Loading [MathJax]/extensions/tex2jax.js

0

2
1

文字

分享

0
2
1

宇宙的存在,是永無止境的奧祕——《機器人會變成人嗎?33 則最令現代人焦慮的邏輯議題》

PanSci_96
・2020/02/14 ・3466字 ・閱讀時間約 7 分鐘 ・SR值 505 ・六年級

  • 作者/彼得.凱夫(Peter Cave);譯者/丁宥榆

「好久好久以前,宇宙間空無一物……」

這故事不好發展下去。

如果我們接著說「……然後,有個東西出現了」,一定會有很多人要問:「那個東西是怎麼突然出現的?無中生有嗎?是嗎?」我們能給出的回答也只有:「就是出現了。」

「就是出現了。」圖/GIPHY

可是這樣聽起來很弱。有些物理學家提到有自然法則在「支撐」,但是我們要納悶,都空無一物了,是要支撐什麼?我們還要納悶,何以見得自然法則存在,而不是不存在。

我們試著把故事重講一遍。

「好久好久以前,宇宙間有個東西……」

終於有東西可以發揮了。但是很多人不禁又要問:「這東西哪裡來的?」對於這個問題,我們可以提出幾個暫時令人滿意的答案。我們可以宣稱這個東西是由另一個東西引發的,另一個東西又是由另另一個東西引發的,另另一個東西又是……云云,把解釋的責任全推到另一件事身上。

姑且不論這種「引發它」的串連鏈能否一直下去,不斷往回推,找不到起點,仍有一個問題存在:這種串連鏈,無論有無盡頭,怎麼會存在?為什麼不是什麼都沒有?

-----廣告,請繼續往下閱讀-----

讓我們第三次把故事重來一遍。

「好久好久以前,宇宙間存在一切萬物……」

這會兒我們可能開始擔心,問題會不會出在一直被我們忽略的「好久好久以前」。

我們可能會指出,在好久好久以前的那個時候,並沒有什麼都已經存在。有在那之前就已經存在的所有事物,還有在那之後才出現的所有事物,即,所有那些過去事物和所有那些未來事物。

我們可能開始沉思是否只有現在存在,或只有現在和過去存在而尚未有未來,抑或是,過去、現在、未來三者都存在。在這裡我們先不考慮這麼複雜的問題。

「好久好久以前」的故事蘊含變動在內,常訴說著某些事件如何作為其他事件的結果出現。因此,我們要再來改一下故事的開頭。

-----廣告,請繼續往下閱讀-----

「好久好久以前,宇宙間存在著直到並包括那個時候所存在的一切……」

為何萬物存在呢?

為何現在會存在這些存在的一切萬物?為何過去會存在那些已經存在的一切萬物?

即便這些「萬物」已經包含引發一連串已經發生的事物在內,上述問題仍然還是會被問起。我們還可以加問一句:「為何未來會存在即將存在的一切萬物?」

為何現在會存在這些存在的一切萬物?為何過去會存在那些已經存在的一切萬物?圖/Nejc Košir@Pexels

上述問題可歸類成兩個問題:「現在或過去為何會有萬物存在?『及』現在或過去萬物為何會帶著它們所具有的特質存在?

我們先來討論第一個問題,它有兩種理解。第一種理解中,這個問題經常被各種社會階層的人提出,人們想知道答案,也有人提出答案。另一種理解中,這個問題也常被各種人問起,不過大家不是真的想知道答案,也未曾有人提出過很好或很具體的答案。這兩種理解都聚焦在問題的「一切」或「萬物」。

  • 第一種理解認為「萬物」涵括整個宇宙,即科學家所研究的一切:恆星、行星、電、遊戲主機、汽車、中央暖氣、男人、女人、糖漿餡餅—所有的一切,包含心智、金錢等制度、法律和道德。

這裡需要留意複雜的用詞問題:近年來有部分哲學家以及物理學家認為,可能有好幾個宇宙存在。我們這裡所說的「宇宙」就是涵蓋這一切的全部。

當我們這樣理解「萬物」,有人便要問:「『萬物』是怎麼出現的?或為什麼會出現?」就算這個「萬物」是由一連串沒有起頭的事件所組成,那麼為何會有這樣的串連呢?有些人認為這才是個真正的問題,找不到答案就將之化為奧祕。

-----廣告,請繼續往下閱讀-----

結果導致許多人主張,如此必有個作為造物主的上帝(或神明們)存在。他們說,唯有主張造物主存在,才能解釋宇宙之存在。

  • 第二種理解則是這樣子的。「萬物」的意思,說來奇怪(登楞!),就是一切萬物。它包含整個宇宙,也包含任何存在的上帝或神明。

那麼這個被認為已經涵蓋一切的「萬物」是怎麼來的?弔詭的是,有些人對這個問題反而不以為意。

祂既是萬物的一部分,也創造其他萬物。圖/GIPHY

他們回答,必須有個造物主(或神明們)存在,祂既是萬物的一部分,也創造其他萬物。宇宙也許只是偶然存在,可上帝不是。上帝必然存在。你我也許不曾存在;我們是有條件的存有,不是必要的存有。要不是我們的父母某天(某晚的可能性更高)從事了奇怪的身體交易,我們也不會存在。上帝不一樣。祂的存在不取決於祂自身之外,祂必然存在。

但是怎麼會有某件事物必然存在呢?有時答案也只是:「那是個奧祕。」

「到此為止吧,」我們很想這樣回答,「不要再說什麼唯有接受上帝存在,才能合理解釋這看似成謎的宇宙存在問題。」倘若我們提出宇宙本身也必然存在,不需要由上帝創造,一定會有人搖頭回答:「如果那樣就會是個奧祕了。」

-----廣告,請繼續往下閱讀-----

會嗎?還有比必然存在一個行動奧祕的造物主還要奧祕的事情嗎?

環環相扣的充分理由定律

這些教人摸不著頭腦的思想之所以出現,也許是我們太期望得到解釋。

萊布尼茲採納「充分理由定律」:萬物之存在必有其充分理由。

當我們提出理由或解釋時,往往會訴諸於解釋對象以外的事物。我們用 B 來解釋 A,再用 C 來解釋 B,依此類推。以至於當我們成功解釋了一件事,無可避免須涉及另一件事,因此又需要另一個解釋,也就是還要再找出一個另一件事。

體認到必須在某處終結這些解釋,於是訴諸於造物主。然而一旦又體認到這一點,就沒有必要去索求是誰創造了宇宙,也許,宇宙就是偶然發生的吧。

-----廣告,請繼續往下閱讀-----

如果「宇宙」就是個偶然……

假如宇宙就只是偶發,有沒有可能最初真的空無一物?或者必然已存在某個宇宙,唯獨不一定是我們這個宇宙。

一想到原本可能空無一物,真教人頭昏腦脹。當我們試著想像一個空無狀態,我們腦子裡可能把宇宙間所有的東西都拿掉,可縱使清空,不是還有時間和空間嗎?時間和空間要怎麼拿掉?然而不能因為我們無法想像「空無一物」(假如我們真的無法想像的話),便說宇宙最初不可能空無一物。

時間有可能是空的嗎?圖/GIPHY

時間與空間有可能是空的嗎?讓我們聚焦在時間上。假如沒有任何事情產生變化,沒有時鐘滴答響,沒有電子活動,沒有心臟跳動,如何定義時間流逝?也許時間之存在仰賴活動與事件之存在;當然,活動與事件也需要占據時間才能發生。

有沒有可能有某樣東西,既不存在於空間亦不存在於時間?

有人回答,上帝獨立於空間與時間之外。倒是有種非空間性與非時間性是我們可以理解的:數字,假如數字存在的話,既不存在於空間,也不存在於某一特定時間。

但是,假設上帝沒有時間性,另一個奧祕便要出現:創造乃為一種活動、一項事件,在時間中占據位置。假設上帝不存在於時間中,祂要怎麼進行創造?至少數字不用創造東西,可上帝卻往往被認為要創造東西。

-----廣告,請繼續往下閱讀-----

還有其他更多奧祕。其中一個關注的焦點是:時間本身到底有沒有開端?

時間當然不可能找到起點,如果時間可以無限回推,是否代表至今已完成的「時間段」是個「無窮級數」,即沒有盡頭的序列呢?這怎麼可能?

即便某樣事物的存在可以不需要解釋,仍有人堅持這一樣事物是需要理由的,它便是充滿有意識、有智慧(偶爾啦)生命的宇宙。這個宇宙極可能不是經由精心設計而來的,不是嗎?

好多好多的奧祕在這裡。圖/GIPHY

我不大確定當我們探討宇宙時,對於何為可能、何為不可能有任何理解,對於宇宙我們知之甚少,亦只有單一宇宙作為參考。無論我們對可能性做出什麼樣的結論,何以宇宙只是偶發的可能性,會小於上帝創造宇宙的可能性?

毫無疑問,我們將繼續被灌輸上帝的行動是很奧祕的,那麼為什麼上帝的奧祕會比宇宙存在的奧祕來得不奧祕,還真是個奧祕。

-----廣告,請繼續往下閱讀-----

好了,奧祕來奧祕去的,也夠了。不能再繼續製造奧祕,也不能再繼續解釋下去了,不過這倒是令我想到……我們的故事該如何作結呢?

「到最後,事情就這麼戛然而止」

「到最後,宇宙間將空無一物。」

「到最後,沒有最後。」

人們的關注往往圍繞在「萬物」的起源,但是也許「萬物」的結局也一樣成謎。果真又製造出更多奧祕。

——本書摘自《機器人會變成人嗎?33 則最令現代人焦慮的邏輯議題》,2019 年 10 月,EZ 叢書館出版

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2413 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
從太陽發光到生命突變,一切都歸功於量子穿隧效應?
PanSci_96
・2024/10/19 ・1962字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

在這個充滿光與生命的宇宙中,我們的存在其實與一種看不見的力量密切相關,那就是量子力學。沒有量子力學,太陽將不會發光,地球上的生命將無法誕生,甚至整個宇宙的運行規則都會截然不同。這些微觀層次的奧秘深深影響了我們日常生活的方方面面。

其中,量子穿隧效應是一個看似違背直覺但至關重要的現象,從太陽的核融合反應到基因的突變,這種效應無處不在,甚至還牽動著當今的高科技產業。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子穿隧效應?

我們可以將量子穿隧效應比作一個奇妙的穿牆術。想像一下,你身處一個被高牆包圍的城市,牆外是未知的世界。通常,如果你要越過這道牆,需要極大的力量來翻越它,或者用工具打破它。然而,在量子的世界裡,情況並不如此。

在微觀的量子力學世界中,粒子同時具有波的特性,這意味著它們並不完全受限於傳統物理的規則。當一個微觀粒子遇到能量障礙時,即使它沒有足夠的能量直接穿過障礙,卻仍有一定機率能出現在障礙的另一邊,這就是「量子穿隧效應」。粒子彷彿直接在牆上挖了一條隧道,然後穿越過去。

-----廣告,請繼續往下閱讀-----

這聽起來像魔法,但它背後有深刻的物理學道理。這個現象的發生取決於量子粒子的波動性質以及能量障礙的高度和寬度。如果障礙較矮且較窄,粒子穿隧的機率就較高;反之,障礙越高或越寬,穿隧的機率則會降低。

太陽發光:核融合與量子穿隧效應的結合

量子穿隧效應的存在,讓我們能夠理解恆星如何持續發光。以太陽為例,太陽內部的高溫環境為核融合反應提供了所需的能量。在這個過程中,氫原子核(質子)需要克服極大的電磁排斥力,才能彼此靠近,進而融合成為氦原子核。

然而,單靠溫度提供的能量並不足以讓所有質子進行核融合。根據科學家的計算,只有約10的 434 次方個質子中,才有一對具備足夠的能量進行核融合。這是一個極小的機率。如果沒有量子穿隧效應,這種反應幾乎不可能發生。

幸好,量子穿隧效應在這裡發揮了關鍵作用。由於量子粒子具有波動性,即便質子沒有足夠的能量直接跨越能量障礙,它們仍然能透過穿隧效應,以一定機率克服電磁排斥力,完成核融合反應。這就是為什麼太陽內部的核融合能夠源源不斷地發生,並且持續產生光與熱,讓地球成為適合生命生存的家園。

-----廣告,請繼續往下閱讀-----

量子穿隧效應與生命的演化

除了恆星的發光之外,量子穿隧效應還對生命的誕生和演化起到了關鍵作用。地球上物種的多樣性,很大一部分源於基因突變,而量子穿隧效應則幫助了這一過程。

DNA 分子是攜帶遺傳訊息的載體,但它的結構並不穩定,容易在外界因素影響下發生變異。然而,即使沒有外界因素的干擾,科學家發現 DNA 仍會自發性地發生「點突變」,這是一種單一核苷酸替換另一種核苷酸的突變形式。

量子穿隧效應讓氫原子隨時可能在 DNA 結構中進行位置轉換,從而導致鹼基對的錯位,這在 DNA 複製過程中,可能會引發突變。這些突變若保留下來,就會傳遞給下一代,最終豐富了基因與物種的多樣性。

量子穿隧幫助促進 DNA 突變,協助生命的演化與物種多樣性。圖/envato

半導體技術中的量子穿隧效應

除了在宇宙和生命中發揮作用,量子穿隧效應還影響著我們的日常生活,尤其在現代科技中。隨著半導體技術的發展,電子設備的體積不斷縮小,這也讓電子元件的性能面臨更大的挑戰。

-----廣告,請繼續往下閱讀-----

在微小的電子元件中,量子穿隧效應會導致電子穿過元件中的障礙,產生不必要的漏電流。這種現象對電晶體的性能帶來了負面影響,因此設計師們需要找到方法來減少穿隧效應的發生,以確保元件的穩定性。

雖然這是我們不希望見到的量子效應,但它再次證明了量子力學在我們生活中的深遠影響。設計更有效的半導體元件,必須考慮到量子穿隧效應,這讓科學家與工程師們需要不斷創新。

量子力學是我們宇宙的隱藏力量

量子穿隧效應看似深奧難懂,但它對宇宙的運作和生命的誕生至關重要。從太陽的核融合反應到基因突變,甚至現代科技中的半導體設計,量子力學影響著我們生活的方方面面。

在這個充滿未知的微觀世界裡,量子現象帶來的影響是我們難以想像的。正是這些看似不可思議的現象,塑造了我們的宇宙,讓生命得以誕生,科技得以發展。當我們仰望星空時,別忘了,那閃耀的光芒,背後藏著的是量子力學的奇妙力量。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2413 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

101
2

文字

分享

0
101
2
時間與空間的顛覆!如何用簡單的方式了解「相對論」?——《物理角色圖鑑》
azothbooks_96
・2024/09/16 ・2086字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

時間不再絕對?牛頓與愛因斯坦的時間觀差異

川村老師,請用簡單的方式告訴我「相對論」是什麼?

圖/《物理角色圖鑑》

老師:狹義相對論源自相對性原理(Principle of relativity,指物理定律〔Physical law〕適用於所有以等速直線運動的物體) 與光速恆定原理。根據這個理論,時間是相對的,依不同觀察者而有所差異。牛頓力學中的時間是絕對的,愛因斯坦則認為,可依不同的觀察者位置對時間進行不同定義。

圖/《物理角色圖鑑》

老師:之前在討論「力」時,也提過離心力。離心力是「慣性力」的一種,慣性力指物體在加速運動時感受到的與加速方向相反的力。置身在沒有窗戶的電梯中,當電梯向上加速,電梯內的人會受到向下的慣性力(譯注:因看不到外面,使得他無法判斷電梯的運動情況)。若加速度為 g,物體質量為 m,則物體所受慣性力為 mg,與在地面所受的重力 mg 相同。愛因斯坦無法區別這兩種 mg 的差異,所以視為等效。但無論慣性力的方向為何,物體都會往向量合成後的視重力場方向掉落。

時間在任何地方都固定不變嗎?

世界上最快的速度是光速。物體的移動速度若接近光速,它的時間進程就會變慢。也就是說,在接近光速的太空船上,時間會變得悠長。而且,接近光速的物體長度會朝行進方向收縮。

物體只要具有質量,即使在靜止狀態依然擁有能量(其能量 E mc2,稱為靜止能量(Rest energy)。

-----廣告,請繼續往下閱讀-----

提到光的運動,我們已經知道光的路徑會彎曲。

1919 年,天文學家觀測到恆星發出的光線在經過太陽附近時被偏折,這種現象稱為「重力透鏡效應」(Gravitational lens),有助於了解黑洞等宇宙中質量分布的情況。此外,天體物理學家也觀測到時間的延遲。簡而言之,接近地面的時鐘行進速度會比高處的時鐘慢,GPS 也是依據這種效應來進行校正。

圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

時間

牛頓力學中的「時間」(也就是我們一般理解的時間)和相對論中的時間大異其趣。牛頓在《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica,1687)中,假設空間是均勻平坦的;從過去到未來,在任何地方都平均延伸。在牛頓力學中,全宇宙的時間一致。

但相對論否定了這一點。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

光速恆定原理指出,光的速度是固定不變的。這種狀況下,空間中不同地點發生的兩件事,對某個觀測者來說是同時發生,但對另一參考系的觀測者而言則非同時發生。也就是說,時間的前進速度並非在任何地方都相同。因此,時間和空間不能視為各自獨立的兩回事,應該一體化,視為四維空間(時空,Spacetime)。

不過,這是指物體移動速度接近光速時的情況。日常生活中,使用過去的時間觀不會有任何問題。

黑洞

黑洞(Black hole)是一種天體,因為密度極高,重力極強, 不只物質,連光都會被吸進去,無法逃逸。天體是宇宙中所有物體的總稱,具體來說,指太陽、恆星、行星、星團、星雲等。從相對論來看,黑洞周圍空間是扭曲的。照以下方式想像應該會比較容易理解:

把重物放在一大塊展開的薄橡皮布上,放置處就會凹下去,而這塊凹陷會影響到周圍。同樣的,黑洞所在之處會發生猛烈的空間扭曲,經過附近的天體會被極強的重力吸引,落入其中,連光也難逃魔掌。

-----廣告,請繼續往下閱讀-----

銀河系有許多黑洞,但具體數字不詳。2019 年,一個跨國研究計畫團隊首次拍攝到黑洞的「影子」,掀起一陣討論熱潮。

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。