空間條件實在差太多,所以我們必須要更精確知道,臺灣空氣污染物的高度分布到底長什麼樣子,才能更有效的管制並改善空品狀況。」

既然臺灣無法參考大陸型國家的大氣狀況,那麼小一點的、近一點的國家呢?韓國、日本的有沒有參考的價值?

周崇光笑著說,「你知道嗎?臺中盆地也才 10 幾公里,但是外圍的中央山脈高達 3,000 公尺以上!」就算是韓國、日本,它們的地理空間也比臺灣大多了,而且地形也沒有這麼複雜。

-----廣告,請繼續往下閱讀-----
臺中盆地的衛星空照圖。圖/Wikipedia

當這麼多的工廠、車輛都擠在這小小的區域,究竟會對臺灣的空氣品質造成多嚴重的後果?某種程度來說,這也許是個細思極恐的問題呀。

因此,為了國內空污氣象學的發展,搞懂臺灣的大氣邊界層(Atmospheric boundary layer)是刻不容緩的工作。

大氣邊界層除了是人類的生活範圍,也是大部分的空氣污染物存在的地方,又被稱為行星邊界層(Planetary boundary layer)。在氣象學中,大氣邊界層指的是「直接受到地表作用影響」的大氣,高度從地表一直到數百至數千公尺不等,是大氣層中最靠近地球表面的部分。

然而,傳統氣象學所模擬出來的大氣邊界層結構並不符合臺灣的真實情形,因此,大氣科學家必須釐清大氣邊界層的氣象參數、動力機制,未來才能夠更精準的找到影響都市氣象以及空氣品質的關鍵因子。

但周崇光也感慨的說,「坦白講,目前臺灣還沒有辦法很『系統化』的改善邊界層的模擬條件,但我們仍然不斷的在努力,透過很多很多的調查、研究、模擬參數,漸漸地發展出半經驗、半理論的結構,最終的目標是歸納成一個系統性的成果,作為臺灣空污氣象學最扎實的理論基礎。」

-----廣告,請繼續往下閱讀-----

從大規模的調查研究、積極補足知識的缺口、重新建立理論模型,到回頭檢視國家的空污防制策略,大氣科學家必須腳踏實地的、一步一步的,藉由大氣科學研究的力量,才能讓空氣品質管制更上一層樓。面對迫切的空氣污染防制議題、空污氣象學理論的不足,「空氣品質專題中心」也應運而生。

中研院在「大氣物理與化學」的研究群早已相當成熟,有著極為厚實的研究經驗和基礎,然而為了讓研究目標更明確、進一步聚集研究能量並進行跨部門的合作,中研院以提出空污議題的科學解釋與建議對策為目標, 2021 年 1 月在環境變遷研究中心之下成立空氣品質專題中心,成為全國規模最大的空氣品質專業研究機構。

除了宣示中研院對空污議題的重視之外,如此一來,研究預算的匡列、人力的評估,都有更紮實、更有架構的基礎。擺脫以往研究員們「自動自發」的空品研究,在中心的管理之下,空污的學術研究更能夠產生聚焦效果。

更精確的空氣品質預報

如果大家點入行政院環保署的空氣品質監測網,可以發現,目前來自中央監測的空氣品質預報的解析度並不高,由於空品狀況站數僅有 85 站,只能以「北部」、「竹苗」、「宜蘭」、「花東」、「中部」、「雲嘉南」、「高屏」等大範圍空品區進行未來三日的預報,尚無法以「縣市」或更小的區域為單位提供精準的預報。

全國空氣品質指標的測站點位圖,可看出共有 85 個測站。圖片資訊日期為 2022 年 9 月 13 日。圖/空氣品質監測網
未來三日空品區預報,目前僅能呈現大範圍空品區預報。圖片資訊日期為 2022 年 9 月 13 日。圖/空氣品質監測網

因此,為了提供更先進的空氣品質預報,致力掌握國內 PM2.5 及 O3 等空氣污染物濃度變化情形的「高解析度空氣品質診斷與預報模式發展計畫」,是空品專題中心相當關鍵的研究計畫之一,此計畫是行政院前瞻基礎建設中「民生公共物聯網數據應用及產業開展計畫」的一個分支,集結了中研院、國家高速網路與計算中心、環保署等跨部門資源。

該計畫預計發展一套 1 km*1 km 高解析度的 72 小時空氣品質預報模式,並描繪空氣污染物的 3D 空間分布,預期能夠對臺灣地區 PM2.5 及 O3 生成與傳輸過程進行更精確的模擬,進而應用於空氣污染事件的預報和成因診斷。

周崇光將這個計畫比喻為一個「神經系統」,由環保署統合高達 10,000 個感測器,就像是神經系統中的神經元,負責感知大氣環境中的變化,並透過民生公共物聯網提供的神經網路,將資訊傳輸至國家高速網路中心的超級電腦,而超級電腦就像是大腦一樣,提供強大的運算力,使得空污模式得以統合氣象條件、污染物排放量、以及感測器提供的環境變化狀況,計算和預報未來幾天空氣品質的可能變化。

雖然感測器來源不一,不同層級的靈敏度也有所落差,但隨著近年技術的進步和突破,微型感測器對 PM2.5 的監測資料已經具有足供參考的準確度,目前各縣市大約都有 100 個以上的微型感測器,環保署已經在全臺灣佈建了約 10,000 個感測器,透過高密度的監測數據進行資料分析,有效掌握全臺各地的空品狀態。

環保署已佈建約 1 萬個微型感測器,可監測各地 PM2.5 狀態。圖片資訊日期為 2022 年 9 月 13 日。圖/air 空氣網

此外,此研究計畫也希望藉由感測器的大量需求,協助推動臺灣感測器的產業,與經濟部、工研院合作推動感測器的國產化。目前工研院的技術已經技轉給國內廠商,國產感測器在環保署監測網的佔有率已達將近 3 成,未來會持續輔導相關廠商。

研究計畫一邊發展預報系統,也一邊透過微型感測器資料即時驗證預報的成效。就像是如果寫考卷時,我們可以一填答就馬上得知正確答案時,就可以隨時檢討自己的計算流程到底哪裡出了問題,不斷修正,找出最正確的解方。

同理,拜微型感測器遍布全臺之賜,大氣科學家逐漸能夠快速驗證空氣品質預報的模擬結果,有朝一日,國內空污的物理化學機制以及關鍵污染源,將不再是讓人頭痛的黑盒子。目前由於 PM2.5 的感測器已相對成熟且數量足夠,因此中研院空品專題中心已成功驗證 3 km*3 km 解析度之 PM2.5 預報資料,最終目標是精確到 1 km*1 km。

影/YouTube
中研院周崇光團隊已成功驗證高解析度 72 小時 PM2.5 預報資料,每小時可模擬 3 km*3 km 空間解析度,最終目標是精確到 1 km*1 km。圖片預報日期為 2021 年 12 月 18 日~2021 年 12 月 20 日。圖/研之有物(資料來源/周崇光)

如何讓空氣品質變好,又不影響現有的生活?

在中研院環變中心周崇光研究員帶領下的空品專題中心,其中一個核心精神,就是要對社會關鍵議題有貢獻。

專注發表學術論文是科學研究的本質,也是科學進步的動力,不過進行社會議題相關的科學研究通常會更辛苦,往往會花費極大的心力與時間。

做空氣污染防制就像是「精準醫療」的概念一樣,如何讓藥物只攻擊癌細胞而不對身體的其他地方造成太大的副作用?經過科學研究的探索後,如何讓臺灣的空氣品質更好而不衝擊社會文化和經濟?

空污管制並非是一味阻擋臺灣經濟和工業發展,空品專題中心希望可以藉由科學的力量,更精準、更沒有副作用的改善臺灣空氣品質。

除了大氣科學理論和空氣污染排放清單有所不足之外,像是能源政策、交通規劃、國土計畫都需要重頭思考。周崇光說:「一路研究下去,我們開始疑惑,當初為什麼我們都傻傻的,把這麼多的大型污染源擺在海邊,讓海風把污染物往內陸帶?為什麼臺灣的國土利用那麼集中?」這一些命題,都是一環扣一環。

最後周崇光強調,「空氣品質絕對是應用導向的研究,因此,我們除了做科學,也要讓這些研究結果有願景、有視野,讓臺灣變得更好。」

-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3808 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook