Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

解開高斯相關性猜想,退休統計學家的靈光一閃

UniMath_96
・2017/04/09 ・3326字 ・閱讀時間約 6 分鐘 ・SR值 513 ・六年級

文/陳宏賓|UniMath 主編、逢甲大學應用數學系助理教授

一道靈光射進了羅炎的腦袋,困擾數十年的高斯相關性猜想終於攻破了大門!圖/By edfungus @ pixabay, CC0 Public Domain

2014 年夏天的某一個清晨,陽光如往常一樣穿透白色窗簾照了進來,羅炎起身前往浴室盥洗,一邊刷著牙一邊回想昨晚入睡前那個證明。突然間,一道靈光射進了羅炎的腦袋,困擾數十年的高斯相關性猜想(Gaussian Correlation Inequality Conjecture)終於攻破了大門!

連結機率、統計與幾何的猜想 

高斯相關性不等式(GCI)有許多不同的版本,其中最著名的是 1972 年連結機率、統計以及幾何三大領域的版本:

想像一個射飛鏢遊戲,以正中紅心為目標射許多次,飛鏢落點會以紅心為中心呈現類似鐘形的高斯分佈(或者稱常態分佈),如果以紅心為中心點同時畫一個圓和一個方形,高斯相關性不等式即是說飛鏢落在圓和方形的交集的機率會大於或者等於落在圓形的機率乘以落在方形的機率。

-----廣告,請繼續往下閱讀-----

P(圓 ∩ 方)≥ P(圓)× P(方)

這裡不同於下面這種大家比較熟知的獨立事件機率,若 A 跟 B 是統計獨立的兩事件,則我們會有這個等式:

P(A ∩ B)= P(A)× P(B)

直觀來說,由於圓形和方形有重疊部分區域,射中其中一個的情況下,同時也射中另一個的機率會因此提高。

-----廣告,請繼續往下閱讀-----

事實上,GCI 猜測是針對任意維度 d 都成立,且兩個同中心的形狀只要是具有對稱性的凸集(symmetrical convex set)即可。

高斯相關性不等式(GCI)有許多不同的版本,其中最著名的是 1972 年連結機率、統計以及幾何三大領域的版本,來想像一下丟飛鏢。圖/By 15299 @ pixabay, CC0 Public Domain

GCI 猜想的原始型態是統計學中關於信賴區間的估算,由美國統計學家奧利佛.丹(Olive Dunn)在 1959 年首次提出。

想像我們要針對一群人(已知平均身高是 170 公分,平均體重是 65 公斤),給出一個身高和體重的範圍,使身高體重同時落在此範圍內的人數佔全部的 90% 以上。 這任務可不太容易,因為人的身高和體重是彼此相關,並非獨立的。假設身高和體重分別都呈現高斯分佈(常態分佈)的情況下,依據[68-95-99.7 法則]我們知道

P(平均加減兩個標準差)≥ 95%

-----廣告,請繼續往下閱讀-----

也就是說,如果身高和體重標準差分別是 7 和 8,我們會知道

P(身高介於 156 到 184 的人數)≥ 95%
P(體重介於 49 到 81 的人數)≥ 95%

再由高斯相關性不等式可以推得

P(身高介於 156 到 184 公分且體重介於 49 到 81 公斤的人數)≥ 0.95 × 0.95 = 0.9025

-----廣告,請繼續往下閱讀-----

維度 d=2 的情況早在 1977 年就被維吉尼亞大學的羅倫.彼特(Loren Pitt)教授證明出來。受訪時,羅倫緩緩地閉起眼睛,說起 1973 年某次和同事吃午餐時聽到這道「簡單」的數學問題時的回憶:

「嘿~羅倫,你知道有個有趣的數學問題 GCI 嗎? 就是想像一個射飛鏢遊戲,然後……」
「聽起來蠻有意思的,老墨~不過,你說這個還沒有人解出來?!」語氣顯得有點疑惑。
「恩!還沒有。」
「不太可能吧! 看起來不太難啊,應該很快就可以知道答案了。」我心裡當時這麼想。
「於是,我把自己關進一間房間,打算當我再次走出房門時就已經證明  GCI  是正確的或者錯了。」

說到這裡,羅倫張開眼睛望向窗外不發一語。而時間一轉眼已經過了將近四十年……

湯瑪斯.羅炎

故事回到解開謎底的湯瑪斯.羅炎(Thomas Royen)身上,今年已經 70 歲的他是德國一位退休統計學家,在這次事件之前可能沒甚麼人聽過他,這點倒是和前幾年華裔數學家張益唐有點像,某天突然靈光一現洞悉真理的故事在數學界也不算少數,不過這次倒是有幾點值得特別一提的趣事。

-----廣告,請繼續往下閱讀-----

要解決一道難題不妨先把它變得更難

首先,數學界有件事情是外界的人難以想像的。「經常發生一種情況是,解決一道看起來很困難不會解的問題的方法是把這個問題推廣成一個更難的問題,然後解決它。

聽起來有點荒謬,打個比方,就好像是一個屢次練習中連 10K 都跑不完的跑者,居然去挑戰極地超馬想藉此證明自己可以跑完 10K。羅炎的證明就是走這個套路,把猜想中高斯分佈這個條件推廣到更複雜、更一般的情況。神奇的是,問題居然就這樣解了,證明還只用了 3 頁!!!
(不過,有人覺得羅炎的版本太神了,可能不太好體會其奧妙之處,因此寫了個簡易 GCI 版的。)

在數學界經常發生一種情況是,解決一道看起來很困難不會解的問題的方法是把這個問題推廣成一個更難的問題,然後解決它。圖/By skeeze @ pixabay, CC0 Public Domain

差點沉沒的寶石

第二,這個影響重大的論文羅炎居然把它投稿到一個名不見經傳的印度期刊,因此使得他的論文 2014 年發表之後又過了兩年 才漸漸引起學術界的注意。一顆璀璨的鑽石差點就沉沒汪洋大海之中。一個學術上極重要的成果發表兩年後才傳播開來,在這個通訊發達的年代,幾乎是怎麼想都不太可能發生的事情。

而不太可能發生的事情終究還是發生了。

-----廣告,請繼續往下閱讀-----

峰迴路轉

羅炎不會用數學界編輯論文常用的 LaTeX 軟體,論文初稿是用 word 打的,完成後一份丟上 arXiv,一份寄給一年半以前曾指出他在一篇嘗試證明 GCI 的論文中所犯之錯誤的賓州州立大學丹諾.理查德斯(Donald Richards)教授,當理查德斯收到信件時,一眼他就知道「Bingo!就是你了!」

事後回想起來,理查德斯有幾分懊惱,這個精簡的證明居然自己三十幾年來都沒有想到。這種心情搞數學的人一生中或多或少都會遇上個幾次吧。

不過,他也慶幸能在有生之年看到 GCI 的美妙證明問世。理查德斯興奮之餘還不忘將這個重大發現通知幾個同事,也熱心的幫忙把論文重新用 LaTeX 編輯,讓它看起來專業一點,符合頂尖期刊的水平。

可惜的是,投稿出去還是撞牆,原因是過去數十年來聲稱證明 GCI 猜想的論文每年都有一籮筐,期刊的審稿委員看都看膩了,通常一下子就能指出關鍵性的錯誤所在,要是碰上像羅炎這樣沒沒無聞的傢伙,通常也不會太認真對待。

-----廣告,請繼續往下閱讀-----

羅炎的論文因此被草率忽略了!
羅炎的論文因此被草率忽略了!!
羅炎的論文因此被草率忽略了!!!

雖然有人曾建議羅炎投到最頂尖的期刊,像是統計年鑑(Annals of Statistics),這樣子一來消息很快就會傳到全世界,不過羅炎考量後還是決定投到很快就可以發表的印度期刊 Far East Journal of Theoretical Statistics,這種期刊的壞處就是即使刊出之後也不太有人知道這件事。一直到 2015 年底 Rafał Latała 和他的學生 Dariusz Matlak 重新寫了一個簡易 GCI 版本的論文,2017 年 3 月 28 日知名雜誌 Quanta Magazine 刊出一篇專欄報導,整個事件才得以散播出來。

最後,羅炎教授受訪時表示,他希望這個意外簡單的證明能夠鼓勵年輕的學生,善用自己的創意去尋找新的數學定理,畢竟那並不總是需要具備非常高深的理論基礎才辦得到。

“the surprisingly simple proof … might encourage young students to use their own creativity to find new mathematical theorems, since a very high theoretical level is not always required.”

本文轉載自UniMath,原文為[統計學突破]解開高斯相關性猜想,退休統計學家湯瑪斯羅炎的神來一筆

作者簡介:陳宏賓 - UniMath 主編、逢甲大學應用數學系助理教授。
數學既深且廣,我懂得不多,最喜愛組合數學相關領域,主要研究興趣是群試理論、圖論及最優化分解。2013 年出版「Partitions: Optimality and Clustering, Volume II: Multi-Parameter」一書(與 Uriel Rothblum 和 Frank K. Hwang 教授合著)。對於數學和教育有強烈的熱忱和使命感,積極創立 UniMath 電子數學媒體,致力於推廣數學文化。

關於UniMath:UniMath (You Need Math)是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。歡迎加入 Facebook 粉絲團知道第一手訊息!

參考文獻:

  1. L. D. Pitt, A Gaussian correlation inequality for symmetric convex sets, Ann. Probab. 5 (1977), 470– 474.
  2. T. Royen, A simple proof of the Gaussian correlation conjecture extended to multivariate gamma distributions, Far East J. Theor. Stat. 48 (2014), 139–145.
  3. R. Latala and D. Matlak. Royen’s proof of the Gaussian correlation inequality. ArXiv http://arxiv.org/abs/1512.08776, 2015.
  4. A Long-Sought Proof, Found and Almost Lost, Quanta Magazine, 2017/03/28.
-----廣告,請繼續往下閱讀-----
文章難易度
UniMath_96
9 篇文章 ・ 209 位粉絲
UniMath (You Need Math) 是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

0
0

文字

分享

1
0
0
小透鏡們的魔術- 由模糊而生的清晰 ! Engraved panel casts image on walls
Scimage
・2011/05/31 ・515字 ・閱讀時間約 1 分鐘 ・SR值 498 ・六年級

家裡有方格玻璃門的朋友都知道,光通過那種玻璃門會變成像是光斑,如果再離遠一點就變成均勻的光。這樣的設計是為要讓光被打亂,所以外面的人看不到裡面,可是光又進的去。不過這樣的模糊特性不是絕對的,經由數學計算,其實清晰的影像可以從這樣的光斑來產生。

影片中的小板子上有很多非等向性的小透鏡,打上光之後,如果離螢幕很近,就只會產生光斑,不過把這小板子慢慢拿遠以後,照出來的光斑慢慢變成聚合成的美女跟愛因斯坦的影像了( 做影像展示的好像很喜歡用愛因斯坦,像之前介紹過的用細菌照相也是!)。

這樣的技術是透過把影像的深淺強度用橢圓的高斯分布來展開,用很多可控制位置的模糊影像來合成清晰影像,最後將可對應造成光斑的小透鏡做成表面的起伏就完成了。以往這樣的系統常常是在傅立葉轉換平面,利用控制光的波前相位分布來達成,不過那樣的技術需要特殊的調變元件,也會損失光強(發光強度)。這影片提出的方式比較直觀跟容易設計,也有可能大規模利用塑膠材質來達成,或許可以用在一些特定的照明場合上~!

學術文獻

-----廣告,請繼續往下閱讀-----

本文原發表於科學影像Scimage[2011-05-30]

-----廣告,請繼續往下閱讀-----
所有討論 1