0

0
0

文字

分享

0
0
0

人豬異種嵌合體研究:「奇美拉」引起的道德爭議--《科學月刊》

科學月刊_96
・2017/08/14 ・3007字 ・閱讀時間約 6 分鐘 ・SR值 590 ・九年級

文/林翰佐|銘傳大學生物科技學系副教授,《科學月刊》總編輯。

神話故事般的「嵌合體」是什麼?

希臘神話當中的神獸;同時擁有山羊頭的獅子配上毒蛇構成的尾巴。圖/By Arezzo @ Flickr

嵌合體(chimera,也有直譯為奇美拉)原意是指一種希臘神話當中的神獸;同時擁有山羊頭的獅子配上毒蛇構成的尾巴,不過在生物科技研究上,嵌合體指的是一種同時擁有不同來源細胞所構成的個體。在基因剔除鼠(gene knock-out mice)的實驗操作當中,嵌合體是一個必要的中間產物,唯有製造出這樣的個體並令其近親交配,才會有機會獲得在特定基因上完全剃除的老鼠品系,供後續研究使用。

在操作實務上,嵌合體個體的製備需要使用胚胎幹細胞(embryonic stem cells),將這些具備完整之多能分化性(pluripotency)的胚胎幹細胞利用顯微注射的方式植入到另外一個囊胚期(blastocyst)的受精卵中,這些幹細胞便可以完美的成為胚胎中的一部分,與原來的受精卵細胞共同分化成為身體的各種組織。由於這樣的個體身上同時具有兩種細胞的來源,所以科學家們以嵌合體命名之。

自 1990 年代起由於基因剔除鼠的技術趨於成熟,嵌合體老鼠大量的被應用在研究當中,這些黑白相間的小傢伙世世代代,默默地為人類生物科技貢獻了有近 30 年的歷史。

-----廣告,請繼續往下閱讀-----
人類胚胎幹細胞。圖/Nissim Benvenisty @ wikimedia commons

胚胎幹細胞是道德爭議的導火線

如同前述,胚胎幹細胞是嵌合體生物製造過程中的關鍵,自從 1988 年小鼠胚胎幹細胞培養技術確立了之後,科學家們便嘗試著建立其他物種的胚胎幹細胞株。當然,其中最具有指標意義,蘊含龐大商機的,便是人類胚胎幹細胞。由於胚胎幹細胞株的取得需要建立在破壞受精卵的基礎,人類胚胎幹細胞的研究很快地便受到了國際社會的高度關切。

除了宗教議題上的討論之外,這種藉由某種程度上的殺生以完成所謂造福人群的作法有無違背人類道德底線?這樣的議題引起相當的討論。

所幸的是,日裔科學家山中伸彌在 2006 年提出「誘導式多能幹細胞」(induced pluripotent stem cells),藉由基因轉殖的方式將體細胞轉變成為具有多功能分化能力之幹細胞的方法,似乎為科學界提供了一條擺脫道德包袱的出路。

心臟不好?找小豬幫你的忙吧!

幹細胞的魅力在於其再生能力,人們寄望著幹細胞的研究最終得以運用在疾病上的治療,或者更深一層的,希望透過這些再生的魔力讓人青春永駐、返老還童。不過,現行醫療上利用外科手段執行修復醫療時,組織上的縫補仍是主要的方式,這意味著幹細胞需要先行製造成一塊「有功用的肉」才能供醫療使用。

-----廣告,請繼續往下閱讀-----

而這塊「有功用的肉」其實一點都不簡單,它可能需要有數種完全分化的細胞共同組成,才具備執行組織的功能性,並且需要有相當的間質纖維來提供有效的物理性支撐。現今組織工程(tissue engineering)方面的專家,主要的研究主題就在於此,他們嘗試的利用天然或人工合成物製作「生物支架(sca­old)」,並且應用最新的 3D 列印技術,嘗試著將幹細胞與生物支架有效的整合,生產「有功用的肉」供臨床醫療上使用。

另外一群的科學家則有著不一樣的想法。如果說可以用其他生物生產人類可用的器官,何必勞師動眾的以純然人工組合的方式製造呢?對免疫學稍有概念的讀者馬上會想到免疫排斥的議題。是的,這類異種移植(xenogeneic transplant)雖在醫療上行之有年(例如用豬心瓣膜治療人類心臟瓣膜破損的疾病),但病友需持續的服用藥物來控制排斥現象的發生。

除了成為桌上的佳餚,我們更可用豬心瓣膜治療人類心臟瓣膜破損的疾病。圖/By 挪威 企鵝@flickr

利用異種嵌合體的製備,是否有機會實現在動物身上製造完全由另一種生物細胞所構成的器官,來減低未來移植時免疫排斥上的問題呢?

在 2010 年由中內啟光教授所率領的哈佛大學研究團隊,在《Cell》期刊中發表的文章中證實了這樣的可能。研究團隊利用無法形成胰臟中 pdx1 的基因缺陷小鼠囊胚期胚胎為材料,以顯微注射的方式植入擁有多能分化性的大鼠幹細胞,便可在這個異種嵌合體上成功的培育出近乎純然由大鼠所構成的胰臟。

I have a 人類幹細胞,I have a 豬胚胎,嗯!

大鼠–小鼠嵌合體試驗的成功暗示著後續的龐大商機。人類的幹細胞能否也能與體型或血緣相近的動物胚胎形成異種嵌合體,作為生產可供人類移植時器官供應的一種方式呢?

-----廣告,請繼續往下閱讀-----

今年初發表於《細胞 Cell》期刊中的文章提出了這樣的可能性。這篇由美國沙克研究所所發表的論文有著兩個重要的結論:其一是透過 CRISPR 基因體基因剪輯技術,團隊可以將大鼠的受精卵進行前處理,使其 pdx1 基因造成缺損,來提高這個異種嵌合體之胰臟中源自小鼠細胞所佔的比例。

第二點其實頗有爭議性,該團隊嘗試著將人類幹細胞與豬胚胎進行異種嵌合體實驗,並將嵌合體胚胎移入孕母豬的子宮內進行著床測試,來驗證人類幹細胞形成異種嵌合體的可能。因為深知整個實驗的敏感性,研究團隊僅就著床後 21~28 天進行初步的探討。就應用的層面來看,整個實驗仍談不上成功,在這個人豬異種嵌合體中,人類的幹細胞僅有少量的嵌合,目前約占整體胚胎細胞中的 10 萬分之一不到。

異種嵌合體的實驗應用尚未稱得上全面成功。圖/Mutinka @ pixabay

當嵌合體模糊人跟動物的界線,道德基礎是否該重新定義?

人豬異種嵌合體研究自發表以來便受到廣泛的關注,有的報導專注於實驗內容的描述,有的報導則持樂觀的態度,認為此項研究為長久以來外科移植治療上捐贈器官不足的問題開啟了一扇希望之窗。華人社會中也有些戲謔性的報導,談論著在未來西遊記中的二師兄是否會真實的出現在眼前,少有報導能嚴肅地看待整件事情的發展。個人認為,利用人類幹細胞所進行之異種嵌合體研究,在某種程度上有如開啟潘朵拉之盒,需集思廣益及早訂定相關規範因應。

以目前分子生物學相關技術的進展,想要改進前述實驗當中人豬異種嵌合體中人類細胞所占有的比例有著相當樂觀的進步空間(沙克研究所的論文報告已經暗示著用 CRISPR 技術增進細胞比例的可能),或許我們得開始思考,當異種嵌合體中人類細胞的比例高過於一定的標準時,我們能否仍可單純的將其視之為非人類的動物個體,而對它們的器官予取予求?這類研究所造成的模糊化種間界線的現象將無可避免地衝擊人類的道德基礎。

-----廣告,請繼續往下閱讀-----

畢竟在傳統道德認知上,殺生與殺人之間還是有段相當的差距。

心智(mind)似乎是人之所以異於其他物種的關鍵,某些報導中受訪的科學家關注於人類幹細胞在異種嵌合體當中構成大腦的比例問題。

雖然有科學家樂觀的解釋人類大腦與豬大腦在發育時程上有相當的一段差距,暗示在人豬異種嵌合體中豬腦仍舊是豬腦的可能性,再則,在異種嵌合體當中人類腦細胞數目的多寡也許並不意味著擁有人類心智的多少,不過生命也許正會以出人意表的方式呈現。當回顧歷史,大多數的科學家在西元 2000 年左右時其實對於大小鼠異種嵌合體成功的機率抱持著相當懷疑的態度。

延伸閱讀

  • Wu, J. et al., Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell, Vol.168 473-486, 2017.

 

本文選自《科學月刊》2017 年 8 月號

什麼?!你還不知道《科學月刊》,我們 47 歲囉!

-----廣告,請繼續往下閱讀-----

入不惑之年還是可以當個科青

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3706 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
2

文字

分享

0
5
2
我們可以怎麼運用幹細胞?克隆技術可以解決同性生殖問題嗎?
賴昭正_96
・2023/12/27 ・5121字 ・閱讀時間約 10 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

因被極有彈性的膜和果凍層包圍著,非洲爪蟾的卵與其它兩棲動物的卵不同,使得微量移液器無法穿透,所以我第一次嘗試在非洲爪蟾中移植細胞核完全不成功。⋯⋯如果實驗——或其他事情——沒有立即成功,請不要放棄!

——格登(John Gurdon)2012 年諾貝爾醫學獎

在「認識病毒全攻略!病毒的發現、與細菌的不同、科赫假說和致病機制」一文裡,筆者提到細胞是生命的基本單位,它主要由基因組(genome)、細胞膜(cell membrane)、細胞質(cytoplasm)、和核醣體 (ribosome)組成。細胞質為執行細胞生長、代謝、和複製功能的地方,為細胞中的微觀工廠;核醣體將遺傳密碼從核酸的分子語言翻譯為氨基酸的分子。細胞本身含有代謝酶,因此有營養系統;不需宿主活細胞,即可自行繁殖。

高等動植物的細胞不像細菌,具有真正的細胞核(nucleus),故稱為真核細胞(eukaryotic cell)。它們沒有細菌的「質粒」(plasmid),但卻有像消化系統一樣的「線粒體」(mitochondria)來吸收營養,分解營養,並為細胞創造能量豐富的分子。

幹細胞

在大多數物種中,只有兩種完全不同類型稱為「配子(gamete)」的生殖細胞:卵子與精子。卵子是生物體中最大的細胞,而精子則是最小的;它們可以說是「發育不完全」的精簡細胞:卵子只具有細胞核及細胞質,精子則只具有細胞核及粒線體;它們的細胞核內均只有一半的染色體(稱為「單倍體基因組」)。儘管如此,卵子還是是最引人注目的動物細胞:因為一旦被精子活化(精子與卵子融合,稱為「受精」1),它可以在幾週內產生一個全新的個體。

圖/作者提供

人類的卵子受精後約五到六天,就會分裂形成大約一百個細胞的囊胚(blastocyst),見上圖右半。囊胚由內部細胞群(inner cell mass)及囊胚外層(trophectoderm)組成:前者將繼續分裂發展成胚胎(embryo 2),後者則將附著在子宮內膜成為胎盤 (placenta),保護和滋養發育中的胚胎。因為受精卵(zygote)可以分裂產生所有的細胞(包括胎盤),故稱為「全能幹細胞(totipotent stem cell)」。內部細胞群的細胞則因能繼續分裂發展成生殖細胞及體細胞(somatic cell)的人體各部位器官,故稱為「多能幹細胞 (pluripotent stem cell)」,又稱為「胚胎幹細胞(embryo stem cell)」,簡寫為 ES。

-----廣告,請繼續往下閱讀-----

生殖細胞及體細胞一旦形成後,就有其特定「專業化」的功能,不能再如幹細胞一樣轉換成其它細胞。因此自 20 世紀初以來,一直困擾細胞生物學家的問題是:體細胞在基因上與它們所源自的受精卵相同嗎?一個受精卵如何會在胚胎分化中形成許多功能完全不同的體細胞呢?這些體細胞又如何記得繼續分裂成同樣的體細胞呢?

布里格斯(Robert Briggs)和金 (Thomas King)於 1952 年在活體生物體中進行了首次青蛙核移植 (nuclear transfer)實驗:將一個早期胚胎細胞核移植到去核的卵細胞中。他們發現不同發展階段的胚胎核可以造成非常不同的結果:早一天的可以繼續發展成青蛙,晚一天的則胎死腹中。此結果顯然回答了第一個問題:細胞核的遺傳物質在開始分化時會發生不可逆轉的改變,如重新排列遺傳物質使其變得更加專業化、永遠有效地關閉不使用的基因、甚或拋棄數百個不再需要的基因等等。

克隆教父——約翰.格登爵士

格登(John Gurdon)1933 年出生於英國漢普郡(Hampshire)迪彭霍爾(Dippenhall)。就讀於伊頓公學 (Eton College)寄宿學校時,成績不是特別好。在上了一學期的生物學後,老師寫了一份報告說:「我相信格登想成為科學家,但從目前的情況來看,這是相當可笑的。如果他不能學習簡單的生物學事實,他就沒有機會從事專家的工作,這對他和那些必須教他的人來說都純粹是浪費時間。」所以格登畢業後申請了牛津大學的古典學課程,但招生導師因為缺少理科生,告訴他說:「我很高興地告訴你,我們可以接受你,但有兩個條件:一是你得立即開始,第二是你不要學習你參加入學考試的科目。」就這樣,格登終於追求到他的夢想,最後在牛津大學取得發育生物學博士學位。你說人生不是一連串的巧合與意外麼?

約翰.伯特蘭.格登爵士(Sir John Bertrand Gurdon) 圖/wikimedia

1956 年格登開始了核移植的博士研究:但不是移植正在發展中的胚胎細胞核,而是移植已經發展完全的體細胞核到去核的未受精卵內——稱為「體細胞核移植 (somatic cell nuclear transfer,SCNT,見上圖左半 )」。格登早期得到的結論因與布里格斯和金的結論相左,因此受到了強烈的批評。1962 年,格登將西部矮爪蛙(學名 Hymenochirus curtipes)的腸細胞核移植到未受精、去核的非洲爪蟾卵中,竟然發現這種經過改造的卵細胞可以長成一隻新的西部矮爪蛙!這毫無疑問地證明了:(1) 成熟的細胞核仍含有形成所有類型細胞所需的遺傳訊息(即與受精卵具有同樣的基因),(2) 幹細胞在發展中專業化成體細胞是可逆的。

-----廣告,請繼續往下閱讀-----

克隆哺乳動物

格登成功地從體細胞核複製/克隆 (clone) 了兩棲類動物青蛙,當然立刻有科學家想到是否可以用同樣的方法來複製哺乳動物。可是為什麼要等到 30 多年才出現克隆的多莉羊 (Dolly the sheep 3 ) 呢?原來格登選青蛙是有其理由的:兩棲類動物的卵子都是透明、且非常大,一產就大量排出體外。即使這樣,他的成功率還是低的;還好正如筆者在「愛因斯坦所相信的上帝,是你以為的那位上帝嗎?」一文裡所說的「要證明上帝存在比證明祂不存在簡單多」,格登只要在幾百個實驗中不被合理質疑地克隆出一隻青蛙就夠了。

多莉的生命始於試管中的一個單細胞(取自芬蘭多塞特羊的乳腺細胞核和蘇格蘭黑臉羊的去核卵細胞),六天後在實驗室確認正常發育後,胚胎就被轉移到代孕母親體內,於 1996 年 7 月 5 日出生。但在英國羅斯林研究所 (Roslin Institute) 發表論文前,白臉多莉的出生一直被保密。1997 年 2 月 22 日宣布她的誕生後,全世界的媒體紛紛湧向羅斯林去一睹這只如今聞名的綿羊風采,也引發了媒體關於克隆倫理的爭論。

現在大部分先進國家都已經禁止克隆人的實驗,因此各地的實驗室大都只克隆人類胚胎細胞,作為研究及治療用。2018 年,中國科學院上海神經科學研究所首次利用 SCNT 成功克隆靈長類動物,誕生了兩隻名為「中中」和「華華」的食蟹雌獼猴。

誘導多能幹細胞

到了 21 世紀初,研究胚胎幹細胞的科學家已經鑑定出二十多個似乎對胚胎幹細胞至關重要的基因。這些基因的功能不一定相同:有些對於自我更新很重要(即一個 ES 細胞分裂形成兩個 ES 細胞),而另一些則用來阻止幹細胞分化。科學家也找到如何在培養皿中維持多能胚胎幹細胞的方法,及如何改變培養條件使其分化成各種細胞類型,如肝細胞、心臟細胞、和神經元等。但他們能否利用這些資訊將完全分化成熟的體細胞變成像胚胎一樣的幹細胞嗎?

-----廣告,請繼續往下閱讀-----

2006 年,日本京都大學的山中伸彌(Shinya Yamanaka)和博士後研究員高橋(Kazutoshi Takahashi)終於宣稱只要透過其中四個基因,即可將小鼠纖維母細胞(只能產生其它纖維母細胞)重新編程 (reprogramming),成為能產生多種不同類型細胞的多能幹細胞。他們將這樣製造出來的幹細胞稱為「誘導多能幹細胞(induced pluripotent stem cell, iPSC)」。山中伸彌與格登兩人因研究出如何將專業化的成熟細胞重新編程使其具有多能性,而一起榮獲 2012 年諾貝爾醫學獎。

重新編程

精子和卵子像體細胞一樣,也是由受精卵分化出來了,所以應該是一個高度專業化的細胞,但它們融合成受精卵後又變成全能幹細胞,因此顯然融合後的細胞核被卵子微觀工廠的細胞質重新編程,失去大部分分化時的分子記憶(尤其是精子核,變成一張幾乎完全空白的畫布)。格登與複製綿羊的維爾穆特(Ian Wilmut)和坎貝爾(Keith Campbell)就是利用了這種重新編程現象,將體細胞核插入卵細胞質中創造出了新的克隆。

卵子的細胞質顯然就像一個巨大的分子橡皮擦,它能非常迅速地在 36 小時內完成這個重新編程過程,擦掉了細胞分裂過程中專業化的修飾痕跡(imprinting)。在提高山中伸彌之體細胞重新編程為 iPSC 細胞的效率(遠低於1%)和速度(需要數週)上,分子生物學家雖然已經取得了很大進展,但與自然界一比,仍相差甚遠。

筆者寫這篇文章的動機事實上是出於想解救同性戀的傳宗接代問題。研究顯示雖然不存在單一的同性戀基因,但來自數十萬人的 DNA 也揭示了一些與同性性行為有關的基因變異。在「同性戀、熊貓、與適者生存」(科學月刊 2014 年 7 月號,見《我愛科學》)一文裡,筆者提到:傳宗接代為「種族生存」的必要條件;同性戀者不能傳宗接代,不是遲早將從地球上絕跡嗎?一個筆者想到的解救的方法是:像體細胞核移植一樣,用同性「夫妻」的配子核取代受精卵中尚未融合的雌性與雄性原核 (pronuleus),希望它們融合後能繼續發展成胚胎⋯⋯。

-----廣告,請繼續往下閱讀-----

筆者正在幻想如何申請專利賺大錢時,卻發早在 1980 代,肯亞裔的英國發育生物學家蘇拉尼(Azim Surani 4)就已經開始了類似的研究。他以老鼠為對象的實驗毫無疑問地證明了哺乳動物的繁殖不只是傳遞系統的問題:不僅需要兩個單倍體基因組來融合形成一個二倍體核的受精卵,事實上其中一個必須來自母親,另一個來自父親!顯然卵子之細胞質的重新編程不是 100% 地擦掉了所有分裂過程中的修飾、專業化痕跡,而是至少保留了一些必要的基因來源資訊!⋯⋯夢想破滅,只好重做馮婦執筆寫文章(保證不是人工智能代寫的),悲哉!請點個「讚」以聊慰筆者之失望吧!先謝啦!

如果能解開幹細胞之謎,或許也能解開同性繁衍的問題。 圖/envato

結論

幹細胞具有非凡的自我更新潛力:在生命早期和生長過程中可以在體內發育成許多不同的細胞類型。幹細胞可以分成多能幹細胞和「成體幹細胞(adult stem cell)」兩類。前者就是我們討論過的胚胎幹細胞和誘導多能幹細胞;後者也稱為「體幹細胞(somatic stem cell)」,它們已在許多器官和組織中被發現(通常在特定的解剖位置5)。這些特定器官的體幹細胞雖然不是多能的,但在生物體的整個生命週期中,卻扮演著非常重要的內部修復工作:它們可能會長時間保持靜止(不分裂),直到需要替代因正常磨損或疾病而損失的細胞時才被活化。

即使法律上不准複製人,相信讀者早已看出幹細胞在醫療上的可能作用:如果我們能用與我們體內相同的新細胞來取代罹患第一型糖尿病時失去的胰島素分泌細胞、或阿茲海默症失去的腦細胞、或骨關節炎失去的軟骨生成細胞等,那就不必擔心器官移植所造成的免疫系統排斥問題,或缺乏可用來移植的器官的困擾。這種使用克隆幹細胞來作為醫學治療用的領域稱為「治療性克隆(therapeutic cloning)」。

本文只回答了 20 世紀初以來一直困擾細胞生物學家的第一個問題:體細胞在基因上與它們所源自的受精卵相同嗎?至於如何重新編程、一個受精卵如何在胚胎分化中形成許多功能完全不同的體細胞、這些體細胞又如何在分子層面上被修飾使其只能繼續分裂成同樣的體細胞等更複雜的問題,則需等待新興的「表觀遺傳學(epigenetics)」來回答。

-----廣告,請繼續往下閱讀-----

註解

  1. 在某些生物體中,精子並不是嚴格必需的,它們可以透過各種非特異性化學或物理處理來人工活化卵子;例如一些脊椎動物(如一些蜥蜴)的卵子通常是在沒有精子活化的情況下繁殖的,稱為「孤雌生殖(parthenogenesis)」 。
  2. 像胎兒(fetus)的生命從什麼時候開始一樣,胚胎從什麼時候開始也沒有嚴格一致的共識。因當囊胚成功地植入子宮內膜時,母體會立即開始產生荷爾蒙來支持懷孕,筆者認為這應該是很好的胚胎起始點。到受精後大約八個禮拜,大部分人體器官和系統均已成型,也可偵測到心跳。第八週後稱為胎兒。
  3. 以美國西部鄉村歌手 Dolly Parton 的名字命名。
  4. 因試管嬰兒而獲得 2010 年諾貝爾獎之愛德華茲(Robert Edwards)的博士學生。
  5. 不是所有的器官都有這些體幹細胞,例如心臟就沒有,因此一旦數以百萬計的心肌細胞因缺氧(心肌梗塞)而死亡時,人體內就沒有自然系統可以取代它們。反之,肝臟則是具有高度再生能力的內臟器官,它可以在化學損傷或手術切除後再生。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
44 篇文章 ・ 58 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
胚胎發育必不可少的兩位舞者:胚胎幹細胞與滋養層幹細胞——《生命之舞》
商周出版_96
・2023/10/22 ・2668字 ・閱讀時間約 5 分鐘

細胞工程如何進行?

如果我們真的要進行細胞工程的話,我們就得要以孩童拼樂高積木的方式,一次一個地將細胞組合成胚胎。但我們並沒有經由口吸管的方式(請參考第五章)來這樣做,而是把一切都留給機率來決定。

我們在培養皿中混合了不同濃度的兩種細胞,並讓它們自由接觸。我們在第二天透過顯微鏡看到,有些細胞確實開始相互作用並形成結構。但為數不多,因為這取決於無法預測的機率。不過當胚胎幹細胞與滋養層幹細胞結合時,它們就會以驚人的方式進行自我建構,它們好像知道自己要做什麼,也有個目標。

胚胎發育過程經歷了什麼?

我們在實驗室暗房的顯微鏡下,看到許多胚胎發育的基本過程。我們首先看到細胞極化。接著幹細胞會自我建構,胚胎幹細胞會聚集在一端,而滋養層幹細胞則聚集在另一端。由於胚胎幹細胞衍生出的胚胎部分與滋養層幹細胞衍生出的胚外部分會進行對話,所以在每個細胞群中的空腔後續會打開並創造出三維的 8 字形。我們發現這涉及到一個名為 Nodal 的蛋白所傳送的訊號。這兩個空腔之後會融為一體,最終形成一個對胚胎發育至關重要的大型羊膜腔。這種體腔形成的過程似乎就跟真正胚胎在著床不久後會發生的情況一樣。我們看見了自我建構的驚人創舉。

不過,我們當然總是想要更進一步,讓合成胚胎中胚胎幹細胞所衍生部位裡的那些類胚胎細胞,能夠適當地打破對稱性。我們的意思是讓這些細胞設法進行原腸化,也就是提供未來身體體制基礎的關鍵步驟。
我們發現若是可以讓胚胎幹細胞與滋養層幹細胞結構再發育久一點,它們確實會打破對稱性。

-----廣告,請繼續往下閱讀-----

像 Brachyury 這類基因就會在胚胎與胚外部位之間開始表現,就跟真正胚胎的情況一樣。Brachyury 基因至關重要,因為它會影響中胚層的形成與前後軸線。 這個發現不但讓我的心跳差點停止,也讓實驗室中的每個人都大為驚奇。

這些類胚胎結構與正常胚胎結構非常相像,足以用於揭開在母體著床時期的某些發育謎團。很明顯地,胚胎幹細胞與滋養層幹細胞一同建造的結構所模擬出的胚胎形態與結構模式,要比只使用胚胎幹細胞要來得精確許多——這是更值得信賴的發育模型。

圖/unsplash

感覺起來,這兩種幹細胞就好像兩名舞者彼此都告訴對方,自己在胚胎中的所在位置。沒有這場雙人舞,正確形狀與形式的發育以及關鍵生物機制的適時運作就不會適當發生。我們也發現這個結構模式的發育,得仰賴 Wnt 與骨成形性蛋白質(bone morphogenetic protein, BMP)的訊號路徑,這與真正胚胎的發育情況一樣。

投稿論文的種種阻力與助力

我們將這篇論文投稿至《自然》。由於許多論文在初始階段就會被退回,所以我們知道編輯將稿子送去審閱時,士氣不由得為之一振。編輯們的知識淵博,經驗也豐富,能走到這一步就是一種重要的認可,所以我們有場小小的慶祝活動,因為即使是小小的成功也能做出改變。

-----廣告,請繼續往下閱讀-----

不過最終他們沒有接受我們的論文,除非得像一位審稿人要求的那樣,提供合成胚胎在自我建構時所用基因的詳細資料,以及這些基因的表現模式在自我建構的每個階段是如何變化的。這將會是一件大工程。然而這彷彿算不上是什麼壞消息,因為我的實驗室中並沒有技術可以研究這些基因所運用的轉變形態模式。我需要尋求經費來購買我負擔不起的設備,我們也需要找到合作夥伴。

我受邀到澳洲獵人谷為歐洲分子生物學組織大會進行講座。那時正值學校放假,所以我帶著賽門一起踏上這次的冒險旅途。我們在香港轉機,順便停留一天拜訪當時的行政長官梁振英,他是我最好的前博士生之一梁傳昕的父親。

圖/unsplash

我的演講是由小鼠發育生物學家譚秉亮(Patrick Tam)開場,我感到非常榮幸,因為我向來就對譚秉亮的研究極為崇拜。賽門與我加入譚秉亮與他太太伊莉莎白(Elizabeth)的行列,一起到雪梨的海邊走走,一路上譚秉亮告訴我有關他與上海生命科學研究院景乃禾(Naihe Jing)的合作,景乃禾利用雷射切割胚胎,揭露了胚胎基因的表現模式。我非常幸運,因為在我回到劍橋不久後,景乃禾就到劍橋來拜訪,所以我能夠親自與他見上一面。我們同意一起合作揭開我們類胚胎結構中基因表現的模式。景乃禾團隊的貢獻將是我下一章故事的重心。那時我們才意識到,可能要花上一年的時間才有辧法確實做到這一點,而我也不確定我們是否願意為了讓《自然》的編輯滿意(或者還是不滿意,誰知道呢)而等這麼久。

那時,莎拉與柏娜已經累積了更多的數據,所以我們決定將研究結果投稿到我比較不熟悉的《科學》。事實證明這是正確的選擇。跟過往一樣,審稿人要求我們再多做一點實驗。但這次的要求還做得到,只是我們就得在 2016 年的聖誕節假期長時間的工作,以便在新學期開始前完成手稿。大衛也一起下來幫忙,他成為這篇論文的共同作者。

-----廣告,請繼續往下閱讀-----

為「類胚胎模型」命名也是一門大學問

命名很重要,因為「珠子」那個命名的前車之鑑,所以我們對於要怎麼為我們的類胚胎模型命名進行了漫長的討論。這些模型讓我們知道胚胎結構是如何從幹細胞自我建構而成,所以我們想要給它們取個特別的名字。但是我們最後沒有得到共識。

圖/imdb

《科學》的編輯不喜歡「合成」類胚胎結構這個名字。我在期中假期得知這個消息,那時我正與家人及朋友滑雪度假中,所以我請他們一起來想想其他的名字。這或許就是為何我們會想到「ETs」這個名字的原因之一。史蒂芬.史匹柏有部科幻電影講述到從異世界來的訪客,而從幹細胞自我建構出的第一個類胚胎結構似乎也帶給我們這樣的感受。不過這個 E 不是代表「另外(extra)」的意思,而 T 也不是「地球人(terrestrials)」的意思。E 代表的是胚胎幹細胞(ES),而 T 代表的則是滋養層細胞(TS)。

——本文摘自《生命之舞》,2023 年 9 月,出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
商周出版_96
119 篇文章 ・ 362 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。