0

1
1

文字

分享

0
1
1

岡瓦那大陸地質歷史研究的死海文書:緬甸琥珀生物群

蕭昀_96
・2019/06/28 ・4466字 ・閱讀時間約 9 分鐘 ・SR值 566 ・九年級

琥珀。圖 / Wikipedia

琥珀,是一種質地透明的樹脂化石。其形成原因為古代植物的所分泌的樹脂,受到千萬年高溫高壓的作用下石化,並掩埋在地底。近年來,在緬甸地區所出產的琥珀不僅產量大、品質優良,還完好保存動植物,成為近年古生物學者所專注的焦點之一 (史,2017,見下圖)。

緬甸琥珀古昆蟲分類學研究成果近年各年度累計發表狀況。左圖,論文發表情況;右圖,新物種發表情況。圖 / 史,2017

截至 2018 年底為止,從緬珀生物群所描記的物種就有 1192 種,而這其中又以節肢動物占了絕大多數,共有 1117 種 (Ross,2019)。這些紀錄除了協助我們探討白堊紀晚期的生物多樣性以外,緬甸琥珀生物群相關的研究更增進了我們對於岡瓦那大陸 (Gondwanaland)的地質歷史的認識。

美國奧勒岡州立大學的 George Poinar Jr. 博士 2018 年在 〈歷史生物學 Historical Biology發表的論文便以緬珀生物群的古生物作為佐證,探討了岡瓦那大陸上的西緬地塊 (West Burma Block)的漂移過程。

你說的「岡瓦那大陸」是什麼大陸?

岡瓦那大陸(Gondwana / Gondwanaland),也稱岡瓦納古陸、南方大陸,是 5.73 億到 5.10 億年前的古代超大陸。岡瓦那大陸主要位於南半球,而後進一步分裂成數個陸塊,包含現今的澳洲、南美洲、南極大陸及非洲等南半球的大陸、紐西蘭和馬達加斯加島,以及當今已經漂流到北半球的印度古陸、阿拉伯半島。

-----廣告,請繼續往下閱讀-----

岡瓦那是從古代羅迪尼亞大陸分裂出來的兩塊超大陸之一,很多動物起源於岡瓦那大陸,並在此後的陸塊分離產生了間斷分布現象,而這也解釋了岡瓦那陸塊之間動物區系的類似性。

5.5億年前形成後的岡瓦那大陸。圖 / Wikipedia

緬甸琥珀與它們的產地

緬甸琥珀的礦區主要位於緬甸北部克欽邦的胡康河谷地帶西南側 (26°20’N, 96°36’E),古生物學證據指出緬甸琥珀形成於距今9700至11000萬年左右的白堊紀阿爾布階晚期(late Albian),而近年透過鈾鉛定年法 (U-Pb zircon dating)則近一步確認緬珀年代為 9879±62 萬年,介於阿爾布階 / 森諾曼階時期。

而從地質學的角度,緬珀礦區很有可能就位於所謂的西緬地塊 (West Burma Block),西緬地塊東臨實皆斷層 (Sagaing fault),相接於滇緬馬蘇地塊 (Sibumasu terrane),西側則面接印度板塊。

東南亞地區地質構造圖。圖 / Barber & Crow,2008

科學家們根據核磁共振光譜的結果,分析出南洋杉科的植物很有可能是緬甸琥珀的樹脂成份來源。南洋杉科 (Araucariaceae)是典型岡瓦那分布的針葉植物,現今分布於紐澳、馬來西亞和南美南部。

-----廣告,請繼續往下閱讀-----

同時,從解剖緬珀中的木頭材質,再次佐證其來源為南洋杉科的植物,而且貝殼杉屬 (Agathis) 現生成員常常生成大量的樹脂,進一步推測緬珀是由貝殼杉屬的物種所製造的樹脂形成。

貝殼杉屬 (Agathis)很有可能是製造緬甸琥珀的樹脂來源,圖為紐西蘭貝殼杉。圖 / Wikipedia

緬甸琥珀生物群中具有岡瓦那分布特色的生物

不少現生動植物類群呈現岡瓦那分布特色,意即主要分布於現今的南半球個大陸塊,本文作者即列舉數個例子佐證說明緬珀生物群起源於岡瓦那古陸。

植物:

根據化石紀錄,被子植物的起源時間至少可確切追溯至白堊紀早期(一些更古老的化石紀錄在分類上仍有待商榷),本文作者列舉了三類植物,分別為 Tropidogyne Poinar & Chambers、Palaeoanthella Poinar & Chambers 和 Endobeuthos Poinar & Chambers。

這些發現於緬甸琥珀的植物親緣上分別與 Cunionaceae、Monimiaceae (玉盤桂科) 和 Dilleniaceae (五椏果科)這些現今主要分布於南半球的類群關係接近。

-----廣告,請繼續往下閱讀-----
Tropidogyne pentaptera 是緬甸琥珀中所發現的開花植物,其親緣關係與 Cunionaceae 科的植物接近,該科植物分布澳洲、南太平洋、西印度洋、馬來西亞、馬達加斯加島和南美洲。圖 / 原始論文
Palaeoanthella huangii 亦為緬甸琥珀中所發現的開花植物,其親緣關係與玉盤桂科的植物接近。圖 / 原始論文
玉盤桂科 (Monimiaceae) 植物分布澳大拉西亞、馬來西亞、馬達加斯加島、非洲、墨西哥和南美洲。圖 / Wikipedia

動物:

節肢動物占了緬珀生物群中所發現的絕大多數生物物種,其中並不難從中發現所謂的「岡瓦那分布特色」,然而在節肢動物的情況裡,卻有著真/偽‧岡瓦那分布之分。

相比於那些分布在岡瓦那的被子植物已經是被確認起源於早白堊紀,更有不少無脊椎動物的科或亞科起源於中生代早期或古生代,他們曾一度廣泛分布於全球,由於其後的區域性滅絕,導致現生的類群呈現岡瓦那分布格局,而並非真正的岡瓦那起源物種(偽‧岡瓦那分布),舉例來說:現生的澳洲蕈蟲科 (Boganiidae)分布於澳洲、新喀里多尼亞和南非,為典型的岡瓦那分布格局,然而在中國內蒙古道虎溝化石層生物群(九龍山組,中侏儸世,約 1.65 億年前)發現的侏儸古澳洲蕈蟲 Palaeoboganium jurassicum 則證實本科在中生代時亦分布於勞亞大陸,其分布格局顯然比我們現今所知還要來得廣闊[註1]

作者提出了三個很有可能為真‧岡瓦那分布的例子,這三種在緬甸琥珀中所發現的昆蟲除了現生成員呈現岡瓦那分布格局外,它們均可歸類至現生的屬別,顯示這些屬別至少起源於白堊紀末期並且成功渡過了白堊紀末期的大滅絕事件而存續至今,由於屬級階層續存時間都是較為晚近的,不像科或亞科級階層(或以上)有可能上溯自中生代早期或古生代,因而更加可能是真‧岡瓦那起源的物種,這三個例子分別為:

  • (1) 單跗甲 Lepicerus georissoidesL. pretiosus:單跗甲屬的現生種類分布於墨西哥、中美及南美洲北部。
Lepicerus georissoides 為緬甸琥珀中所發現的單跗甲屬物種,該屬現生種物種分布中美及南美洲北部,並延伸至墨西哥。圖 / 原始論文
  • (2) 栓皮小蠹蟲 Microborus inertus:栓皮小蠹屬 (Microborus)現生種分布於中南美洲和非洲、馬達加斯加島。
  • (3) 蜍椿 Gelastocoris curiosus:蜍椿屬 (Gelastocoris) 現生種物種多樣性中心位於南美洲。
Gelastocoris curiosus 是緬甸琥珀中所發現的蜍椿屬物種,該屬現生種物種多樣性集中於南美洲。圖 / 原始論文

緬甸琥珀生物群,一探西緬地塊的漂移

雖然緬甸全境一度被認為是勞亞大陸的一部分,但目前地質學家已經提出西緬地塊起源於岡瓦那大陸,至於有關西緬地塊漂移至現今位置的過程細節則有兩個不同的假說:

-----廣告,請繼續往下閱讀-----
  1. 假說 A:西緬地塊直接從澳洲大陸分離後漂移至現今位置,與印度板塊的分離過程相互獨立發生。
  2. 假說 B:西緬地塊接合於印度板塊東側,兩者同時從岡瓦那大陸分離後,再行解構而定局於現今位置。

另外有關西緬陸塊從岡瓦那大陸分離的時間也有爭議,一說可追溯至泥盆紀,另一說則認為是在侏儸紀晚期。

有關西緬陸塊從岡瓦那大陸分離途徑的兩個假說:假說 A:西緬地塊直接從澳洲大陸分離;假說 B:西緬地塊與印度板塊一同從岡瓦那大陸分離。圖 / 原始論文

到底西緬陸塊是何時從分離出岡瓦那大陸的?又是採何種分離途徑?所幸,這些看似無解的難題在緬甸琥珀古生物的研究中綻放了一些曙光。

先前提及「被子植物的起源時間至少可確切追溯至白堊紀早期」,換言之,西緬陸塊從岡瓦那大陸分離的時間若是泥盆紀或侏儸紀,那麼不可能會有白堊紀早期才誕生的這些植物分布在西緬陸塊,也更不可能在緬珀生物群中發現這些物種,所以西緬陸塊分離自岡瓦那大陸的時間應不會早於白堊紀早期

根據白堊紀早期的海岸線研究,若西緬陸塊與印度板塊先行相接而一同離開南方大陸漂向東南亞,則西緬陸塊全境當時必是淹沒在海水面之下,就不可能有這些豐富的陸相生物了,因此,西緬陸塊應是從澳洲大陸分離後漂移至現今的位置的。然而,當我們想問那麼西緬地塊在從澳洲大陸分離而漂移前往東南亞的過程中,是否曾經被海水淹沒過一段時間和其細節,則非常困難。

在 1.1 到 1.15 億年前,澳洲內海的水位上升而使盆地淹水,進而壓縮島嶼陸塊的陸地面積,若當時西緬地塊尚連結在澳洲北岸,那必定是在水下無誤,其餘細節如究竟淹了多久?全境或部分淹沒?只有在與澳洲北岸尚且連接的時候淹沒?還是在漂流的過程也曾被淹沒過?諸如此類的問題目前尚且不能完整回答,不過能肯定的是「淹沒事件應當有發生過」,因為這些岡瓦納起源的動植物類群現今並不分布於緬甸境內 (也就是說還沒抵達現今位置,這些生物就已被包埋進入地底)。

-----廣告,請繼續往下閱讀-----

生物化石的研究,雖然有時候看似只是發現一個又一個已經滅絕的生物命名種,然而若適當地配合上生物地理學及地質事件等,我們就能進一步解析古地理和地球演變,有關古生物研究的延伸面向可參考筆者另外兩篇文章[註2,3]

參考論文

  • 史宏亮。2017。緬甸琥珀古昆蟲學研究進展。中國國際珠寶首飾學術交流會。(2017年11月,中國北京)。
  • Poinar, G.Jr. (2018): Burmese amber: evidence of Gondwanan origin and Cretaceous dispersion. Historical Biology, DOI: 10.1080/08912963.2018.1446531
  • Ross, A.J. (2019): Burmese (Myanmar) amber checklist and bibliography 2018. Palaeoentomology 2: 22–84.

註釋

-----廣告,請繼續往下閱讀-----
文章難易度
蕭昀_96
22 篇文章 ・ 17 位粉絲
澳洲國立大學生物學研究院博士,在澳洲聯邦科學與工業研究組織國立昆蟲標本館完成博士研究,目前是國立臺灣大學生態學與演化生物學研究所博士後研究員,曾任科博館昆蟲學組蒐藏助理。研究興趣為鞘翅目(甲蟲)系統分類學和古昆蟲學,博士研究主題聚焦在澳洲蘇鐵授粉象鼻蟲的系統分類及演化生物學,其餘研究題目包括菊虎科(Cantharidae)、長扁朽木蟲科(Synchroidae)、擬步總科(Tenebrionoidea)等,不時發現命名新物種,研究論文發表散見於國內外學術期刊 。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
真假琥珀怎麼分?寶石是如何仿造的?——《琥珀之書》
積木文化
・2023/11/17 ・2617字 ・閱讀時間約 5 分鐘

  • 作者/瑞秋・金(Rachel King)
  • 譯者/林潔盈

仿製琥珀

雷斆文中的琥珀指血紅色的琥珀。後來的作家用「蜜蠟」描述混濁的黃色琥珀。1 大約在一一〇〇年,宋代醫者寇宗奭寫道,中國西部使用的琥珀從「不均勻的蒼白」到「明亮清澈」皆有,而中國南方使用的則是「顏色深而混濁」。2 寇宗奭顯然很熟悉波羅的海琥珀與緬甸琥珀的不同外觀。緬甸琥珀與呈明亮藏紅花黃色或白色的琥珀色鈣鋁榴石不同,顏色可以從深棕色到非常淡的雪莉酒色,有時甚至像亮紅色,或是有鮮奶油倒入咖啡的漩渦紋路。更後來的文獻繼續將琥珀與水進行比較。其中一本寫於十八世紀關於葡萄牙人定居澳門的編年史,曾論及作為葡萄牙商品的水與金琥珀,讓紅色類型琥珀可能源於歐洲的觀點更具說服力。3

波羅的海琥珀。圖/wikimedia

歐洲人仿製琥珀的配方側重於黃色與淨度——這是波羅的海琥珀的特點,也是他們最熟悉的類型。他們鮮少提到再現斑紋或漩渦,對於模仿形狀說得更少。法國天文學家暨醫生安東.米索(Antoine Mizauld)提出的配方特別有名,也許是因為他提出了一種可供調整以仿造任何寶石的基本混合物。米索以琥珀為例:

各位可以如此偽造琥珀。先把白水晶(石英)打成非常細的粉末備用,取蛋白……,不停攪打並將泡沫弄掉,打到蛋白變成水狀;加入前述的粉末混和均勻,如果想做黃色的琥珀,則再加入少許藏紅花細粉,然後把混和物放入中空的蘆葦稈裡,……準備一些小玻璃瓶,把混和物放在滾燙的熱水中,直到他們變硬成形,再把它們拿出來,放在大理石上磨成你喜歡的形狀。4

米索也概述了過濾混合物以確保透明度的方法,以及如何形塑與乾燥以做成珠子和刀柄。這裡用了藏紅花,但其他配方則用了薑黃。一篇中國古代文獻建議加入魚卵。5 二〇二〇年春天,赫爾辛基(Helsinki)的研究人員按照近世的仿造琥珀配方進行實驗,結果令人著迷。6 製成的一些物質,儘管可能有點黏,卻是非常令人信服的琥珀替代物;部分在幾天內發了黴,不得不丟棄。相形之下,早期歐洲幾乎沒有模仿白色琥珀(圖 46)的配方,白色琥珀通常為普魯士統治者的御用品,也是藥用首選,不過確實也有一些方法能將黃色琥珀變白,例如放在鹽水中煮沸。

〔圖 46〕天然白色琥珀,俄羅斯加里寧格勒琥珀博物館收藏。

人們也會將琥珀放進油裡煮,讓外觀更加清澈,如果琥珀因為年久而裂開或發紅,也可以藉著這種方法復原外觀。十七世紀末,工匠克里斯蒂安.波爾希寧(ChristianPorschinen)運用這種方法製作出琥珀鏡片與琥珀菱鏡,其工藝的知識基礎在於,將已切割和拋光的琥珀放入油中烹煮能夠漂淺琥珀的顏色。7 油煮琥珀也可以替琥珀著色。此法已為羅馬人所知,後來於十八世紀重新發現,這讓琥珀可以染成「紅色、藍色、綠色等」,也能做成類似其他石材的模樣。8

-----廣告,請繼續往下閱讀-----
多明尼加出產天然的藍琥珀。圖/wikimedia

重量與可溶性

琥珀非常輕,會浮在鹽水上,有人甚至說會浮在啤酒上;一個成功的仿製品不僅要模仿顏色與淨度,也得模仿這個特質。有些配方給出了讓人可以計算後續體積的量。某個配方建議用三十公克櫻桃樹脂、六十公克阿拉伯膠與十六個蛋黃做成黏稠的混合物。9 如此一來大約可得到四百公克的濕混合物,乾燥後可能比琥珀的重量稍重。在赫爾辛基的實驗中,正是這種類型的配方會做成導致發黴的團塊。在其他情況下,特別是使用石英粉的配方,重量會是露餡之處。可溶性也會出賣最終產物。

眾所周知,仿製琥珀在水裡會有不同的表現,而正是出於這個原因,十六世紀作家休.普拉特(Hugh Plat)警告他的讀者,仿製琥珀一定要在室內使用。10 從當代歐洲現存仿製琥珀數量並不多的情形來看,耐久性顯然也是個問題。11

氣味

除了外觀與重量以外,假琥珀的氣味是另一個挑戰。一份原始資料說明了複製真琥珀氣味的高難度,強調這個特徵可能特別有助於辨識假琥珀。12 真琥珀因其香氣而珍貴,古羅馬作家馬提亞爾(Martial)曾經把琥珀的香氣比作情人的吻。13 後來的歐洲史料將其描述為甜美的,並以松樹的氣味比擬。還有說琥珀聞起來有苦味,並將它比作瀝青。也有人說琥珀的氣味隨著顏色而變。在德國的薩克森,蓋歐克.鮑爾發現白琥珀最令人愉悅,但表示所有的琥珀都具備沒藥的味道。14 部分中國文獻討論到芳香琥珀。有人認為芳香琥珀是非化石樹脂,如同沒藥。十七世紀法國學者塞繆爾.恰普佐(Samuel Chappuzeau)雖然未曾造訪中國,但他評論了將琥珀扔進香罐以釋放其氣味並點燃火焰的做法,認為這種操作解釋了中國商人在巴達維亞(Batavia,今雅加達)從荷蘭人手中大量購買琥珀的情形。15

——本文摘自《琥珀之書:傳承萬物記憶、透視歷史風貌的永恆傳奇》,2023 年 9 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

註解

  1. 許曉東,《中國古代琥珀藝術》 (Zhongguo gu dai hu po yi shu/Chinese Ancient Amber Art) (Beijing, 2011), p. 6.
  2. Laufer, Historical Jottings, p. 219.
  3. 同上,p. 242.
  4. 這個英文譯本來自約翰.雅各布.韋克(Johann Jacob Wecker),Eighteen Books of the Secrets of Art and Nature (London, 1660), p. 233.
  5. Laufer, Historical Jottings, p. 218.
  6. ‘Refashioning the Renaissance Team, Imittion Amber and Imitation Leopard Fur’, www.aalto.fi, accessed 19 September 2021; Sophie Pitman, ‘Una corona di ambra falsa: Imitating Amber Using Early Modern Recipes’, www.refashioningrenaissance.eu, 30 April 2020.
  7. Johann Heinrich Zedler, Grosses vollständiges Universal Lexicon aller Wissenschafften und Künste (Halle and Leipzig, 1733), vol. III, col. 1401.
  8. Johann Christian Kundmann, Rariora naturae (Wrocław and Leipzig, 1726), pp. 219–26.
  9. John Houghton, A Collection for the Improvement of Husbandry and Trade (London, 1727), vol. II, p. 64.
  10. Hugh Plat, The Jewell House of Art and Nature (London, 1594), pp. 67–8.
  11. 關於這些資料來源的進一步細節, 參考 Rachel King, ‘To Counterfeit Such Precious Stones as You Desire: Amber and Amber Imitations in Early Modern Europe’, in Fälschung, Plagiat, Kopie: künstlerische Praktiken in der Vormoderne, ed. Birgit Ulrike Münch (Petersburg, 2014), pp. 87–97.
  12. Stanislaus Reinhard Acxtelmeier, Hokus-pokeria, oder, Die Verfälschungen der Waaren im Handel und Wandel (Ulm, 1703), p. 24.
  13. D.R.S. Shackleton Bailey, trans., Martial: Epigrams, 3rd edn (Cambridge and London 1993), vol. I, bk III, epi. 65.
  14. M. C. Bandy and J. A. Bandy, trans., Georgius Agricola: De natura fossilium (Textbook of Mineralogy) (New York, 1955), p. 77.
  15. Adrian Christ, ‘The Baltic Amber Trade, c. 1500–1800: The Effects and Ramifications of a Global Counterflow Commodity’, MA thesis, University of Alberta, 2018, p. 112.
-----廣告,請繼續往下閱讀-----