0

1
1

文字

分享

0
1
1

氦的發現|科學史上的今天:10/26

張瑞棋_96
・2015/10/26 ・920字 ・閱讀時間約 1 分鐘 ・SR值 524 ・七年級

自從德國物理學家克希荷夫(Gustav R. Kirchhoff)與化學家本生於 1859 年共同發明化學元素的光譜分析法,並指出陽光的「夫朗和斐線」就是不同化學元素的光譜後,科學家紛紛透過光譜分析尋找新的元素。

高壓電場下發出橙紅色光的氦。圖片來源:Alchemist-hp@wikipedia

法國天文學家讓森(Pierre Janssen, 1824-1907)特地於 1868 年 8 月 18 日這一天跑到印度的 Guntur,因為此地才能看到日全食。日全食時,黑色太陽邊緣的日珥清晰可見,讓森就能用光譜儀觀測這太陽表面噴發出的強烈火舌,分析其中所含的元素。結果他在光譜中發現了一條特殊的的黃色亮線,他想再觀測確認,但日食已過,讓森情急之下,想出在光譜儀中加上剛好遮住太陽的小圓盤,如此就能製造日食的效果。他改造好光譜儀之後再次觀測日珥,確認是新的光譜線後,將觀測結果寄交法國科學院。

10 月 23 日,就在讓森的報告抵達法國科學院這一天,英國天文學家洛克耶(Norman Lockyer, 1836-1920)也在英國皇家學會報告同樣的發現。不過洛克耶是於 8 月 20 日在倫敦做的觀測;他沒有千里迢迢地跑到印度,因為他也想到了讓森想到的原理。英國皇家學會的秘書於 10 月 26 日向法國科學院告知洛克耶的發現,因此不用再做驗證了,當天法國科學院就對外宣布讓森與洛克耶兩人共同發現太陽新的光譜線 D3。

不過此時兩人都還沒想到這新的光譜線可能代表新的元素,是洛克耶繼續仔細比對現有已知元素的光譜線,發現都不符合後,才於十一月宣布那是地球尚未發現的元素;他將它命名為「氦」(helium),取自太陽的希臘文 helios。

-----廣告,請繼續往下閱讀-----

氦是惰性氣體,又無色無味,難怪這宇宙第二豐富的元素在此之前竟從未被發現。1882 年,義大利物理學家帕密里(Luigi Palmieri)才在觀測維蘇威火山的岩漿時,首次在地球上發現 D3 光譜線,證實地球也存在氦元素。氦在自然界主要存在於天然氣與放射性礦物中。放射性礦物輻射出的 α 粒子就是氦原子核,拉塞福於 1907 年將 α 粒子打入真空管,放電後觀察管內新氣體發出的光譜,才確認 α 粒子就是氦原子核。沒錯,用的還是當年讓森與洛克耶所用的光譜分析法。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 955 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
查德威克誕辰|科學史上的今天:10/20
張瑞棋_96
・2015/10/20 ・842字 ・閱讀時間約 1 分鐘 ・SR值 548 ・八年級

-----廣告,請繼續往下閱讀-----

1911 年,拉塞福發表劃時代的原子模型,指出原子的內部結構是電子圍繞著體積極小的原子核。問題是,若按照電荷數推算原子核內的質子數量,加總後的質量還是小於原子的質量,相差的質量跑去哪裡?對此,拉塞福提出「中性粒子假說」,主張原子核內還有電中性的粒子,是由電子與質子結合而成;例如氫的原子核就是由兩個質子和一個電子所組成。

查德威克。圖片來源:wikipeda

雖然 1928 年就有物理學者根據量子力學指出原子核內不應該有電子,但因為量子力學尚未成為主流,加上拉塞福的權威性,仍然沒有取以代之的模型。沒想到,就像拉塞福推翻恩師 J. J. 湯姆森的布丁模型,最後推翻拉塞福的中性粒子假說的人,也是他自己的徒弟查德威克。

查德威克家境清寒,都是靠獎學金才能繼續升學;大學就讀物理系的系主任就是拉塞福。他念完碩士後,於1913年留學德國,隔年第一次世界大戰爆發,他因為是英國人而被拘禁在集中營,直到 1918 年才獲釋。返國後,他繼續跟著拉塞福做研究。

1932 年初,約里奧-居禮夫婦(居里夫人的女兒和女婿)從原子核中轟出了中子,但他們誤以為那只是特殊的 γ 射線。查德威克從他們論文中的實驗數據看出那應該是一種未知的粒子,於是他日以繼夜地展開實驗,兩星期後就獲得初步成果。二月,他先向《自然》期刊投稿一篇快訊《中子存在的可能性》,五月再正式發表論文,題目就改成《中子的存在》了。

-----廣告,請繼續往下閱讀-----

查德威克發現了一個新的基本粒子,因而於 1935 年獲得諾貝爾物理獎。確認中子的存在後,科學家發現不帶電的中子更能有效地打入原子核,引發核分裂的連鎖反應。沒多久,美國用於製造原子彈,結束第二次世界大戰;戰後,各國繼續用以發展核子武器與核能發電,人類從此跨入禍福相倚的原子時代。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

張瑞棋_96
423 篇文章 ・ 955 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
索迪誕辰 │ 科學史上的今天:09/02
張瑞棋_96
・2015/09/02 ・1071字 ・閱讀時間約 2 分鐘 ・SR值 571 ・九年級

「看在上帝的份上,不要叫它『蛻變』(transmutation)吧!他們會把我們當成煉金術士砍頭的。」1901 年,當拉塞福(Ernest Rutherford)聽見索迪興奮地前來報告:具放射性的釷會自發「蛻變」為鐳時,趕忙叮嚀他注意用詞。

當時距貝克勒(Henri Becquerel)無意發現放射性才不過五年,放射性仍是一種相當新奇且神秘的現象;拉塞福本人雖然在 1899 年發現 α 與 β 兩種放射線,卻也不知其性質。索迪(Frederick Soddy, 1877-1956)於 1900 年從英國來到加拿大跟著拉塞福做研究後,有了擅長化學的索迪幫忙,兩人才很快發現釷、鐳、錒等放射性元素都會產生類似惰性氣體的氣體,而且之後檢查這些元素,竟會發現另一種元素。

拉塞福與索迪因此發現放射線是元素的原子裂解,蛻變成另一種元素的過程中的產物。然而當時普遍認為既是基本元素,就不可能再分裂,尤其元素蛻變更是煉金術才有的想法,所以拉塞福才要索迪用詞謹慎。果然他們發表論文後,招來不小質疑,所幸經過其他化學家的實驗證實,他們的發現才獲得認可,拉塞福也因此獲得 1908 年的諾貝爾化學獎;可惜貢獻卓著的索迪被當成只是執行的助手,無緣獲獎。

索迪於 1903 年即回到英國,與倫敦大學的拉姆西(William Ramsay)一起研究。他們先用光譜分析確認鐳產生的惰性氣體就是氦氣,拉塞福再於 1907 年進一步確認這氦氣是由鐳放射出來的 α 粒子形成,證明 α 粒子就是氦原子核。

-----廣告,請繼續往下閱讀-----

1910 年,索迪宣稱放射性會造成元素有不同變種,雖然仍是化學與物理性質都沒變的同一元素,但原子量卻不一樣。這個主張再次引來質疑與批評,因為問世已四十年的門得列夫週期表就是以原子量來排列,除了一些元素略有不符需作調整,基本上大家已認定原子量決定一切,怎麼可能同一個元素會有不同原子量還有相同化學性質?!

1913 年成為關鍵的一年。這一年,拉塞福的年輕門生莫斯利(Henry Moseley)發現化學性質取決於原子核的電荷數,而不是原子量,修正了門得列夫的週期表。索迪因此得以發表「位移法則」──元素釋出一個 α 粒子,會在週期表上向左平移兩個位置;釋出一個 β 粒子則會向右移一個位置。他並發明「同位素」(isotope)一詞來稱呼不同原子量的同一元素。更重要的,這一年亞斯頓(Francis Aston)在氣體放電管發現了氖的同位素蹤跡,才會進而在 1919 年用質譜儀證明同位素的存在。

索迪終於在 1921 年獲頒諾貝爾化學獎;亞斯頓也緊接著得到 1922 年的諾貝爾化學獎。巧的是,兩人同年出生,生日只差一天,在月曆上就像週期表上緊鄰的元素。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----

 

張瑞棋_96
423 篇文章 ・ 955 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
1

文字

分享

0
1
1
氦的發現|科學史上的今天:10/26
張瑞棋_96
・2015/10/26 ・920字 ・閱讀時間約 1 分鐘 ・SR值 524 ・七年級

自從德國物理學家克希荷夫(Gustav R. Kirchhoff)與化學家本生於 1859 年共同發明化學元素的光譜分析法,並指出陽光的「夫朗和斐線」就是不同化學元素的光譜後,科學家紛紛透過光譜分析尋找新的元素。

高壓電場下發出橙紅色光的氦。圖片來源:Alchemist-hp@wikipedia

法國天文學家讓森(Pierre Janssen, 1824-1907)特地於 1868 年 8 月 18 日這一天跑到印度的 Guntur,因為此地才能看到日全食。日全食時,黑色太陽邊緣的日珥清晰可見,讓森就能用光譜儀觀測這太陽表面噴發出的強烈火舌,分析其中所含的元素。結果他在光譜中發現了一條特殊的的黃色亮線,他想再觀測確認,但日食已過,讓森情急之下,想出在光譜儀中加上剛好遮住太陽的小圓盤,如此就能製造日食的效果。他改造好光譜儀之後再次觀測日珥,確認是新的光譜線後,將觀測結果寄交法國科學院。

10 月 23 日,就在讓森的報告抵達法國科學院這一天,英國天文學家洛克耶(Norman Lockyer, 1836-1920)也在英國皇家學會報告同樣的發現。不過洛克耶是於 8 月 20 日在倫敦做的觀測;他沒有千里迢迢地跑到印度,因為他也想到了讓森想到的原理。英國皇家學會的秘書於 10 月 26 日向法國科學院告知洛克耶的發現,因此不用再做驗證了,當天法國科學院就對外宣布讓森與洛克耶兩人共同發現太陽新的光譜線 D3。

不過此時兩人都還沒想到這新的光譜線可能代表新的元素,是洛克耶繼續仔細比對現有已知元素的光譜線,發現都不符合後,才於十一月宣布那是地球尚未發現的元素;他將它命名為「氦」(helium),取自太陽的希臘文 helios。

-----廣告,請繼續往下閱讀-----

氦是惰性氣體,又無色無味,難怪這宇宙第二豐富的元素在此之前竟從未被發現。1882 年,義大利物理學家帕密里(Luigi Palmieri)才在觀測維蘇威火山的岩漿時,首次在地球上發現 D3 光譜線,證實地球也存在氦元素。氦在自然界主要存在於天然氣與放射性礦物中。放射性礦物輻射出的 α 粒子就是氦原子核,拉塞福於 1907 年將 α 粒子打入真空管,放電後觀察管內新氣體發出的光譜,才確認 α 粒子就是氦原子核。沒錯,用的還是當年讓森與洛克耶所用的光譜分析法。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 955 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
發現了 212 種同位素──亞斯頓誕辰 │ 科學史上的今天:09/01
張瑞棋_96
・2015/09/01 ・1091字 ・閱讀時間約 2 分鐘 ・SR值 589 ・九年級

-----廣告,請繼續往下閱讀-----

1897 年,J. J. 湯姆森證實了陰極射線就是電子,沒想到第二年維因 (Wilhelm Wien) 發現還有陽極射線,也會因電場與磁場的作用改變方向。湯姆森自己摸索了幾年後,決定找個工藝強的人來幫忙,亞斯頓因此雀屏中選。結果他不但幫了湯姆森大忙,還送給全世界一個大禮。

亞斯頓原本一直都是研讀化學,畢業後還到釀酒廠工作了三年,結果興趣竟轉向物理。他 1903 年回到學校當研究助理,自己吹玻璃、製作真空幫浦,打造陰極射線管,研究氣體在管中放電的現象,沒多久就發現以他為名的「亞斯頓暗區」。如今湯姆森要研究陽極射線,亞斯頓自是最佳人選。

1910 年,亞斯頓來到卡文迪許實驗室,開始幫湯姆森製造氣體放電管。亞斯頓除了改進真空幫浦、電場及磁場裝置,還將相機整合進去,配合聚焦能力的改良,可以自動拍攝氣體離子的運動軌跡。1913 年,他們拍到氖離子兩道不同的拋物線軌跡,一個原子量 20,另一個原子量 22。因為氖的原子量是 20.2,因此湯姆森認為較重那個只是二氫化氖,但亞斯頓傾向只晚他一天出生的索迪 (Frederick Soddy) 不久前發表的主張:同一個元素可能有不同質量的同位素。

第二年爆發第一次世界大戰,亞斯頓加入空軍,負責研判氣象,直到 1919 年才返回卡文迪許實驗室。新任主任拉塞福對元素衰變原本就相當瞭解,事實上,這方面的研究正是索迪當他助理時,兩人一起做的,因此拉塞福非常鼓勵亞斯頓繼續研究同位素。

-----廣告,請繼續往下閱讀-----

亞斯頓改良當初發明的氣體放電裝置,打造出結合離子源、質量分析器與偵測器的質譜儀,可以直接測量樣品的「質量─電荷比」,除了能從測出元素中各同位素的質量,還能根據強度測出它們的豐度。亞斯頓重拾戰前的研究,證明的確有氖 -20 與氖 -22 兩種同位素,而且兩者比例是 10 比 1,這也解釋了為什麼平常測量氖的原子量是 20.2。

亞斯頓繼續用質譜儀鑑定其它 53 種非放射性元素,結果發現了 212 種同位素,證明即使是穩定的元素也普遍存在同位素,完全顛覆了科學家的認知。同時亞斯頓也一舉解決了科學家長久以來百思不解的難題:為什麼各元素的原子量不是氫原子量的整數倍?亞斯頓發現各元素的同位素其實都是氫原子量的整數倍,但依比例混合後的平均值就不是整數了。

1921 年,提出同位素理論的索迪獲得諾貝爾化學獎;第二年,諾貝爾化學獎隨即頒予亞斯頓,以表揚他發明質譜儀發現大量同位素,並闡述了「整數法則」。亞斯頓還來仍繼續不斷改良質譜儀,而今各種不同原理的質譜儀更是在生物、製藥、考古、刑事……等等不同領域發揮極大的功用。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 955 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
1

文字

分享

0
1
1
氦的發現|科學史上的今天:10/26
張瑞棋_96
・2015/10/26 ・920字 ・閱讀時間約 1 分鐘 ・SR值 524 ・七年級

自從德國物理學家克希荷夫(Gustav R. Kirchhoff)與化學家本生於 1859 年共同發明化學元素的光譜分析法,並指出陽光的「夫朗和斐線」就是不同化學元素的光譜後,科學家紛紛透過光譜分析尋找新的元素。

高壓電場下發出橙紅色光的氦。圖片來源:Alchemist-hp@wikipedia

法國天文學家讓森(Pierre Janssen, 1824-1907)特地於 1868 年 8 月 18 日這一天跑到印度的 Guntur,因為此地才能看到日全食。日全食時,黑色太陽邊緣的日珥清晰可見,讓森就能用光譜儀觀測這太陽表面噴發出的強烈火舌,分析其中所含的元素。結果他在光譜中發現了一條特殊的的黃色亮線,他想再觀測確認,但日食已過,讓森情急之下,想出在光譜儀中加上剛好遮住太陽的小圓盤,如此就能製造日食的效果。他改造好光譜儀之後再次觀測日珥,確認是新的光譜線後,將觀測結果寄交法國科學院。

10 月 23 日,就在讓森的報告抵達法國科學院這一天,英國天文學家洛克耶(Norman Lockyer, 1836-1920)也在英國皇家學會報告同樣的發現。不過洛克耶是於 8 月 20 日在倫敦做的觀測;他沒有千里迢迢地跑到印度,因為他也想到了讓森想到的原理。英國皇家學會的秘書於 10 月 26 日向法國科學院告知洛克耶的發現,因此不用再做驗證了,當天法國科學院就對外宣布讓森與洛克耶兩人共同發現太陽新的光譜線 D3。

不過此時兩人都還沒想到這新的光譜線可能代表新的元素,是洛克耶繼續仔細比對現有已知元素的光譜線,發現都不符合後,才於十一月宣布那是地球尚未發現的元素;他將它命名為「氦」(helium),取自太陽的希臘文 helios。

-----廣告,請繼續往下閱讀-----

氦是惰性氣體,又無色無味,難怪這宇宙第二豐富的元素在此之前竟從未被發現。1882 年,義大利物理學家帕密里(Luigi Palmieri)才在觀測維蘇威火山的岩漿時,首次在地球上發現 D3 光譜線,證實地球也存在氦元素。氦在自然界主要存在於天然氣與放射性礦物中。放射性礦物輻射出的 α 粒子就是氦原子核,拉塞福於 1907 年將 α 粒子打入真空管,放電後觀察管內新氣體發出的光譜,才確認 α 粒子就是氦原子核。沒錯,用的還是當年讓森與洛克耶所用的光譜分析法。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 955 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。