0

0
0

文字

分享

0
0
0

它才不是鳳梨!地表最強植物「空氣鳳梨」的歷史與應用

彭士桓_96
・2017/11/27 ・2316字 ・閱讀時間約 4 分鐘 ・SR值 469 ・五年級

-----廣告,請繼續往下閱讀-----

空氣鳳梨是啥?能吃嗎?不!他不能吃。它跟我們常吃的關廟鳳梨同屬鳳梨科(Bromeliaceae),但不同屬。吃的鳳梨為鳳梨屬(Ananas),空氣鳳梨則為鐵蘭屬(Tillandsia)。空氣鳳梨(又稱空氣草、鐵蘭花)被人稱為「地表最強植物」,是因為它不需要土壤,只要給予水分及陽光就可以正常生長。你常常把植物養死嗎(黑手指 4 ni)?是時候認識這神奇的植物,讀完後不妨可以養一顆來增強你成為綠手指(green thumb)的信心吧!

多種型態的空氣鳳梨(左上方為新台幣 10 元硬幣),圖/作者提供。

空氣鳳梨成員——松蘿鳳梨的發現

埃爾南多德索托(Hernando De Soto)[2]。

那是誰發現了這神奇的植物呢?根據歷史的描述,最早發現的鐵蘭屬植物為松蘿傳說西班牙探險家 埃爾南多德索托(Hernando De Soto, 1500-1542)隨著軍隊進入了印加都城(中南美洲)以及美國南方,在探險的過程中他發現了一位原住民女性,追逐的過程中女子爬上了一棵橡樹躲藏;而這位探險家的山羊鬍誤了他的好事,鬍子纏上了樹、女子便趁機逃跑。在解開鬍子的過程中,他發現鬍鬚上多纏了一些綠色植物,便將之取名為西班牙苔蘚(Spanish moss),也就是我們所熟知的松蘿(Tillandsia usneoides)[1]。

松蘿。source:Wikipedia

突然進入了「松蘿鳳梨小教室」,關於松蘿鳳梨你不可不知的五件事[3]是:

  1. 這種植物其實並非苔蘚,它屬於鳳梨科鐵蘭屬,也就是「空氣鳳梨」大家族的成員之一。
  2. 它並非產自西班牙,而是原生於墨西哥、加勒比海及美國中南部(大部分的空氣鳳梨都發現於這些地區),會附生於樹木、電線桿上。
  3. 松蘿鳳梨也被原住民稱之為「樹的頭髮」,但它並非寄生,而是靠植物表面鱗狀組織吸收水分。
  4. 松蘿鳳梨的種子類似浦公英,如同白色的棉絮,可以藉由風或鳥類散佈。
  5. 松蘿鳳梨雖無營養價值,但可做為多種用途,原住民用其作成衣物、繩子、桶子、床墊、屋頂,乾燥後當作燃料。對於動物,則是很好的棲息地,鳥類築巢、青蛙與蜘蛛的居住、地面上蛇類的躲藏處等等。

Tillandsia 的命名

林奈氏分類系統的雙名法(屬名+種名)由瑞典動植物學家/醫生 Carl von Linné (1707-1778)所建立,為了紀念瑞典出生的芬蘭醫生兼植物學家 Elias Tillandz (1640–1693)在植物學上的成就,並將鐵蘭屬的植物以其作為命名。有趣的小故事,據說當 Elias Tillandz 還是學生時,從芬蘭圖爾庫搭船至瑞典斯德哥爾摩旅遊,由於他極度嚴重的暈船使他返航,並沿著波的尼亞灣步行約一千公里前往目的地,這也是為何他改名從 Tillander 改名為 Tillandz,瑞典語的意思是「藉由陸地、在陸地上」[4]。截至目前為止已經約莫有 650 種鐵蘭屬植物被發現命名。

-----廣告,請繼續往下閱讀-----
Elias Tillandz 的簽名[5]。

為何空氣鳳梨如此惹人憐愛?

空氣鳳梨除了相對好養之外,吸引人的原因還包含多種不同的形態(每種都有不同的中文綽號)、人為交種的樂趣、開花時的婚姻色(這時整株植株從翠綠轉為紅、黃或橘色)、側芽的生長、還有看它陪你慢慢生活的每一天(不過空鳳的生長速度很慢,需要極大的耐心)。臺灣並沒有原生種的空氣鳳梨,所以價格自然較為昂貴。

現在由於玩家明顯增多,因此除了網購之外,在大型的花市都可以見到攤販在販售,而常見且適應台灣氣候的品種價格也多為新台幣 50-250 元不等,而稀有或特別進口(主要的來源為:雨林、國際、鳥岩和熱帶)的品種則高價且較難養殖(建議新手不要隨意嘗試)。

是否可以養得好,最重要的就是環境,最好是通風的空間、恰當的溫度(10-32度)、適宜的光線(日照長短取決於不同品種)、傍晚至夜間給予水分(可給予低量的液肥)、避免紅蜘蛛攻擊等等。目前網路及坊間也有許多專門介紹空鳳養殖的書籍和資料可供參考。雖說是非常容易養的植物,但還是會因溫度過高、水分過多等因素而死亡,另外,最重要的就是避免強風將你的空氣鳳梨吹走,不然就變成「鳳飛飛」囉。

空氣鳳梨能作為空污監測器?

空鳳除了作為觀賞植栽之外,2002 年義大利教授 Luigi Brighigna 利用兩種空氣鳳梨[Tillandsia caput-medusae (女王頭)及 T. bulbosa (章魚),見下圖]在義大利佛羅倫斯進行空氣中多環芳香烴碳氫化合物(polycyclic aromatic hydrocarbons, PAHs)污染監測[6]。主要的實驗方法是利用 GC/MS 氣相色譜質譜儀來測定殘留在這兩種植物上的 PAHs 量,並且與儀器所記錄的雨量及懸浮微粒(PM10)進行比較。

-----廣告,請繼續往下閱讀-----

結果顯示,空氣中的污染粒子的確會吸附在空氣鳳梨表面,甚至進到空鳳內部,附著於空鳳的污染物也的確與儀器監測的結果形成正相關。由於空氣鳳梨相當容易養殖,且在南美及中南美洲生長,因此研究作者認為空氣鳳梨的確可以作為低成本的生物空汙監測器。

上為章魚,下為女王頭(左上方為新台幣十元硬幣)圖/作者提供。

你經常喜歡澆水嗎?你喜歡把玩這有趣的植物嗎?你煩惱陽台太小無法種植植物嗎?你很懶得換盆嗎?你想要有生命與你常相廝守嗎?是時候去瞧瞧這神奇的植物,讚嘆大自然的奧妙啊!感恩大自然,讚嘆大自然~

參考資料:

  1. Tillandsia usneoides Spanish Moss | Tropical Biodiversity. 
  2. Sider, S. Handbook to life in Renaissance Europe. (Oxford University Press, 2007).
  3. 10 Things You Should Know About Spanish Moss | Mental Floss. (Accessed: 19th October 2017)
  4. Tillandsia butzii.  (Accessed: 19th October 2017)
  5. Elias Tillandz Signature.  (Accessed: 19th October 2017)
  6. Brighigna, L. et al. The use of tropical bromeliads (Tillandsia spp.) for monitoring atmospheric pollution in the town of Florence, Italy. Rev. Biol. Trop. 50, 577–84 (2002).
  7. Bennett, B.C. (1986) The Florida Bromeliads: Tillandsia usneoides.      Journal of the Bromeliad Society 36: 149-151
文章難易度
彭士桓_96
14 篇文章 ・ 0 位粉絲
生活即是科學,科學即是生活。臺大分醫所博士,虔誠信科學者。希望透過文字介紹有趣的科學,並期望自己在有限度的生命中,創造無限的價值。

0

0
0

文字

分享

0
0
0
如何靠溫度控制做出完美的料理?
鳥苷三磷酸 (PanSci Promo)_96
・2024/06/21 ・2766字 ・閱讀時間約 5 分鐘

本文由 Panasonic 委託,泛科學企劃執行。 

炸雞、牛排讓你食指大動,但別人做的總是比較香、比較好吃?別擔心,只要掌握關鍵參數,你也可以做出完美料理!從炸雞到牛排,烹調的關鍵就在於溫度的掌控。讓我們一起揭開這些美食的神秘面紗,了解如何利用科學的方法,做出讓人垂涎三尺的料理。

美味關鍵 1:正確油溫

炸雞是大家喜愛的美食之一,但要做出外酥內嫩的炸雞,關鍵就在於油溫的掌控。炸雞的油溫必須維持在 160 到 180℃ 之間。當你將炸雞放入熱油中,食物的水分會迅速蒸發,形成氣泡,這些氣泡能夠保證你的炸雞外皮酥脆而內部多汁。

水的沸點是 100℃,當麵衣中的水分接觸到 160℃ 的熱油時,會迅速汽化成水蒸氣。這個過程不僅讓麵衣變得酥脆,也能防止內部的雞肉變得乾柴。

-----廣告,請繼續往下閱讀-----

如果油溫過低,麵衣無法迅速變得酥脆,水分和油脂會滲透到食物中,使炸雞變得油膩。而如果油溫過高,水分會迅速蒸發,使麵衣變得過於硬或甚至燒焦。

油炸時,麵衣水分會快速汽化。圖/截取自泛科學 YT 頻道

美味關鍵 2:焦糖化與梅納反應

另一道美味的料理——牛排。無論是煎牛排還是炒菜,高溫烹調都會帶來令人垂涎的香氣,這主要歸功於焦糖化反應和梅納反應。

焦糖化反應是指醣類在高溫下發生的非酵素性褐變反應,這個過程會產生褐色物質和大量的風味分子,讓食物變得更香。而梅納反應則是指醣類與氨基酸在高溫下發生的反應,這個過程會產生複雜的風味分子,使牛排的色澤和香氣更加迷人。

要啟動焦糖化反應和梅納反應的溫度,至少要在 140℃ 以上。如果溫度過低,無法啟動這些反應,食物會顯得平淡無味。

-----廣告,請繼續往下閱讀-----
焦糖畫反應。圖/截取自泛科學 YT 頻道


焦糖化反應與梅納反應。圖/截取自泛科學 YT 頻道

油溫與健康

油溫不僅影響食物的風味,也關係到健康。不能一昧地升高油溫,因為每種油都有其特定的發煙點,即開始冒煙並變質的溫度。當油溫超過發煙點,會產生有害物質,如致癌的甲醛、乙醛等。因此,選擇合適的油並控制油溫,是保證烹調健康的關鍵。

說了這麼多,但是要怎麼控制溫度呢?

各類油品發煙點 。圖/截取自泛科學 YT 頻道

科學的溫度控制

傳統電磁爐將溫度計設在爐面下,透過傳導與熱電阻來測溫,Panasonic 的 IH 調理爐則有光火力感應技術,利用紅外線的 IR Sensor 來測溫,不用再等熱慢慢傳導至爐面下的溫度計,而是用紅外線穿透偵測鍋內的溫度,既快速又精準。

而且因為紅外線可以遠距離量測,如果甩鍋炒菜鍋子離開爐面,也能持續追蹤動態。不會立即斷開功率關掉,只要鍋子放回就會繼續加熱,效率不打折。

-----廣告,請繼續往下閱讀-----

好的溫度感測還要搭配好的溫度控制,才能做出一流的料理。日本製的 Panasonic IH 調理爐,將自家最自豪的 ECONAVI 技術放進了 IH 爐中。有 ECONAVI 的冷氣能完美控制你的室溫,有 ECONAVI 的 IH 調理爐則能為你的料理完美控溫。

有 ECONAVI 的 IH 爐不只省能源、和瓦斯爐相比減少碳排放,更為料理加分。前面說了溫度就是一切的關鍵,但是當我們將食材投到熱鍋中,鍋中的溫度就會瞬間下降,打亂物理與化學反應的節奏,阻止我們為料理施加美味魔法。

所以常常有好的廚師會告訴我們食物要分批下,避免溫度產生太大變化。Panasonic IH 調理爐,只要透過 IR Sensor 一偵測到溫度下降,就能馬上知道有食材被投入並立刻加強火力,讓梅納反應與焦糖化反應能持續發揮變化。而當溫度回到設定溫度,Panasonic IH 調理爐也會馬上將火力轉小,透過電腦 AI 的迅速反應,掌握溫度在最完美區間不劇烈起伏。

不僅保證美味關鍵,更不用擔心油溫超過發煙點而導致油品變質,讓美味變得不健康。

-----廣告,請繼續往下閱讀-----
透過 IR Sensor 精準測溫並提升火力。圖/截取自泛科學 YT 頻道
IH 調理爐完美控溫 。圖/截取自泛科學 YT 頻道

舒適的烹飪環境

最後,IH 爐還有一個大優點。相比於瓦斯爐,因為沒有使用明火,加熱都集中在鍋具。料理過程更安全,同時使用者也不會被火焰的熱氣搞得心煩意亂、汗流浹背,在廚房也能過得很舒適。而且因為熱能集中,浪費的能源也更少。

因為沒有使用明火,料理過程安全又舒適。圖/截取自泛科學 YT 頻道
Panasonic IH調理爐火力精準聚集在鍋內。圖/Panasonic提供

為了更多的功能、更好的效能,我們早已逐步從傳統按鍵手機換成智慧型手機。一樣的,在廚房內,如果你想輕鬆做出好料理,同時讓烹飪的過程舒適愉快又安全。試試改用 Panasonic IH 爐,一起享受智慧廚房的新趨勢吧!👉 https://pse.is/649gm5

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
200 篇文章 ・ 306 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 53 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

4
1

文字

分享

1
4
1
臺灣的空污問題與眾不同,如何使空污預報更精確?先瞭解大氣邊界層和感測物聯網吧!
研之有物│中央研究院_96
・2022/10/16 ・6113字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/陳儀珈
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

你以為的大氣,不是真實的大氣!

大氣邊界層是人類的生活範圍,也是大部分空氣污染物存在的地方。然而,傳統氣象學模擬的大氣邊界層結構並不符合臺灣的真實情況,因此真實的空氣污染現象和理論的模擬預測間往往存在顯著的差異,導致污染防制策略缺乏精確的指引。

中央研究院「研之有物」專訪院內環境變遷研究中心研究員兼空氣品質專題中心執行長周崇光,他是建立空品專題中心的主要推手,研究團隊從大氣結構出發,試圖改善臺灣空氣品質的診斷及預報,這項計畫集結了來自民生公共物聯網國家高速網路與計算中心環境保護署等跨部門的資源,以下讓我們一起看周崇光怎麼說。

中研院環變中心研究員兼空品專題中心執行長周崇光。圖/研之有物

根據國際貨幣基金組織(IMF) 2021 年的報告,臺灣位列全球第 22 大經濟體,這個只有 3.6 萬平方公里的小小島國,一年內卻可以創造出高達 7,855.89 億美元的市場價值。

-----廣告,請繼續往下閱讀-----

在美國國家航空暨太空總署(NASA)公布的地球夜景照中,我們彷彿可以看見,高樓一棟棟升起、工廠一座座建成、百貨一間間林立,在又長又窄的西半邊,從北到南形成臺北、臺中和高雄三大都會區。

西部臨海,東部靠山,這個寬度可能不到 100 公里的窄長地區,不僅聚集了臺灣 2,300 萬人的極大多數人口,凝聚出商業與工業的巨大產能,更集結了大量、複雜的「空氣污染物」。中研院「研之有物」專訪周崇光研究員,請他從空氣品質與都市氣象學的角度,細細剖析空污議題在這座海島上的獨特之處。

ASA 在 2016 年 12 月 31 日拍攝的夜景照,可看出臺灣有北、中、南三大亮區。圖/NASA

臺灣雖然小,但空汙問題好複雜!

臺灣國土面積僅有 3.6 萬平方公里,以大氣尺度來看非常的小,然而,我們在空氣污染面臨的挑戰卻異常艱鉅。

臺灣不僅處於許多境外污染源的下風處,接受來自各方的空氣污染物,各大都會區也因為地形的關係吃足了苦頭,整個中西部更是在窄長的地域中,面臨來自山、海的多重影響。

-----廣告,請繼續往下閱讀-----

以下圖的臺中都會區為例,臺中位處於中央山脈西側的中央,本身是一個有數個開口的盆地,被多重大氣動力機制所影響,包含季風、海陸風、山谷風以及熱島環流,形成極度複雜的區域環流。

盆地內的空氣污染物原本就不容易擴散,再加上複雜的大氣環流和大氣化學反應,讓臺中的空氣品質狀況非常、非常的複雜,無法使用現有的大氣理論進行簡單的描述,使得大氣科學家極為不易於觀測和研究臺中的空污情形。

「這裡就像是巫婆煉湯一樣。」周崇光這麼說。

臺中位處於中央山脈西側的中央,本身是一個有數個開口的盆地,被多重大氣動力機制所影響,包含季風、海陸風、山谷風以及熱島環流,形成極度複雜的區域環流。圖/研之有物(資料來源/周崇光)

臺灣在東北風的影響下,不適合傳統的高煙囪理論

周崇光笑著說,到處觀察「煙囪」是他的職業病。

-----廣告,請繼續往下閱讀-----

大陸環境的大氣結構相對簡單,自歐洲工業革命開始,傳統大氣科學的理論都告訴人們:越高、風越大,只要把煙囪建得高高的,就可讓風把污染物吹散、吹到很遠的地方。

平坦的大陸環境中,把煙囪建高可以讓煙流擴散及傳輸至很遠的地方。圖/rawpixel

「到了大陸國家,你會發現他們煙囪排出來的煙,經常是非常穩定的水平煙流,可以飄得很遠,這種煙流挾帶著空氣污染物飛到 10 幾公里外都不是問題!」,然而反觀臺灣的煙囪,卻很少出現這樣的水平煙流。

中研院空品專題中心對臺中火力發電廠的煙流觀測顯示,傳統高煙囪設計反而容易讓煙流進入「污染累積區」,在高度 450~800 公尺左右,橘色區域的空氣層風速僅有 0.5~3 公尺/秒。不同折線表示有兩個時段,分別是觀測當天凌晨 1 點到 3 點(紅線),以及晚上 19 點到 21 點(黃橘線)。圖/研之有物(資料來源/周崇光)

根據中研院空品專題中心對火力發電廠的煙流觀測資料,如果臺灣的煙囪蓋得跟大陸國家一樣高,有時候反而容易造成空氣污染物的累積。

從上圖可知,當臺灣處在微弱東北風的大氣環境之中,西部沿海風速最快的大氣區域(藍底),大約落在 200~400 公尺高之間,此區的風速大約為 5~6 公尺/秒左右,以東北風為主,是空氣污染物的「最佳擴散區」。

-----廣告,請繼續往下閱讀-----

若是再往上,到了 450~800 公尺左右,風速驟然下降(橘底),僅有 0.5~3 公尺/秒。這個區域的大氣就像是被下層的東北風與上層的南風「夾擊」一樣,在兩個不同方向的風的對切之下,形成一個風速很低的「污染累積區」。

因此,若臺灣真的按照傳統的大氣理論建造高煙囪時,反而會讓煙囪的高溫煙流進入污染累積區;換個做法,如果煙囪低一點,才可以被強風吹散。

不過周崇光話鋒一轉:低煙囪設計要相當謹慎,也很難推行。高溫煙流排出去會有很明顯的白煙(水蒸氣凝結),一般人都不喜歡看到白煙離居住地太近,因此實務上還會特別做加熱設計,讓煙流先往上浮,再擴散,等於加高了煙囪的高度,這在工程上稱為「有效煙囪高度」。降低煙囪高度除了有視覺污染的問題,污染排放點離民眾越近,當工廠發生緊急異常排放時,異常事件的衝擊風險也會越大。

和傳統理論不一樣?那就做出臺灣自己的資料吧!

這麼經典的高煙囪理論,為什麼不能用在臺灣?

-----廣告,請繼續往下閱讀-----

周崇光表示,大氣科學的理論大都源自於美國、歐洲,使得傳統大氣理論都更適用於大陸環境之下,因此難以直接應用於臺灣地狹人稠的海島結構,而中研院空品專題中心的目標之一,就是發展出屬於臺灣的「空污氣象學」。

周崇光提到:「臺灣跟大陸國家的空間條件實在差太多,所以我們必須要更精確知道,臺灣空氣污染物的高度分布到底長什麼樣子,才能更有效的管制並改善空品狀況。」

既然臺灣無法參考大陸型國家的大氣狀況,那麼小一點的、近一點的國家呢?韓國、日本的有沒有參考的價值?

周崇光笑著說,「你知道嗎?臺中盆地也才 10 幾公里,但是外圍的中央山脈高達 3,000 公尺以上!」就算是韓國、日本,它們的地理空間也比臺灣大多了,而且地形也沒有這麼複雜。

-----廣告,請繼續往下閱讀-----
臺中盆地的衛星空照圖。圖/Wikipedia

當這麼多的工廠、車輛都擠在這小小的區域,究竟會對臺灣的空氣品質造成多嚴重的後果?某種程度來說,這也許是個細思極恐的問題呀。

因此,為了國內空污氣象學的發展,搞懂臺灣的大氣邊界層(Atmospheric boundary layer)是刻不容緩的工作。

大氣邊界層除了是人類的生活範圍,也是大部分的空氣污染物存在的地方,又被稱為行星邊界層(Planetary boundary layer)。在氣象學中,大氣邊界層指的是「直接受到地表作用影響」的大氣,高度從地表一直到數百至數千公尺不等,是大氣層中最靠近地球表面的部分。

然而,傳統氣象學所模擬出來的大氣邊界層結構並不符合臺灣的真實情形,因此,大氣科學家必須釐清大氣邊界層的氣象參數、動力機制,未來才能夠更精準的找到影響都市氣象以及空氣品質的關鍵因子。

但周崇光也感慨的說,「坦白講,目前臺灣還沒有辦法很『系統化』的改善邊界層的模擬條件,但我們仍然不斷的在努力,透過很多很多的調查、研究、模擬參數,漸漸地發展出半經驗、半理論的結構,最終的目標是歸納成一個系統性的成果,作為臺灣空污氣象學最扎實的理論基礎。」

-----廣告,請繼續往下閱讀-----

從大規模的調查研究、積極補足知識的缺口、重新建立理論模型,到回頭檢視國家的空污防制策略,大氣科學家必須腳踏實地的、一步一步的,藉由大氣科學研究的力量,才能讓空氣品質管制更上一層樓。面對迫切的空氣污染防制議題、空污氣象學理論的不足,「空氣品質專題中心」也應運而生。

中研院在「大氣物理與化學」的研究群早已相當成熟,有著極為厚實的研究經驗和基礎,然而為了讓研究目標更明確、進一步聚集研究能量並進行跨部門的合作,中研院以提出空污議題的科學解釋與建議對策為目標, 2021 年 1 月在環境變遷研究中心之下成立空氣品質專題中心,成為全國規模最大的空氣品質專業研究機構。

除了宣示中研院對空污議題的重視之外,如此一來,研究預算的匡列、人力的評估,都有更紮實、更有架構的基礎。擺脫以往研究員們「自動自發」的空品研究,在中心的管理之下,空污的學術研究更能夠產生聚焦效果。

更精確的空氣品質預報

如果大家點入行政院環保署的空氣品質監測網,可以發現,目前來自中央監測的空氣品質預報的解析度並不高,由於空品狀況站數僅有 85 站,只能以「北部」、「竹苗」、「宜蘭」、「花東」、「中部」、「雲嘉南」、「高屏」等大範圍空品區進行未來三日的預報,尚無法以「縣市」或更小的區域為單位提供精準的預報。

全國空氣品質指標的測站點位圖,可看出共有 85 個測站。圖片資訊日期為 2022 年 9 月 13 日。圖/空氣品質監測網
未來三日空品區預報,目前僅能呈現大範圍空品區預報。圖片資訊日期為 2022 年 9 月 13 日。圖/空氣品質監測網

因此,為了提供更先進的空氣品質預報,致力掌握國內 PM2.5 及 O3 等空氣污染物濃度變化情形的「高解析度空氣品質診斷與預報模式發展計畫」,是空品專題中心相當關鍵的研究計畫之一,此計畫是行政院前瞻基礎建設中「民生公共物聯網數據應用及產業開展計畫」的一個分支,集結了中研院、國家高速網路與計算中心、環保署等跨部門資源。

該計畫預計發展一套 1 km*1 km 高解析度的 72 小時空氣品質預報模式,並描繪空氣污染物的 3D 空間分布,預期能夠對臺灣地區 PM2.5 及 O3 生成與傳輸過程進行更精確的模擬,進而應用於空氣污染事件的預報和成因診斷。

周崇光將這個計畫比喻為一個「神經系統」,由環保署統合高達 10,000 個感測器,就像是神經系統中的神經元,負責感知大氣環境中的變化,並透過民生公共物聯網提供的神經網路,將資訊傳輸至國家高速網路中心的超級電腦,而超級電腦就像是大腦一樣,提供強大的運算力,使得空污模式得以統合氣象條件、污染物排放量、以及感測器提供的環境變化狀況,計算和預報未來幾天空氣品質的可能變化。

雖然感測器來源不一,不同層級的靈敏度也有所落差,但隨著近年技術的進步和突破,微型感測器對 PM2.5 的監測資料已經具有足供參考的準確度,目前各縣市大約都有 100 個以上的微型感測器,環保署已經在全臺灣佈建了約 10,000 個感測器,透過高密度的監測數據進行資料分析,有效掌握全臺各地的空品狀態。

環保署已佈建約 1 萬個微型感測器,可監測各地 PM2.5 狀態。圖片資訊日期為 2022 年 9 月 13 日。圖/air 空氣網

此外,此研究計畫也希望藉由感測器的大量需求,協助推動臺灣感測器的產業,與經濟部、工研院合作推動感測器的國產化。目前工研院的技術已經技轉給國內廠商,國產感測器在環保署監測網的佔有率已達將近 3 成,未來會持續輔導相關廠商。

研究計畫一邊發展預報系統,也一邊透過微型感測器資料即時驗證預報的成效。就像是如果寫考卷時,我們可以一填答就馬上得知正確答案時,就可以隨時檢討自己的計算流程到底哪裡出了問題,不斷修正,找出最正確的解方。

同理,拜微型感測器遍布全臺之賜,大氣科學家逐漸能夠快速驗證空氣品質預報的模擬結果,有朝一日,國內空污的物理化學機制以及關鍵污染源,將不再是讓人頭痛的黑盒子。目前由於 PM2.5 的感測器已相對成熟且數量足夠,因此中研院空品專題中心已成功驗證 3 km*3 km 解析度之 PM2.5 預報資料,最終目標是精確到 1 km*1 km。

影/YouTube
中研院周崇光團隊已成功驗證高解析度 72 小時 PM2.5 預報資料,每小時可模擬 3 km*3 km 空間解析度,最終目標是精確到 1 km*1 km。圖片預報日期為 2021 年 12 月 18 日~2021 年 12 月 20 日。圖/研之有物(資料來源/周崇光)

如何讓空氣品質變好,又不影響現有的生活?

在中研院環變中心周崇光研究員帶領下的空品專題中心,其中一個核心精神,就是要對社會關鍵議題有貢獻。

專注發表學術論文是科學研究的本質,也是科學進步的動力,不過進行社會議題相關的科學研究通常會更辛苦,往往會花費極大的心力與時間。

做空氣污染防制就像是「精準醫療」的概念一樣,如何讓藥物只攻擊癌細胞而不對身體的其他地方造成太大的副作用?經過科學研究的探索後,如何讓臺灣的空氣品質更好而不衝擊社會文化和經濟?

空污管制並非是一味阻擋臺灣經濟和工業發展,空品專題中心希望可以藉由科學的力量,更精準、更沒有副作用的改善臺灣空氣品質。

除了大氣科學理論和空氣污染排放清單有所不足之外,像是能源政策、交通規劃、國土計畫都需要重頭思考。周崇光說:「一路研究下去,我們開始疑惑,當初為什麼我們都傻傻的,把這麼多的大型污染源擺在海邊,讓海風把污染物往內陸帶?為什麼臺灣的國土利用那麼集中?」這一些命題,都是一環扣一環。

最後周崇光強調,「空氣品質絕對是應用導向的研究,因此,我們除了做科學,也要讓這些研究結果有願景、有視野,讓臺灣變得更好。」

所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3523 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook