Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

製造第一個人工放射性元素──佛雷德里克·約里奧-居禮誕辰│科學史上的今天:3/19

張瑞棋_96
・2015/03/19 ・918字 ・閱讀時間約 1 分鐘 ・SR值 560 ・八年級

佛雷德里克與伊蓮娜,攝於 1935 年。圖/wikimedia

1935 年的諾貝爾獎頒獎典禮上,約里奧-居禮夫婦等著頒發給他們兩人的化學獎。佛雷德里克微笑望著妻子伊蓮娜 (Irène Joliot-Curie),心中感慨萬千。十年以前他還是居禮夫人的研究助理,姓氏仍是約里奧,而伊蓮娜──居禮夫人的長女──的姓氏仍是居禮。志趣相投也好,近水樓臺也罷,他們倆很快墜入愛河,並於第二年結婚,一起將姓氏改為約里奧-居禮。此舉更引來嘲笑他是攀龍附鳳的「駙馬」。而今獲得諾貝爾化學獎的肯定,應該可以讓那些人閉嘴了!

他們是在 1934 年用具有強烈放射性的釙所產生的 α 粒子轟擊一片鋁箔,結果產生具有放射性的同位素磷,也就是說他們製造了一個人工放射性元素!以往要作放射線研究,只能利用鈾、釙、鐳等困難取得的天然放射性元素,如今可以自己依不同需求隨時備製不同的放射性同位素,不但核子研究將會更迅速發展,在醫療用途上也會降低成本而造福更多人。此一「人工放射性」的價值普受肯定,因此他們才會這麼快在第二年就應邀來到瑞典。

司儀正在介紹諾貝爾物理獎的得主查德威克 (James Chadwick),佛雷德里克立即回過神來。唉,他們夫婦倆在 1932 年的實驗中轟出中子,卻誤以為是一種特殊的 γ 射線,查德威克聽了他們的報告後不以為然,進一步實驗後確認是中子才因而獲獎。他們就這麼眼睜睜的失去「中子發現者」的桂冠。

事實上,他們失之交臂的不只這一樁。早在安德森(Carl Anderson)於 1932 年公佈他在宇宙射線中發現正電子之前,他們夫婦倆就已經拍到正電子的軌跡,卻只當它是同樣帶正電的質子而未加留意。佛雷德里克打量周遭,揣測安德森何時會因為這項發現也來這裡領獎(結果安德森隔年 1936 年就得獎)。

-----廣告,請繼續往下閱讀-----

不過,這些遺憾都比不上他的良師與岳母居禮夫人就在去年病逝,來不及見到他與伊蓮娜得獎。她如果天上有知,一定會感到欣慰與光榮的。佛雷德里克再次轉頭迎向伊蓮娜的目光,從她的微笑知道他們倆想的是同一件事⋯⋯。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1030 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

21
2

文字

分享

0
21
2
原子彈的發明原理,從一個被說荒謬的假設開始(上)——《科學大師的失誤》
時報出版_96
・2021/05/01 ・2417字 ・閱讀時間約 5 分鐘 ・SR值 518 ・六年級

  • 作者 / 楊建鄴

一個人在科學探索的道路上,走過彎路,犯過錯誤,並不是壞事,更不是什麼恥辱,要在實踐中勇於承認錯誤和改正錯誤。──愛因斯坦(Albert Einstein,1879−1955)

1914 年,第一次世界大戰爆發,哈恩被徵入伍,改換了身分,於是所有的研究工作都被迫中斷了。哈恩被派到哈伯那兒服役。1905 年,哈伯發明了將空氣中的氮合成氨的方法。我們知道,氨可以用來合成高效化肥,這一發明有極其重大的價值,為德國氮肥工業的興起作出了決定性貢獻。

1915 年年初,哈伯、哈恩與其他一些科學家被政府指令研究毒氣。哈伯是「毒氣計畫」的負責人。哈伯對哈恩說:「我們的任務是建立一支毒氣戰鬥特別部隊,我們要研製新的、殺傷力更大的毒氣。」

哈伯、哈恩與其他一些科學家被政府指令研究毒氣。圖/Pexels

哈恩聽了,嚇了一跳,不由倒抽一口涼氣。

接著,哈伯說了一堆大「道理」,這些「道理」在第二次世界大戰發明原子彈時,又被一些科學家再次利用。哈伯在第一次世界大戰期間對德國可說是建立了卓偉功勛,但在第二次世界大戰時,這位無比忠於德國政府的人,因為是猶太人,受到希特勒的迫害,不得不逃離德國,最後暴病身亡。

-----廣告,請繼續往下閱讀-----

第一次世界大戰結束後,哈恩和邁特納又在凱薩.威廉物理化學及電化學研究所,繼續已經中斷了四年多的合作研究。很快,他們發現了一種新元素,其原子序數是 91。他們給新元素取名為「鏷」(Pa)。接著,哈恩又做出了許多有價值的工作,因此他被認為是歐洲最權威的分析化學家,尤其在放射化學方面,更有著不同凡響的聲譽。

正在他學術上日見輝煌時,卻捲入了一場學術爭論之中。與他爭論的對手是很有威望的科學家,法國居禮夫人的大女兒伊雷娜–約里奧–居禮 (Irene Joliot-Curie,1897−1956)

伊雷娜–約里奧–居禮。圖/Wikipedia

事情的起因和過程,這兒只簡單地介紹一下。義大利物理學家費米用慢中子轟擊 92 號元素鈾時,以為得到了 93 號元素。由於科學家在自然界只見過 92 號元素,從來沒有人見過 92 號之後的元素,所以,如果費米真的得到了 93 號元素,那真是一個非常了不起的發現。

費米開始還比較小心,不敢說自己真的發現了 93 號元素,只是說「有可能發現」新元素。但後來由於沒有人懷疑他的結果,於是費米也開始相信自己是真的發現了 93 號元素。

-----廣告,請繼續往下閱讀-----

當時有一位叫伊達.諾達克 (Ida Norddack,1896−1978) 的德國女科學家曾經提出過批評。她在德國《應用化學》雜誌上發表了一封信,對費米提出了批評。在信中她寫道:現在費米還沒有把握說,中子撞擊了鈾以後反應的生成物是什麼,在這種情形下談論什麼「超鈾元素」是不合適的。

諾達克大膽假設,像原子量為 238 的鈾這樣的重原子核,當中子撞擊它時,它有可能分裂成幾大塊碎片,成為幾種比較輕的原子核。

諾達克的批評沒有受到費米和大家的重視,這有三個原因。一是諾達克不是很出名的科學家,刊登她的信的刊物也不是一流刊物。二是她的大膽假設,沒有任何人相信,因為中子的能量很小,「根本不可能」把堅固的原子核撞得分裂開來。舉個例子,一顆手槍子彈最多只能在牆上敲下幾塊碎片;如果說這顆子彈能把這座牆打倒,分裂成兩三大塊,恐怕你也不會相信的。三是哈恩同意了費米的意見,認為費米真的製出了超鈾元素;哈恩是公認的化學權威,這當然使費米相信自己對了。因此,費米拒絕了諾達克的意見。

諾達克與哈恩相識,哈恩也曾經關心過諾達克的研究。因此,在 1936 年一次見面時,諾達克向哈恩建議說:

-----廣告,請繼續往下閱讀-----

「哈恩教授,您是否可以在您講課中,或者在著作中,提到我對費米的批評?」

哈恩嚴肅地拒絕了,並且說:

「我不想使您成為人們的笑柄!您認為鈾核會分成幾塊大碎片,依我看,純粹是謬論!」

哈恩認為諾達克對於鈾核會分裂成幾塊大碎片的研究是謬論。圖/GIPHY

但過了兩年之後,哈恩自己卻證明了這個「謬論」是真理;而且在 8 年之後,哈恩還因為這個發現得了諾貝爾化學獎!世界上有一些事情就這麼奇怪!

正當哈恩否定了諾達克意見之後,法國著名的化學家伊雷娜卻指出,諾達克的意見很可能是對的。伊雷娜在實驗中發現,用中子撞擊鈾以後,在反應產物中找到了比鈾輕得多的產物,其原子量只有鈾的一半。如果伊雷娜的實驗是真的,那鈾原子核就真的被中子撞成兩大塊了!

-----廣告,請繼續往下閱讀-----

哈恩實驗室的工作人員都不相信伊雷娜的實驗結果,一些人嘲笑伊雷娜:

「伊雷娜還指望利用從她光榮的母親那兒學到一點化學知識,其實這早已經過時了。」

哈恩訓斥了說諷刺話的人,但他也不同意伊雷娜的意見。因此他以私人名義寫了一封信給伊雷娜,建議她更細緻地重做一次實驗。哈恩認為自己夠客氣的了,否則他會在刊物上提出批評,那伊雷娜就會出大醜了!

但是伊雷娜一點也不領哈恩的情,她在前一篇文章的基礎上,又發表了第二篇文章,進一步肯定了第一篇文章的結果。哈恩生氣了,覺得伊雷娜太不自量,竟然完全不聽一下他的善意勸告,一意孤行。他氣惱地對助手斯特拉斯曼(Fritz Strassman,1902−1980)說:

-----廣告,請繼續往下閱讀-----

「我不會再讀這位法國太太的文章!」

繼續閱讀:原子彈的發明原理,從一個被說荒謬的假設開始(下)

——本文摘自《科學大師的失誤》,2021年4月,時報出版。

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

3
0

文字

分享

0
3
0
沒有二分法,就沒辦法分類?把多樣性放在哪裡了?——《像科學家一樣思考》
商周出版_96
・2020/05/19 ・3195字 ・閱讀時間約 6 分鐘 ・SR值 539 ・八年級

  • 作者/史坦利.萊斯 (Stanley A. Rice);譯者/李延輝

月亮上,全部都是黑色和白色。晚上是晚上,白天是白天,沒有灰色地帶。但在地球上,因為大氣層分散了日光,所以會出現晨光與暮光的灰色陰影。地球具有多樣性,科學也在研究多樣性,上述只是幾乎無數種呈現方式中的第一種。

不是白天也不是黑夜的黃昏之時。圖/IMDb

但人類心靈並不是一直輕易就接受多樣性。人類心靈有二元偏見,我們看待事物非黑即白,但科學必須抗拒這種偏見,就像抗拒其他許多偏見一樣。

即使人類心靈並未以二元的方式看待世界,也會以分類的方式看待:即使現實往往包含連續體而非各自獨立的類別,我們仍喜歡將所有事物分類。二元思考是分類思考的兩類別子集合。想知道一些分類和連續思考的例子嗎?這就是本章涵蓋的內容。

分類思考就是只能分兩類?

或許人類偏向分類思考是因為我們是兩兩對稱的生物。我們有左右手、腳和很多其他東西,也有上和下、前和後。相較之下,水母就是放射對稱,它有前和後,但除此之外其他部分都從中心點放射而出對稱。假如水母可以思考,它可能會將世界看成充滿各種可能性,而不只是「這個」相對於「那個」。

-----廣告,請繼續往下閱讀-----

動物和人類祖先必須迅速決定是否該採取行動,例如是否要逃離老虎,是否要吃某種食物,這可能是我們演化出二元思考的原因。生死交關的決定往往是二元對立的,甚至對水母來說也是如此。

不是「這個」就是「那個」?圖/giphy

一方面,人類往往會將世界視為非黑即白,不是這個就是那個,非左即右,不是這裡就是那裡,非上即下,不是我們就是他們。另一方面(延續我二元對立的隱喻),我們也承認有許多多樣性無法納入分類思考的框架中。(世界上有兩種人:會將事物分類的人和不會將事物分類的人。)人類常常努力在分類思考和連續思考間取得平衡,但這是假設我們能將所有思考分類為分類或連續思考。

再者,二元對立也符合我們的公平感。記者就有強烈的偏見要「平衡雙方報導」,即使有兩方以上或其中一方顯然行事荒唐也是如此。

微世界中的多樣性

在科學家研究的物理、化學、生物和人類世界中,少有事物在分類上是絕對的。極少數二元對立的事物之一就是原子粒子的電荷。電子具有負電荷,而質子具有正電荷。但連電荷都是一種夸克的衍生特性,而夸克就構成了電子和質子粒子。其他事物無論是可分類或連續的,都以許多不同可能性的形式存在。

-----廣告,請繼續往下閱讀-----

元素符號都一樣,中子、電子數目不一樣

縱使元素符號相同,性質也有可能不同。圖/pixabay

以原子為例,「原子」一詞代表不可分割的事物。原子會分裂,但一旦發生分裂,原子就會喪失其特性,所以「它們」不可能分裂但仍維持原樣。

我們可能會認為所有的碳原子都很類似,全都屬於一種類別。但並不是這樣。它們的原子核都有六個質子。大多數也會有六個中子(使它們成為 12C 或碳-12)。但少數碳原子多了一個中子,重量更重(13C 或碳-13)。再更少數的碳原子多了兩個中子,原子核變得不穩定,因此具有放射性(14C 或碳-14)。不同元素的同位素具有相同數目的質子,但中子的數目不同。

同樣地,純粹的鐵原子具有 26 個質子和 26 個電子。但許多鐵原子已經失去了它們的電子。亞鐵離子失去了兩個電子,而三價鐵離子則失去了三個。這讓它們具有不同的電荷。同一元素的不同離子具有相同數目的質子,但電子數目則不同。因此,每一種元素組成的類型都不同。

拉著電子不放的氧,讓水分子也「黏」在一起

我們可能會想,在這些類別中,原子都很相似。但連這也不是完全正確,因為原子絕對不會獨立存在。

舉例來說,思考一下兩個氫原子和一個氧原子組成了水分子(H2O)。分子內的原子都自由分享它們的電子,但也不能說完全自由。氧分子就是出了名的渴求電子。在水分子內,自由移動的電子時間大多花在氧原子上,而較少花在出了名軟弱的氫原子上。

-----廣告,請繼續往下閱讀-----

氫鍵。圖/giphy

水分子具有一個中性電荷,電荷中共有 18 個質子和 18 個電子,但它有三極:兩個正氫極和一個負氧極。一個水分子的正極會吸引其他水分子的負極,讓水分子稍微黏在一起。

水分子的黏性是造成冰會漂浮的重要特性,也會使液態水最後煮沸前保留許多熱度,並在蒸散作用時透過植物將水往上拉,還有其他許多事物,少了這些事物,生命就不可能存在。

這些「氫鍵」也將 DNA 的股鏈結合在一起,強韌到足以保存分子完整性,但又寬鬆到足以讓各股鏈分解再重新聚集。(DNA 是細胞內儲存遺傳訊息的分子。為了讓這些資訊可以供細胞使用或是傳給下一代,股鏈必須能夠彼此分離,顯示出其隱藏的訊息。)因此,一個原子的特性取決於哪個或哪些其他的原子與其結合。

-----廣告,請繼續往下閱讀-----

壁虎不貼牆也能爬牆,也是原子搞的鬼?

一個原子或分子可以互相改變,甚至不必結合也可以做到。用個隱喻來說,一個分子的電子可以嚇跑其他鄰近分子的電子,造成電荷差異,讓分子可以互相吸引。

在哪種平面都能爬行的壁虎。圖/wikimedia

這種「凡得瓦力」(Van der Waals forces)也讓壁虎不用真的黏在牆上就可以爬上牆。2014 年,國防高等研究計畫局(Defense Advanced Research Projects Administration, DARPA)宣布要發展壁虎裝,使用這樣的力量讓軍人可以爬牆,就算不像壁虎一樣輕而易舉,也可以勝過其他軍人。在每個原子的離子或同位素類別中,有一整個可能特性的連續體,這取決於其他可能與其結合的原子,甚至是那些恰好接近它的原子。

向左旋,向右旋,性質大不同!

許多分子可以以一種以上的構造存在,例如就像彼此的鏡像一樣。(這種分子只有兩種可能的鏡像,這可能是宇宙中除了電荷外,少數二元對立的性質之一。)這會造成很大的差異。

「左旋」的胺基酸組成的蛋白質讓我們維持生命,「右旋」的蛋白質則常有毒。左旋和右旋的胺基酸混合起來造成不穩定的蛋白質。因此,自然淘汰已經排除任何結合左旋和右旋型態的蛋白質。地球上的生命恰好是以左旋胺基酸開始,右旋胺基酸只好扮演壞人的角色。在火星的生命非線性死亡之前,火星上如果有蛋白質,或許就是由右旋胺基酸組成。

溫度也來參一咖

變化越來越多了。想一下有一堆同樣種類的分子,電荷和左右旋都沒有差異。分子集合在一起會具有特定溫度。溫度來自於移動的能量,或分子的動能。但沒有任何兩個分子具有一模一樣的動能。每個分子都有自已獨特的能量狀態,有些移動得多,有些移動得少。你可以把溫度想成是分子的平均動能,但這不是嚴格數學定義下的平均。

-----廣告,請繼續往下閱讀-----

溫度也會讓原子或分子帶來多樣的表現。圖/giphy

水一煮沸,平均動能就足以造成分子在液體中不再彼此黏合,自由地以氣態移動飛散。但早在水煮沸之前,許多水分子就已有足夠的能量可以蒸發。連冰都有一些水分子,可以進入氣態,以美麗的科學術語來說,這種過程稱為昇華,但這種例子很罕見。所以甚至連一杯水裡的水分子也有多樣性,而且是連續的多樣性。分子並不是屬於動能的類別。

可能存在的分子種類數目理論上是無窮無盡。在真實世界中,這並非無窮無盡,但當然也超越人類心靈所能理解的範圍,至少我無法理解。1976 年,我在有機化學拿了 C,後來每況愈下。

所以這就是多樣性、多樣性、多樣性,且常是連續而非可分類——而且我們還只是在講分子而已。

-----廣告,請繼續往下閱讀-----

——本文摘自泛科學 2020 年 5 月選書《像科學家一樣思考》,2020 年 4 月,商周出版

-----廣告,請繼續往下閱讀-----
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。