0

0
0

文字

分享

0
0
0

解開高斯相關性猜想,退休統計學家的靈光一閃

UniMath_96
・2017/04/09 ・3326字 ・閱讀時間約 6 分鐘 ・SR值 513 ・六年級

文/陳宏賓|UniMath 主編、逢甲大學應用數學系助理教授

一道靈光射進了羅炎的腦袋,困擾數十年的高斯相關性猜想終於攻破了大門!圖/By edfungus @ pixabay, CC0 Public Domain

2014 年夏天的某一個清晨,陽光如往常一樣穿透白色窗簾照了進來,羅炎起身前往浴室盥洗,一邊刷著牙一邊回想昨晚入睡前那個證明。突然間,一道靈光射進了羅炎的腦袋,困擾數十年的高斯相關性猜想(Gaussian Correlation Inequality Conjecture)終於攻破了大門!

連結機率、統計與幾何的猜想 

高斯相關性不等式(GCI)有許多不同的版本,其中最著名的是 1972 年連結機率、統計以及幾何三大領域的版本:

想像一個射飛鏢遊戲,以正中紅心為目標射許多次,飛鏢落點會以紅心為中心呈現類似鐘形的高斯分佈(或者稱常態分佈),如果以紅心為中心點同時畫一個圓和一個方形,高斯相關性不等式即是說飛鏢落在圓和方形的交集的機率會大於或者等於落在圓形的機率乘以落在方形的機率。

-----廣告,請繼續往下閱讀-----

P(圓 ∩ 方)≥ P(圓)× P(方)

這裡不同於下面這種大家比較熟知的獨立事件機率,若 A 跟 B 是統計獨立的兩事件,則我們會有這個等式:

P(A ∩ B)= P(A)× P(B)

直觀來說,由於圓形和方形有重疊部分區域,射中其中一個的情況下,同時也射中另一個的機率會因此提高。

-----廣告,請繼續往下閱讀-----

事實上,GCI 猜測是針對任意維度 d 都成立,且兩個同中心的形狀只要是具有對稱性的凸集(symmetrical convex set)即可。

高斯相關性不等式(GCI)有許多不同的版本,其中最著名的是 1972 年連結機率、統計以及幾何三大領域的版本,來想像一下丟飛鏢。圖/By 15299 @ pixabay, CC0 Public Domain

GCI 猜想的原始型態是統計學中關於信賴區間的估算,由美國統計學家奧利佛.丹(Olive Dunn)在 1959 年首次提出。

想像我們要針對一群人(已知平均身高是 170 公分,平均體重是 65 公斤),給出一個身高和體重的範圍,使身高體重同時落在此範圍內的人數佔全部的 90% 以上。 這任務可不太容易,因為人的身高和體重是彼此相關,並非獨立的。假設身高和體重分別都呈現高斯分佈(常態分佈)的情況下,依據[68-95-99.7 法則]我們知道

P(平均加減兩個標準差)≥ 95%

-----廣告,請繼續往下閱讀-----

也就是說,如果身高和體重標準差分別是 7 和 8,我們會知道

P(身高介於 156 到 184 的人數)≥ 95%
P(體重介於 49 到 81 的人數)≥ 95%

再由高斯相關性不等式可以推得

P(身高介於 156 到 184 公分且體重介於 49 到 81 公斤的人數)≥ 0.95 × 0.95 = 0.9025

-----廣告,請繼續往下閱讀-----

維度 d=2 的情況早在 1977 年就被維吉尼亞大學的羅倫.彼特(Loren Pitt)教授證明出來。受訪時,羅倫緩緩地閉起眼睛,說起 1973 年某次和同事吃午餐時聽到這道「簡單」的數學問題時的回憶:

「嘿~羅倫,你知道有個有趣的數學問題 GCI 嗎? 就是想像一個射飛鏢遊戲,然後……」
「聽起來蠻有意思的,老墨~不過,你說這個還沒有人解出來?!」語氣顯得有點疑惑。
「恩!還沒有。」
「不太可能吧! 看起來不太難啊,應該很快就可以知道答案了。」我心裡當時這麼想。
「於是,我把自己關進一間房間,打算當我再次走出房門時就已經證明  GCI  是正確的或者錯了。」

說到這裡,羅倫張開眼睛望向窗外不發一語。而時間一轉眼已經過了將近四十年……

湯瑪斯.羅炎

故事回到解開謎底的湯瑪斯.羅炎(Thomas Royen)身上,今年已經 70 歲的他是德國一位退休統計學家,在這次事件之前可能沒甚麼人聽過他,這點倒是和前幾年華裔數學家張益唐有點像,某天突然靈光一現洞悉真理的故事在數學界也不算少數,不過這次倒是有幾點值得特別一提的趣事。

-----廣告,請繼續往下閱讀-----

要解決一道難題不妨先把它變得更難

首先,數學界有件事情是外界的人難以想像的。「經常發生一種情況是,解決一道看起來很困難不會解的問題的方法是把這個問題推廣成一個更難的問題,然後解決它。

聽起來有點荒謬,打個比方,就好像是一個屢次練習中連 10K 都跑不完的跑者,居然去挑戰極地超馬想藉此證明自己可以跑完 10K。羅炎的證明就是走這個套路,把猜想中高斯分佈這個條件推廣到更複雜、更一般的情況。神奇的是,問題居然就這樣解了,證明還只用了 3 頁!!!
(不過,有人覺得羅炎的版本太神了,可能不太好體會其奧妙之處,因此寫了個簡易 GCI 版的。)

在數學界經常發生一種情況是,解決一道看起來很困難不會解的問題的方法是把這個問題推廣成一個更難的問題,然後解決它。圖/By skeeze @ pixabay, CC0 Public Domain

差點沉沒的寶石

第二,這個影響重大的論文羅炎居然把它投稿到一個名不見經傳的印度期刊,因此使得他的論文 2014 年發表之後又過了兩年 才漸漸引起學術界的注意。一顆璀璨的鑽石差點就沉沒汪洋大海之中。一個學術上極重要的成果發表兩年後才傳播開來,在這個通訊發達的年代,幾乎是怎麼想都不太可能發生的事情。

而不太可能發生的事情終究還是發生了。

-----廣告,請繼續往下閱讀-----

峰迴路轉

羅炎不會用數學界編輯論文常用的 LaTeX 軟體,論文初稿是用 word 打的,完成後一份丟上 arXiv,一份寄給一年半以前曾指出他在一篇嘗試證明 GCI 的論文中所犯之錯誤的賓州州立大學丹諾.理查德斯(Donald Richards)教授,當理查德斯收到信件時,一眼他就知道「Bingo!就是你了!」

事後回想起來,理查德斯有幾分懊惱,這個精簡的證明居然自己三十幾年來都沒有想到。這種心情搞數學的人一生中或多或少都會遇上個幾次吧。

不過,他也慶幸能在有生之年看到 GCI 的美妙證明問世。理查德斯興奮之餘還不忘將這個重大發現通知幾個同事,也熱心的幫忙把論文重新用 LaTeX 編輯,讓它看起來專業一點,符合頂尖期刊的水平。

可惜的是,投稿出去還是撞牆,原因是過去數十年來聲稱證明 GCI 猜想的論文每年都有一籮筐,期刊的審稿委員看都看膩了,通常一下子就能指出關鍵性的錯誤所在,要是碰上像羅炎這樣沒沒無聞的傢伙,通常也不會太認真對待。

-----廣告,請繼續往下閱讀-----

羅炎的論文因此被草率忽略了!
羅炎的論文因此被草率忽略了!!
羅炎的論文因此被草率忽略了!!!

雖然有人曾建議羅炎投到最頂尖的期刊,像是統計年鑑(Annals of Statistics),這樣子一來消息很快就會傳到全世界,不過羅炎考量後還是決定投到很快就可以發表的印度期刊 Far East Journal of Theoretical Statistics,這種期刊的壞處就是即使刊出之後也不太有人知道這件事。一直到 2015 年底 Rafał Latała 和他的學生 Dariusz Matlak 重新寫了一個簡易 GCI 版本的論文,2017 年 3 月 28 日知名雜誌 Quanta Magazine 刊出一篇專欄報導,整個事件才得以散播出來。

最後,羅炎教授受訪時表示,他希望這個意外簡單的證明能夠鼓勵年輕的學生,善用自己的創意去尋找新的數學定理,畢竟那並不總是需要具備非常高深的理論基礎才辦得到。

“the surprisingly simple proof … might encourage young students to use their own creativity to find new mathematical theorems, since a very high theoretical level is not always required.”

本文轉載自UniMath,原文為[統計學突破]解開高斯相關性猜想,退休統計學家湯瑪斯羅炎的神來一筆

作者簡介:陳宏賓 - UniMath 主編、逢甲大學應用數學系助理教授。
數學既深且廣,我懂得不多,最喜愛組合數學相關領域,主要研究興趣是群試理論、圖論及最優化分解。2013 年出版「Partitions: Optimality and Clustering, Volume II: Multi-Parameter」一書(與 Uriel Rothblum 和 Frank K. Hwang 教授合著)。對於數學和教育有強烈的熱忱和使命感,積極創立 UniMath 電子數學媒體,致力於推廣數學文化。

關於UniMath:UniMath (You Need Math)是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。歡迎加入 Facebook 粉絲團知道第一手訊息!

參考文獻:

  1. L. D. Pitt, A Gaussian correlation inequality for symmetric convex sets, Ann. Probab. 5 (1977), 470– 474.
  2. T. Royen, A simple proof of the Gaussian correlation conjecture extended to multivariate gamma distributions, Far East J. Theor. Stat. 48 (2014), 139–145.
  3. R. Latala and D. Matlak. Royen’s proof of the Gaussian correlation inequality. ArXiv http://arxiv.org/abs/1512.08776, 2015.
  4. A Long-Sought Proof, Found and Almost Lost, Quanta Magazine, 2017/03/28.
文章難易度
UniMath_96
9 篇文章 ・ 209 位粉絲
UniMath (You Need Math) 是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

0
0

文字

分享

1
0
0
小透鏡們的魔術- 由模糊而生的清晰 ! Engraved panel casts image on walls
Scimage
・2011/05/31 ・515字 ・閱讀時間約 1 分鐘 ・SR值 498 ・六年級

家裡有方格玻璃門的朋友都知道,光通過那種玻璃門會變成像是光斑,如果再離遠一點就變成均勻的光。這樣的設計是為要讓光被打亂,所以外面的人看不到裡面,可是光又進的去。不過這樣的模糊特性不是絕對的,經由數學計算,其實清晰的影像可以從這樣的光斑來產生。

影片中的小板子上有很多非等向性的小透鏡,打上光之後,如果離螢幕很近,就只會產生光斑,不過把這小板子慢慢拿遠以後,照出來的光斑慢慢變成聚合成的美女跟愛因斯坦的影像了( 做影像展示的好像很喜歡用愛因斯坦,像之前介紹過的用細菌照相也是!)。

這樣的技術是透過把影像的深淺強度用橢圓的高斯分布來展開,用很多可控制位置的模糊影像來合成清晰影像,最後將可對應造成光斑的小透鏡做成表面的起伏就完成了。以往這樣的系統常常是在傅立葉轉換平面,利用控制光的波前相位分布來達成,不過那樣的技術需要特殊的調變元件,也會損失光強(發光強度)。這影片提出的方式比較直觀跟容易設計,也有可能大規模利用塑膠材質來達成,或許可以用在一些特定的照明場合上~!

學術文獻

-----廣告,請繼續往下閱讀-----

本文原發表於科學影像Scimage[2011-05-30]

所有討論 1