0

2
1

文字

分享

0
2
1

牛頓的非主流學術研究:左手是聖經、右手是煉金術,那科學呢?--《科學大歷史》

PanSci_96
・2017/08/04 ・6140字 ・閱讀時間約 12 分鐘 ・SR值 545 ・八年級

-----廣告,請繼續往下閱讀-----

  • 【科科愛讀書】人類花了數百萬年學習和思考,才從那個連「科學」怎麼寫都還沒一撇的古早時代,到今天能夠運用科技超越肉身的限制,探索小粒子的無窮和大宇宙的廣袤。但是人類的璀璨成就絕非是一蹴可幾,而是建立在無數先人的跌跌撞撞之上,這過程其中也不乏許多學校沒教、卻相當有趣的故事。就讓《科學大歷史》帶你坐上時光機重回科學史萌芽的年代,來一趟精彩的發現之旅吧!
煉金術師的實驗室。圖/Lau Svensson@Flickr

一六七O年代中期,牛頓對數學感到厭煩,也因為光學研究遭到批評而憤怒不已。這時才三十出頭的牛頓開始冒出白髮,而且經常蓬頭亂髮,他幾乎已經完全抽離了科學圈,接下來十年也一樣。

不過,厭惡衝突不是導致他幾乎完全陷入孤立的唯一原因。在之前的那幾年間,即使他在研究數學和光學,他也開始把每週上百小時的研究時數轉移到兩個新的興趣上。他不急著跟任何人討論那兩項興趣,那是他後來經常遭到批評的「瘋狂」研究專案。事實上,那兩項興趣顯然是在主流學術之外:對聖經進行數學和文本分析,以及煉金術

牛頓。圖/wikimedia commons

用數學和虔誠的心來探究聖經

對後代的學者來說,牛頓決定潛心研究神學和煉金術往往令他們費解,那種行徑就好像他決定不再投稿《自然》,開始為山達基教撰寫文宣一樣。不過,那樣評斷牛頓,就忽略了科學主體的真正範疇,因為牛頓之所以辛勤地投入物理學、神學和煉金術的研究,其實可以用一個共同的目標一言以蔽之:為了探究世界的真相。

稍微思考一下牛頓的辛勤探索其實很有趣--不是因為那些探索證明是對的,也不是因為那些探索證明牛頓有時候很瘋狂,而是因為它們突顯出科學探索最後究竟是成果豐碩、還是徒勞無功,往往只是一線之隔。

-----廣告,請繼續往下閱讀-----
牛頓實驗室著火圖。圖/wikimedia commons

聖經承諾上天會對虔誠的人揭示真相,雖然單純閱讀文本時,某些元素不是那麼顯而易見,不過牛頓依然相信聖經的承諾。他也相信,以前的虔誠信徒,包括瑞士醫生帕拉賽瑟斯(Paracelsus)之類的卓越煉金術士,已經推測出重要的見解,並以暗碼的形式把那些見解寫在他們的作品中,以避免不虔誠的人知道。牛頓推演出萬有引力定律以後,他甚至開始相信摩西、畢達哥拉斯、柏拉圖都比他早知道那個定律。

由於牛頓天賦過人,他想以數學來分析聖經其實是可以理解的。他的研究促使他算出創世、諾亞方舟,以及其他聖經事件的確切日期。此外,他也根據聖經預測了世界末日,並持續修正他的算法。最後幾次預測中,他有一次預測世界末日是介於 2060 年到 2344 年之間。(不知道那會不會證實是真的,但怪的是,那確實和全球氣候變遷的一些情境非常吻合。)

牛頓預測世界末日是介於2060年到2344年之間。圖/wikipedia

此外,牛頓也開始懷疑一些聖經段落的真實性,並深信有一樁龐大的騙局為了支持耶穌是上帝的概念,而破壞了早期教會的傳承,他覺得那個概念是一種偶像崇拜。總之,他不相信三位一體,這實在有點諷刺,畢竟他是三一學院的教授。他抱持這樣的觀念也很危險,因為萬一有心人士得知他的觀點,他肯定會因此失去教職,或許還會失去更多的東西。不過,儘管牛頓投入很多心血去重新詮釋基督教,他對於公開自己的研究極其小心謹慎。(但牛頓認為,他最重要的研究其實是宗教研究,而不是科學方面的革新。)

金星綠獅與巴比倫的龍:牛頓的煉金術研究

那幾年,牛頓的另一項興趣是煉金術。煉金術也占用了他很多的時間和精力,而且他持續研究了三十年,遠比他投入物理學的時間還多。研究煉金術也很花錢,因為他還為此設立了煉金術實驗室和圖書館。如果我們直接把牛頓對煉金術的投入視為不科學,那也是誤會大了。因為他探索煉金術時,就像探索其他的學術一樣,非常仔細小心,而且非常理性。不過,由於他的推理是以我們完全不熟悉的脈絡為基礎,我們很難瞭解他得出來的煉金術結論。

-----廣告,請繼續往下閱讀-----

現在我們對煉金術士的刻板印象是:穿著長袍、留著鬍子、唸著咒語,試圖把肉荳蔻煉成黃金。事實上,目前已知最早的煉金術士是一個埃及人,名叫曼底斯的波洛斯(Bolos of Mendes),活在公元前兩百年左右。每次做完「實驗」時,他都會唸以下的咒語:「一物配一物,一物剋一物,一物治一物。 」聽起來好像在講兩人結婚後可能發生的多種不同狀況。但是波洛斯所說的物質是化學物質,他確實對化學反應有一些瞭解。牛頓認為:在古代,波洛斯之類的學者已經發現了深奧的真相,只是後來失傳了,但是分析希臘神話可以重新發掘真相,他深信希臘神話是以暗碼形式撰寫的煉金祕訣。

畫中為不知名之煉金術師,牛頓用利用此畫來寫他的書。圖/ David Lees/Corbis@NOVA

牛頓在探索煉金術時,也是採用一絲不茍的科學研究方法,做了無數細膩的實驗,寫下大量的筆記。所以這位後來寫出《原理》的作者(《原理》常被譽為科學史上最偉大作品),也花了好幾年在筆記中寫下許多類似下面的實驗觀察:

「在金星的中央鹽裡溶解揮發性的綠獅, 加以蒸餾提煉。提煉出來的靈氣是金星綠獅的血。綠獅亦即巴比倫的龍,它可以用其毒素毒死一切,但是被女神戴安娜的鴿子(亦即水星環)所祭出的安撫降服了。」

(譯註:綠獅是煉金術的術語,代表硫酸。金、銀、水銀、銅、鐵、錫、鉛分別對應太陽、月亮、水星、金星、火星、木星、土星。)

牛頓煉金手稿。圖/ R. D. Flavin @Neatorama

牛頓心底的秘密

我剛踏入科學這一行時,崇拜每一位備受大眾肯定的大師,例如牛頓和愛因斯坦之類的先哲,以及費曼之類的當代天才。對年輕的科學家來說,踏入這種大師輩出的領域可能是壓力很大的事。我剛獲得加州理工學院的教職時,也感受到那樣的壓力,感覺就像升中學的前一晚,我擔心上體育課,尤其是必須跟其他的男學生一起洗澡,和大家裸裎相見 。因為在理論物理學界,你也是在袒露自己,只不過不是裸身,而是坦露智識,而且其他人不只會旁觀,還會下評斷。

-----廣告,請繼續往下閱讀-----

很少人談過那種不安感,或分享自己的感受,但這種現象其實很常見。每位物理學家都必須找到自己的方式去因應那種壓力。不過,想要成功因應壓力的話,就要盡可能避免擔心自己是錯的。據傳,愛迪生常提出一項建議:「想要獲得絕佳的點子,要先想出許多點子。」確實,創新者走過的死胡同比康莊大道還多,所以你老是擔心轉錯彎的話,就永遠到不了有趣的地方。因此,我真心希望當初入行時就知道牛頓想過的所有錯誤點子,以及他徒勞無功的那段歲月。

對我這種人來說,知道那些極其出色的人偶爾也會搞錯,總是讓我放心不少。知道連牛頓那種天才都可能錯得離譜,就令人格外安心。他也許想出「熱是微小粒子移動的結果」,也認為所有物質都是由微小粒子組成的,但是他覺得自己感染肺結核時,還是喝了松節油、玫瑰水、蜜蠟、橄欖油調配的偏方。(據傳那個偏方也可以治胸痛和瘋狗咬傷。)沒錯,他發明了微積分,但他也覺得耶路撒冷所羅門神殿的平面圖裡,蘊藏著世界末日的數學線索。

為什麼牛頓會偏離本行那麼遠呢?仔細探究當時的情況,會看到一個原因最顯而易見:與世隔絕。就像知識隔離導致壞科學在中世紀的阿拉伯世界裡大幅擴散一樣,同樣的情況似乎也導致牛頓逐漸走偏。不過,與世隔絕是他自願的,因為他始終沒讓任何人知道他在研究宗教和煉金術。他不想冒著遭到取笑的風險,或甚至因為開放學術討論而遭到抨擊。牛津大學的哲學家 W.H.紐頓 – 史密斯(W. H. Newton-Smith)寫道,沒有所謂的「好牛頓」和「壞牛頓」,理性和非理性的牛頓;牛頓之所以走偏了,是因為他沒把概念提出來,讓大家公開討論與質疑。「公開論壇」是「科學體系中最重要的常態之一」。

牛頓煉金手稿。圖/SRI BHAGAWAN MAHAVEER JAIN COLLEGE

牛頓不僅厭惡批評,在瘟疫肆虐期間,也不願分享他在運動物理學方面的革新研究。他擔任盧卡斯教授十五年後,那些概念依然是尚未發表的未成品。所以,一六八四年,牛頓四十一歲時,這個極其認真的前神童只留下一堆有關煉金術和宗教的混亂筆記和論文、多篇未完成的數學論文,以及依舊令人困惑不解、也不完整的運動理論。牛頓在好幾個領域裡都做了詳盡的探究,留下一些數學和物理學的概念,但那些概念就像過飽和食鹽水:濃度極高,但沒有結晶。

-----廣告,請繼續往下閱讀-----

牛頓當時的職涯狀態就是如此,史學家韋斯福(Westfall)指出:「牛頓要是在一六八四年過世,並留下那些論文,我們會從那些論文知道這世上曾出現一個天才。不過,我們不會把他尊稱為開創現代智慧的先哲,頂多只會以簡短的段落提到他,並感嘆他無法完成未竟之志。 」

牛頓的命運沒有落入那樣的下場,並不是因為他決心完成研究內容並加以公開,而是因為一六八四年一個近乎偶然的事件改變了科學史的發展,牛頓和一位同僚的互動提供了他所需的概念和刺激。要不是因為那次偶然,科學史--乃至全世界--都將會截然不同,而且不是變得更好。

一個賭注,促成牛頓最偉大的科學論文

那一顆促成史上最大科學躍進的種子,是在牛頓遇到一位同僚之後萌芽的。那位同事在當年的夏末碰巧經過劍橋。

那年一月,天文學家愛德蒙.哈雷(Edmond Halley)參加了倫敦的英國皇家學會所舉行的會議,並在會中和兩位同仁討論了當時的熱門議題。英國皇家學會是致力於科學的學術團體,有很大的影響力。

-----廣告,請繼續往下閱讀-----

數十年前,克卜勒引用丹麥貴族第谷.布拉赫(Tycho Brahe, 一五四六~一六O一年)所收集、準確性前所未見的行星資料,發現有三個定律似乎可用來描述行星的軌道。他宣稱,行星的軌道是橢圓形的,太陽是其中的一個中心點。他也找出那些軌道依循的某些規則,例如,行星繞軌道一圈的時間平方,和它距離太陽平均距離的三次方成比例。就某方面來說,他提出來的定律很簡潔優美,精簡地描述了行星在太空中的運轉。但另一方面,那只是空泛的看法,特定的說詞,並未說明為什麼軌道會依循那種定律。

愛德蒙.哈雷(Edmond Halley)。圖/wikimedia commons

哈雷和兩位同僚臆測,克卜勒的定律反映了某些更深層的意涵。尤其,他們推測,假設太陽對每顆行星的拉力大小,跟著行星和太陽的距離平方成反比(亦即所謂的「反平方定律」),克卜勒的定律依然成立。

遠端物體(例如太陽)對四面八方的施力大小跟距離平方成反比,這個道理其實可以用幾何學來主張。想像一個極大的球體,那個球體大到讓太陽看起來像其中心的一小點。球體表面的每一點到球心的距離都一樣,太陽的影響力(亦即「力場」)應該是同樣分布在球體的表面。

現在,再想像一個球體是剛剛那個球體的兩倍大。幾何定律告訴我們,球體的半徑加倍時,表面積會變成原來的四倍,所以這時太陽引力是分布在四倍的表面積上。如此可以推斷,在那個四倍大的表面積上的任一點,太陽的引力是之前那個球體的四分之一。反平方定律就是這樣運作的:離得愈遠,施力跟著距離平方成反比。

-----廣告,請繼續往下閱讀-----
克卜勒完成了《新天文學》的手稿:他運用幾何速率法則,假定軌道是蛋形軌道,開始計算火星的整體軌道。圖/wikipedia

哈雷和同仁懷疑克卜勒定律的背後存在著反平方定律,但是他們怎麼證明呢?其中一人說他可以證明,那個人就是虎克。另一人是克里斯多佛.雷恩(Christopher Wren),如今最為人知的身分是建築師,但他也是知名的天文學家。他跟虎克打賭,要是虎克能證明出來,他就給他獎金。但虎克婉拒了,他向來以個性反骨著稱,不過他婉拒的理由令人懷疑:他說,他暫時不想揭露證明,他想讓大家先去嘗試,嘗試失敗後才會知道那個證明有多難。或許虎克真的已經解開問題了,或許他也設計出可以飛往金星的飛船了,但總之他從未揭露證明。

那場會議結束七個月後,哈雷正巧來到劍橋,他決定去探望孤僻的牛頓教授。牛頓就像虎克一樣,宣稱他也做了研究,可以證明哈雷的上述臆測。但牛頓也跟虎克一樣,其實沒有證明出來。他故意翻箱倒篋找了一下文件,就是找不到他的證明,但他承諾會好好找一下,之後再寄給哈雷。過了幾個月,哈雷沒收到任何東西,你可以想見哈雷當時作何感想。他問了兩位頗具聲望的成年人,能不能解開一個問題,其中一人說:「我知道答案,但我不要講出來!」另一人的回應彷彿是說:「狗吃掉了我的作業!」所以雷恩的獎金始終發不出去。

牛頓後來確實找到證明了,但他又仔細看了一遍,發現那個證明有誤。他並未放棄,而是著手重新研究,最後成功了。那年十一月,他寄給哈雷九頁的論文,以顯示克卜勒的三個定律其實都是「引力的反平方定律」的數學推論。他把那篇短文稱為〈論天體的軌道運動〉(De Motu Corporum in Gyrum)。

〈論天體的軌道運動〉(De Motu Corporum in Gyrum)手稿。圖/UCI

哈雷非常興奮,他看出牛頓的論證充滿了革命性,希望英國皇家學會能把它發表出來,但牛頓反對,他說:「既然我開始研究這個議題了,我想徹底探究以後再發表論文。 」由於後來牛頓投注了極大的心力,發表的成果稱得上是史上最重大的學術論著,他那句話聽起來可謂史上最輕描淡寫的回應。牛頓後來「徹底探究」的結果,是證明行星軌道的根本原理,就是可以套用在一切物體上(包括天體和地球上的物體)的運動定律和力學定律。

-----廣告,請繼續往下閱讀-----

後續的十八個月,牛頓撇開一切雜務,專注地延伸那篇論文,把它擴增成後來的《原理》。他就像物理學機器一樣,一旦投入一項主題,就廢寢忘食,這是他從以前就養成的習慣。據說,他的貓變得很胖,因為他直接把飼料堆在牠的盤子裡。他以前的大學室友說過,他早上看到牛頓時,通常會發現他依然在昨晚的位置上努力解著同一個問題。不過,這一次,牛頓又變得更極端了,他幾乎完全不跟任何人接觸,足不出戶。偶爾幾次出門,是去大學的食堂,站著吃一兩口東西,就立刻趕回家繼續奮戰。

圖/Dan Perry@Flickr

最後牛頓關閉了煉金術實驗室,也擱下了神學探索。他還是繼續按照規定講課,但講課內容艱澀難懂,後來大家才知道原因:牛頓每堂課都是拿《原理》的草稿來授課。


 

 

本文摘自《科學大歷史:人類從走出叢林到探索宇宙, 從學會問「為什麼」到破解自然定律的心智大躍進》漫遊者文化出版。

文章難易度
PanSci_96
1219 篇文章 ・ 2172 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
4

文字

分享

0
4
4
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

討論功能關閉中。

林澤民_96
37 篇文章 ・ 239 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

0
0

文字

分享

0
0
0
秋季星空中一抹光亮:北落師門殘屑盤的觀測史——《科學月刊》
科學月刊_96
・2024/01/19 ・4118字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 謝承安/ EASY 天文地科團隊成員,因喜愛動畫《戀愛中的小行星》開始研究小行星,現就讀臺大物理系。
  • 林彥興/清大天文所碩士, EASY 天文地科團隊總編輯,努力在陰溝中仰望繁星。
  • Take Home Message
    • 殘屑盤是恆星周遭的盤狀結構,由於北落師門殘屑盤離地球僅 25 光年,數十年來天文學家時常會藉由觀測它以了解殘屑盤的特性。
    • 去(2023)年韋伯望遠鏡的觀測結果與過去不同,顯示北落師門殘屑盤其實分成多個部分,更讓他們相信北落師門中有多個行星環繞。
    • 韋伯望遠鏡提供的影像還揭露許多來源未知的構造及現象,例如內側殘屑盤與內側裂縫等,都有待繼續探索。

北落師門(Fomalhaut)又稱南魚座 α 星,是秋季星空中著名的亮星之一。去年 5 月,以美國亞利桑那大學(University of Arizona)天文學家加斯帕(András Gáspár)為首的研究團隊在《自然天文學》(Nature Astronomy)期刊上發表,他們藉由詹姆士.韋伯太空望遠鏡(James Webb Space Telescope, JWST,簡稱韋伯望遠鏡),在北落師門周圍殘屑盤(debris disk)中首次發現了「系外小行星帶」的存在。韋伯望遠鏡拍下美麗的照片,也瞬間席捲各大科學與科普媒體的版面(圖一)。

圖一:韋伯望遠鏡在波長約 25 微米(μm)的中紅外線拍攝的北落師門影像,首次呈現北落師門殘屑盤中的三層結構。(NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

天文學家選擇北落師門作為目標並非偶然。半個世紀以來,北落師門一直是天文學家研究殘屑盤時的首選目標之一。韋伯望遠鏡的新影像為我們帶來什麼新發現?過去與現在的觀測方式又有什麼差異?本文將帶著大家一起回顧北落師門殘屑盤的觀測史。

行星相互碰撞後的殘屑盤

殘屑盤是環繞在恆星周遭,由顆粒大小不一的塵埃所組成的盤狀結構。如果讀者們聽過行星形成的故事,也知道行星是從恆星四周、由氣體與塵埃組成的「原行星盤」(protoplanetary disk)中誕生,那你或許會認為殘屑盤可能就是行星形成後剩下的塵埃。但實際上並非如此,在恆星形成初期的數百萬年間,原行星盤中的氣體和塵埃會被恆星吸積或是吸收恆星輻射的能量後蒸發,同時也會聚集成小型天體或行星,這些原因都會使原行星盤消散。而殘屑盤則是由盤面上的小行星等天體們互相碰撞後,產生的第二代塵埃組成(圖二)。

圖二:殘屑盤想像圖(NASA/JPL-Caltech)

這些塵埃發光的機制主要有兩種。第一,塵埃本身可以散射來自母恆星的星光,從而讓天文學家能在可見光與近紅外波段看到它們。第二,塵埃在吸收來自恆星的星光之後,以熱輻射的形式將這些能量重新釋放。由於恆星的光強度與距離成平方反比,愈靠近恆星,塵埃的溫度就愈高,因此發出的輻射以近紅外線為主;反之,愈是遠離恆星,塵埃的溫度就愈低,發出的光就以中遠紅外線為主。

-----廣告,請繼續往下閱讀-----

觀測目標:北落師門

北落師門殘屑盤的觀測始於 1983 年。當時,美國國家航空暨太空總署(National Aeronautics and Space Administration, NASA)的紅外線天文衛星(Infrared Astronomical Satellite, IRAS)發現北落師門在紅外線波段的亮度異常高,代表周圍很可能有殘屑盤圍繞。由於北落師門離地球僅約 25 光年,這項發現引起眾多天文學家的關注,並在未來數十年前仆後繼地拿出各波段最好的望遠鏡,希望藉此深入了解殘屑盤的特性。其中,哈伯太空望遠鏡(Hubble Space Telescope, HST,簡稱哈伯望遠鏡)、阿塔卡瑪大型毫米及次毫米波陣列(Atacama Large Millimeter/submillimeter Array, ALMA)與韋伯望遠鏡擁有非常好的空間解析度,因此能夠清楚地觀測殘屑盤的結構。

● 哈伯的觀測

2008 年, NASA 公布哈伯望遠鏡在 2004 與 2006 年對北落師門的觀測結果(圖三),讓天文學家首次清晰地看到北落師門殘屑盤的影像。這張照片是哈伯望遠鏡以日冕儀(coronagraph)在 600 奈米(nm)的可見光波段下拍攝,中間的白點代表北落師門的位置,而周圍的環狀亮帶正是因散射的北落師門星光而發亮的殘屑盤,放射狀的條紋則是日冕儀沒能完全消除的恆星散射光。除此之外,天文學家還發現有一個亮點正圍繞著北落師門運行,並認為此亮點可能是一顆圍繞北落師門的行星,於是將它命名為「北落師門 b 」。很可惜在往後的觀測中,天文學家發現北落師門 b 漸漸膨脹消散,到 2014 年時就已經完全看不見了。因此它很可能只是一團塵埃,而非真正的行星。

圖三:哈伯望遠鏡於 2008 年公布的北落師門。中間白點代表北落師門的位置,周圍環狀亮帶是因散射北落師門的星光而發亮的殘屑盤,放射狀條紋則是沒完全消除的恆星散射光。右下角亮點當時被認為是圍繞北落師門的行星,但很可能只是塵埃。(Ruffnax (Crew of STS-125);NASA, ESA, P. Kalas, J. Graham, E. Chiang, and E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center, Greenbelt, Md.), M. Fitzgerald (Lawrence Livermore National Laboratory, Livermore, Calif.), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory, Pasadena, Calif.)

● ALMA 的觀測

ALMA 對北落師門的完整觀測於 2017 年亮相,他們展示出更加清晰漂亮的環狀結構,且位置與哈伯望遠鏡的觀測吻合。正如前面提到,殘屑盤中的塵埃溫度愈低,放出的輻射波長就愈長。因此 ALMA 在 1.3 毫米(mm)波段觀測到的影像,主要來自離殘屑盤中恆星最遠、最冷的部分。

圖四: ALMA 於 2017 年拍攝的北落師門殘屑盤,展示出清晰漂亮的環狀結構。(Sergio Otárola|ALMA (ESO/NAOJ/NRAO);M. MacGregor)

● 韋伯望遠鏡的觀測

最後則要來看去年韋伯望遠鏡所使用中紅外線儀(mid-infrared instrument, MIRI)拍攝的影像(圖五)。與之前的觀測不同,這次的影像顯示北落師門的殘屑盤其實分成幾個部分:

-----廣告,請繼續往下閱讀-----
圖五:韋伯望遠鏡在 25 微米波段觀測到的北落師門殘屑盤。(NASA GSFC/CIL/Adriana Manrique Gutierrez;NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

首先,哈伯望遠鏡與 ALMA 之前就已觀測到的塵埃環,它的半徑約 136~150 天文單位(AU)、寬約 20~25 AU,而溫度則落在約 50~60 K,與太陽系的古柏帶(Kuiper belt)十分相似,因此被稱為「類古柏帶環」(KBA ring)。雖然在觀測上的溫度相似,但其實此塵埃環與北落師門的距離是古柏帶到太陽的四倍;不過北落師門光度約為太陽的 16 倍,根據前述提及的平方反比關係,才導致兩者的溫度相近。此外,在更外層名為「暈」(halo)的黯淡結構則對應古柏帶外圍天體密度較低的區域。

再來,韋伯望遠鏡還發現了更多未解的謎團:內側殘屑盤(inner disk)與中間環(intermediate ring)。其實早在本次韋伯望遠鏡的觀測之前,天文學家就已經從北落師門的光譜推測,北落師門的殘屑盤中除了存在前面提過的類古柏帶環之外,應該還有另一批更靠近恆星、溫度更高的塵埃,溫度與大小對應太陽系中的環狀小行星帶。但當韋伯望遠鏡實際觀測後,卻發現與太陽系的環狀小行星帶相比,北落師門有著相當瀰散的內側殘屑盤。為什麼會有這樣的不同呢?目前天文學家也不清楚,仍待進一步研究。

最後,在類古柏帶環與內側殘屑盤之間,還存在著一個半長軸約 104 AU 的「中間環」,在太陽系中則沒有對應的結構,這項新發現也需要進一步的研究來了解它的來源。

此外,雖然北落師門 b 最終被證實並不是一顆行星,但這並不代表北落師門旁沒有行星環繞。最初,殘屑盤的形成原因是由小行星等天體不斷碰撞所產生,經過不斷地碰撞合併,其實就有可能已經產生直徑數百到數千公里的行星。從北落師門的殘屑盤還可以推論,在內側殘屑盤與中間環之間可能有一顆海王星質量以上的行星,它就像鏟雪車般清除軌道上的塵埃,從而產生「內側裂縫」(inner gap)的結構。

-----廣告,請繼續往下閱讀-----

另一方面,天文學家也藉由數值模擬發現,如果僅考慮來自北落師門的重力影響,類古柏帶環應該要比觀測到的更寬才對。因此他們推測,很可能在類古柏帶環內外兩側有兩顆行星,像控制羊群的牧羊犬一樣以自身的重力限制塵埃移動,才產生了這麼細的塵埃環。

● 更多的殘屑盤觀測

北落師門雖然是一顆年齡僅4.4億年的年輕恆星,卻已經是一個擁有殘屑盤、形成行星的成熟恆星系統。而來自韋伯望遠鏡的最新觀測結果,無疑讓天文學家更深入地認識殘屑盤中複雜的結構,也更令他們相信北落師門系統中有多個行星環繞。

不過,北落師門系統仍舊有許多未解之謎。例如為什麼太陽系有著環狀的小行星帶,北落師門卻是瀰散的內側殘屑盤?在無數的恆星中,究竟是太陽系還是北落師門的殘屑盤構造比較常見?殘屑盤中是否有行星存在?如果有,在北落師門的演化歷史中又扮演著怎樣的角色呢?這些問題都有待更多的觀測與理論模擬來解答。

在北落師門之後,觀測團隊預計將韋伯望遠鏡指向天琴座的織女星(α Lyr, Vega),以及位於波江座的天苑四(ε Eri),兩者都是離地球非常近且擁有殘屑盤的恆星。其中織女星的溫度與質量比北落師門更大,而天苑四的質量與溫度雖然比太陽小,卻有強烈的磁場活動。藉由觀測不同系統中殘屑盤的性質差異,並與太陽系進行對比,不僅能更加認識殘屑盤的起源、與行星的交互作用,更能理解我們自己的恆星系中,數百萬顆的太陽系小天體從何而來。

-----廣告,請繼續往下閱讀-----

JWST 原始資料的處理過程影片介紹,非常值得一看!

  • 〈本文選自《科學月刊》2024 年 01 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Galicher, R. et al. (2013). Fomalhaut b: Independent analysis of the Hubble space telescope public archive data. The Astrophysical Journal, 769(1), 42.
  2. MacGregor, M. A. et al. (2017). A complete ALMA map of the Fomalhaut debris disk. The Astrophysical Journal, 842(1), 8.
  3. Gáspár, A. et al. (2023). Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI. Nature Astronomy, 1–9.
科學月刊_96
249 篇文章 ・ 3470 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。