0

0
0

文字

分享

0
0
0

解開高斯相關性猜想,退休統計學家的靈光一閃

UniMath_96
・2017/04/09 ・3326字 ・閱讀時間約 6 分鐘 ・SR值 513 ・六年級

-----廣告,請繼續往下閱讀-----

文/陳宏賓|UniMath 主編、逢甲大學應用數學系助理教授

一道靈光射進了羅炎的腦袋,困擾數十年的高斯相關性猜想終於攻破了大門!圖/By edfungus @ pixabay, CC0 Public Domain

2014 年夏天的某一個清晨,陽光如往常一樣穿透白色窗簾照了進來,羅炎起身前往浴室盥洗,一邊刷著牙一邊回想昨晚入睡前那個證明。突然間,一道靈光射進了羅炎的腦袋,困擾數十年的高斯相關性猜想(Gaussian Correlation Inequality Conjecture)終於攻破了大門!

連結機率、統計與幾何的猜想 

高斯相關性不等式(GCI)有許多不同的版本,其中最著名的是 1972 年連結機率、統計以及幾何三大領域的版本:

想像一個射飛鏢遊戲,以正中紅心為目標射許多次,飛鏢落點會以紅心為中心呈現類似鐘形的高斯分佈(或者稱常態分佈),如果以紅心為中心點同時畫一個圓和一個方形,高斯相關性不等式即是說飛鏢落在圓和方形的交集的機率會大於或者等於落在圓形的機率乘以落在方形的機率。

-----廣告,請繼續往下閱讀-----

P(圓 ∩ 方)≥ P(圓)× P(方)

這裡不同於下面這種大家比較熟知的獨立事件機率,若 A 跟 B 是統計獨立的兩事件,則我們會有這個等式:

P(A ∩ B)= P(A)× P(B)

直觀來說,由於圓形和方形有重疊部分區域,射中其中一個的情況下,同時也射中另一個的機率會因此提高。

-----廣告,請繼續往下閱讀-----

事實上,GCI 猜測是針對任意維度 d 都成立,且兩個同中心的形狀只要是具有對稱性的凸集(symmetrical convex set)即可。

高斯相關性不等式(GCI)有許多不同的版本,其中最著名的是 1972 年連結機率、統計以及幾何三大領域的版本,來想像一下丟飛鏢。圖/By 15299 @ pixabay, CC0 Public Domain

GCI 猜想的原始型態是統計學中關於信賴區間的估算,由美國統計學家奧利佛.丹(Olive Dunn)在 1959 年首次提出。

想像我們要針對一群人(已知平均身高是 170 公分,平均體重是 65 公斤),給出一個身高和體重的範圍,使身高體重同時落在此範圍內的人數佔全部的 90% 以上。 這任務可不太容易,因為人的身高和體重是彼此相關,並非獨立的。假設身高和體重分別都呈現高斯分佈(常態分佈)的情況下,依據[68-95-99.7 法則]我們知道

P(平均加減兩個標準差)≥ 95%

-----廣告,請繼續往下閱讀-----

也就是說,如果身高和體重標準差分別是 7 和 8,我們會知道

P(身高介於 156 到 184 的人數)≥ 95%
P(體重介於 49 到 81 的人數)≥ 95%

再由高斯相關性不等式可以推得

P(身高介於 156 到 184 公分且體重介於 49 到 81 公斤的人數)≥ 0.95 × 0.95 = 0.9025

-----廣告,請繼續往下閱讀-----

維度 d=2 的情況早在 1977 年就被維吉尼亞大學的羅倫.彼特(Loren Pitt)教授證明出來。受訪時,羅倫緩緩地閉起眼睛,說起 1973 年某次和同事吃午餐時聽到這道「簡單」的數學問題時的回憶:

「嘿~羅倫,你知道有個有趣的數學問題 GCI 嗎? 就是想像一個射飛鏢遊戲,然後……」
「聽起來蠻有意思的,老墨~不過,你說這個還沒有人解出來?!」語氣顯得有點疑惑。
「恩!還沒有。」
「不太可能吧! 看起來不太難啊,應該很快就可以知道答案了。」我心裡當時這麼想。
「於是,我把自己關進一間房間,打算當我再次走出房門時就已經證明  GCI  是正確的或者錯了。」

說到這裡,羅倫張開眼睛望向窗外不發一語。而時間一轉眼已經過了將近四十年……

湯瑪斯.羅炎

故事回到解開謎底的湯瑪斯.羅炎(Thomas Royen)身上,今年已經 70 歲的他是德國一位退休統計學家,在這次事件之前可能沒甚麼人聽過他,這點倒是和前幾年華裔數學家張益唐有點像,某天突然靈光一現洞悉真理的故事在數學界也不算少數,不過這次倒是有幾點值得特別一提的趣事。

-----廣告,請繼續往下閱讀-----

要解決一道難題不妨先把它變得更難

首先,數學界有件事情是外界的人難以想像的。「經常發生一種情況是,解決一道看起來很困難不會解的問題的方法是把這個問題推廣成一個更難的問題,然後解決它。

聽起來有點荒謬,打個比方,就好像是一個屢次練習中連 10K 都跑不完的跑者,居然去挑戰極地超馬想藉此證明自己可以跑完 10K。羅炎的證明就是走這個套路,把猜想中高斯分佈這個條件推廣到更複雜、更一般的情況。神奇的是,問題居然就這樣解了,證明還只用了 3 頁!!!
(不過,有人覺得羅炎的版本太神了,可能不太好體會其奧妙之處,因此寫了個簡易 GCI 版的。)

在數學界經常發生一種情況是,解決一道看起來很困難不會解的問題的方法是把這個問題推廣成一個更難的問題,然後解決它。圖/By skeeze @ pixabay, CC0 Public Domain

差點沉沒的寶石

第二,這個影響重大的論文羅炎居然把它投稿到一個名不見經傳的印度期刊,因此使得他的論文 2014 年發表之後又過了兩年 才漸漸引起學術界的注意。一顆璀璨的鑽石差點就沉沒汪洋大海之中。一個學術上極重要的成果發表兩年後才傳播開來,在這個通訊發達的年代,幾乎是怎麼想都不太可能發生的事情。

而不太可能發生的事情終究還是發生了。

-----廣告,請繼續往下閱讀-----

峰迴路轉

羅炎不會用數學界編輯論文常用的 LaTeX 軟體,論文初稿是用 word 打的,完成後一份丟上 arXiv,一份寄給一年半以前曾指出他在一篇嘗試證明 GCI 的論文中所犯之錯誤的賓州州立大學丹諾.理查德斯(Donald Richards)教授,當理查德斯收到信件時,一眼他就知道「Bingo!就是你了!」

事後回想起來,理查德斯有幾分懊惱,這個精簡的證明居然自己三十幾年來都沒有想到。這種心情搞數學的人一生中或多或少都會遇上個幾次吧。

不過,他也慶幸能在有生之年看到 GCI 的美妙證明問世。理查德斯興奮之餘還不忘將這個重大發現通知幾個同事,也熱心的幫忙把論文重新用 LaTeX 編輯,讓它看起來專業一點,符合頂尖期刊的水平。

可惜的是,投稿出去還是撞牆,原因是過去數十年來聲稱證明 GCI 猜想的論文每年都有一籮筐,期刊的審稿委員看都看膩了,通常一下子就能指出關鍵性的錯誤所在,要是碰上像羅炎這樣沒沒無聞的傢伙,通常也不會太認真對待。

-----廣告,請繼續往下閱讀-----

羅炎的論文因此被草率忽略了!
羅炎的論文因此被草率忽略了!!
羅炎的論文因此被草率忽略了!!!

雖然有人曾建議羅炎投到最頂尖的期刊,像是統計年鑑(Annals of Statistics),這樣子一來消息很快就會傳到全世界,不過羅炎考量後還是決定投到很快就可以發表的印度期刊 Far East Journal of Theoretical Statistics,這種期刊的壞處就是即使刊出之後也不太有人知道這件事。一直到 2015 年底 Rafał Latała 和他的學生 Dariusz Matlak 重新寫了一個簡易 GCI 版本的論文,2017 年 3 月 28 日知名雜誌 Quanta Magazine 刊出一篇專欄報導,整個事件才得以散播出來。

最後,羅炎教授受訪時表示,他希望這個意外簡單的證明能夠鼓勵年輕的學生,善用自己的創意去尋找新的數學定理,畢竟那並不總是需要具備非常高深的理論基礎才辦得到。

“the surprisingly simple proof … might encourage young students to use their own creativity to find new mathematical theorems, since a very high theoretical level is not always required.”

本文轉載自UniMath,原文為[統計學突破]解開高斯相關性猜想,退休統計學家湯瑪斯羅炎的神來一筆

作者簡介:陳宏賓 - UniMath 主編、逢甲大學應用數學系助理教授。
數學既深且廣,我懂得不多,最喜愛組合數學相關領域,主要研究興趣是群試理論、圖論及最優化分解。2013 年出版「Partitions: Optimality and Clustering, Volume II: Multi-Parameter」一書(與 Uriel Rothblum 和 Frank K. Hwang 教授合著)。對於數學和教育有強烈的熱忱和使命感,積極創立 UniMath 電子數學媒體,致力於推廣數學文化。

關於UniMath:UniMath (You Need Math)是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。歡迎加入 Facebook 粉絲團知道第一手訊息!

參考文獻:

  1. L. D. Pitt, A Gaussian correlation inequality for symmetric convex sets, Ann. Probab. 5 (1977), 470– 474.
  2. T. Royen, A simple proof of the Gaussian correlation conjecture extended to multivariate gamma distributions, Far East J. Theor. Stat. 48 (2014), 139–145.
  3. R. Latala and D. Matlak. Royen’s proof of the Gaussian correlation inequality. ArXiv http://arxiv.org/abs/1512.08776, 2015.
  4. A Long-Sought Proof, Found and Almost Lost, Quanta Magazine, 2017/03/28.
文章難易度
UniMath_96
9 篇文章 ・ 209 位粉絲
UniMath (You Need Math) 是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。

0

0
1

文字

分享

0
0
1
Intel® Core™ Ultra AI 處理器:下一代晶片的革命性進展
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/21 ・2364字 ・閱讀時間約 4 分鐘

本文由 Intel 委託,泛科學企劃執行。 

在當今快節奏的數位時代,對於處理器性能的需求已經不再僅僅停留在日常應用上。從遊戲到學術,從設計到內容創作,各行各業都需要更快速、更高效的運算能力,而人工智慧(AI)的蓬勃發展更是推動了這一需求的急劇增長。在這樣的背景下,Intel 推出了一款極具潛力的處理器—— Intel® Core™ Ultra,該處理器不僅滿足了對於高性能的追求,更為使用者提供了運行 AI 模型的全新體驗。

先進製程:效能飛躍提升

現在的晶片已不是單純的 CPU 或是 GPU,而是混合在一起。為了延續摩爾定律,也就是讓相同面積的晶片每過 18 個月,效能就提升一倍的目標,整個半導體產業正朝兩個不同方向努力。

其中之一是追求更先進的技術,發展出更小奈米的製程節點,做出體積更小的電晶體。常見的方法包含:引進極紫外光 ( EUV ) 曝光機,來刻出更小的電晶體。又或是從材料結構下手,發展不同構造的電晶體,例如鰭式場效電晶體 ( FinFET )、環繞式閘極 ( GAAFET ) 電晶體及互補式場效電晶體 ( CFET ),讓電晶體可以更小、更快。這種持續挑戰物理極限的方式稱為深度摩爾定律——More Moore。

-----廣告,請繼續往下閱讀-----

另一種則是將含有數億個電晶體的密集晶片重新排列。就像人口密集的都會區都逐漸轉向「垂直城市」的發展模式。對晶片來說,雖然每個電晶體的大小還是一樣大,但是重新排列以後,不僅單位面積上可以堆疊更多的半導體電路,還能縮短這些區塊間資訊傳遞的時間,提升晶片的效能。這種透過晶片設計提高效能的方法,則稱為超越摩爾定律——More than Moore。

而 Intel® Core™ Ultra 處理器便是具備兩者優點的結晶。

圖/PanSci

Tile 架構:釋放多核心潛能

在超越摩爾定律方面,Intel® Core™ Ultra 處理器以其獨特的 Tile 架構而聞名,將 CPU、GPU、以及 AI 加速器(NPU)等不同單元分開,使得這些單元可以根據需求靈活啟用、停用,從而提高了能源效率。這一設計使得處理器可以更好地應對多任務處理,從日常應用到專業任務,都能夠以更高效的方式運行。

CPU Tile 採用了 Intel 最新的 4 奈米製程和 EUV 曝光技術,將鰭式電晶體 FinFET 中的像是魚鰭般阻擋漏電流的鰭片構造減少至三片,降低延遲與功耗,使效能提升了 20%,讓使用者可以更加流暢地執行各種應用程序,提高工作效率。

-----廣告,請繼續往下閱讀-----
鰭式電晶體 FinFET。圖/Intel

Foveros 3D 封裝技術:高效數據傳輸

2017 年,Intel 開發出了新的封裝技術 EMIB 嵌入式多晶片互聯橋,這種封裝技術在各個 Tile 的裸晶之間,搭建了一座「矽橋 ( Silicon Bridge ) 」,達成晶片的橫向連接。

圖/Intel

而 Foveros 3D 封裝技術是基於 EMIB 更進一步改良的封裝技術,它能將處理器、記憶體、IO 單元上下堆疊,垂直方向利用導線串聯,橫向則使用 EMIB 連接,提供高頻寬低延遲的數據傳輸。這種創新的封裝技術不僅使得處理器的整體尺寸更小,更提高了散熱效能,使得處理器可以長期高效運行。

運行 AI 模型的專用筆電——MSI Stealth 16 AI Studio

除了傳統的 CPU 和 GPU 之外,Intel® Core™ Ultra 處理器還整合了多種專用單元,專門用於在本機端高效運行 AI 模型。這使得使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時節省了連接雲端算力的成本。

MSI 最新推出的筆電 Stealth 16 AI Studio ,搭載了最新的 Intel Core™ Ultra 9 處理器,是一款極具魅力的產品。不僅適合遊戲娛樂,其外觀設計結合了落質感外型與卓越效能,使得使用者在使用時能感受到高品質的工藝。鎂鋁合金質感的沉穩機身設計,僅重 1.99kg,厚度僅有 19.95mm,輕薄便攜,適合需要每天通勤的上班族,與在咖啡廳尋找靈感的創作者。

-----廣告,請繼續往下閱讀-----

除了外觀設計之外, Stealth 16 AI Studio 也擁有出色的散熱性能。搭載了 Cooler Boost 5 強效散熱技術,能夠有效排除廢熱,保持長時間穩定高效能表現。良好的散熱表現不僅能夠確保處理器的效能得到充分發揮,還能幫助使用者在長時間使用下的保持舒適性和穩定性。

Stealth 16 AI Studio 的 Intel Core™ Ultra 處理器,其性能更是一大亮點。除了傳統的 CPU 和 GPU 之外,Intel Core™ Ultra 處理器還整合了多種專用單元,專門針對在本機端高效運行 AI 模型的需求。內建專為加速AI應用而設計的 NPU,更提供強大的效能表現,有助於提升效率並保持長時間的續航力。讓使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時也節省了連接雲端算力的成本。

軟體方面,Intel 與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化。與 Adobe 等軟體的合作使得使用者在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。獨家微星AI 智慧引擎能針對使用情境並自動調整硬體設定,以實現最佳效能表現。再加上獨家 AI Artist,更進一步提升使用者體驗,直接輕鬆生成豐富圖像,實現了更便捷的內容創作。

此外 Intel 也與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化,讓 Intel® Core™ Ultra處理器將AI加速能力充分發揮。例如,與 Adobe 等軟體使得使用者可以在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。為各行專業人士提供了更加多元、便捷的工具,成為工作中的一大助力。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 305 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

0
0

文字

分享

1
0
0
小透鏡們的魔術- 由模糊而生的清晰 ! Engraved panel casts image on walls
Scimage
・2011/05/31 ・515字 ・閱讀時間約 1 分鐘 ・SR值 498 ・六年級

家裡有方格玻璃門的朋友都知道,光通過那種玻璃門會變成像是光斑,如果再離遠一點就變成均勻的光。這樣的設計是為要讓光被打亂,所以外面的人看不到裡面,可是光又進的去。不過這樣的模糊特性不是絕對的,經由數學計算,其實清晰的影像可以從這樣的光斑來產生。

影片中的小板子上有很多非等向性的小透鏡,打上光之後,如果離螢幕很近,就只會產生光斑,不過把這小板子慢慢拿遠以後,照出來的光斑慢慢變成聚合成的美女跟愛因斯坦的影像了( 做影像展示的好像很喜歡用愛因斯坦,像之前介紹過的用細菌照相也是!)。

這樣的技術是透過把影像的深淺強度用橢圓的高斯分布來展開,用很多可控制位置的模糊影像來合成清晰影像,最後將可對應造成光斑的小透鏡做成表面的起伏就完成了。以往這樣的系統常常是在傅立葉轉換平面,利用控制光的波前相位分布來達成,不過那樣的技術需要特殊的調變元件,也會損失光強(發光強度)。這影片提出的方式比較直觀跟容易設計,也有可能大規模利用塑膠材質來達成,或許可以用在一些特定的照明場合上~!

學術文獻

-----廣告,請繼續往下閱讀-----

本文原發表於科學影像Scimage[2011-05-30]

所有討論 1
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

0
0

文字

分享

0
0
0
解開高斯相關性猜想,退休統計學家的靈光一閃
UniMath_96
・2017/04/09 ・3326字 ・閱讀時間約 6 分鐘 ・SR值 513 ・六年級

文/陳宏賓|UniMath 主編、逢甲大學應用數學系助理教授

一道靈光射進了羅炎的腦袋,困擾數十年的高斯相關性猜想終於攻破了大門!圖/By edfungus @ pixabay, CC0 Public Domain

2014 年夏天的某一個清晨,陽光如往常一樣穿透白色窗簾照了進來,羅炎起身前往浴室盥洗,一邊刷著牙一邊回想昨晚入睡前那個證明。突然間,一道靈光射進了羅炎的腦袋,困擾數十年的高斯相關性猜想(Gaussian Correlation Inequality Conjecture)終於攻破了大門!

連結機率、統計與幾何的猜想 

高斯相關性不等式(GCI)有許多不同的版本,其中最著名的是 1972 年連結機率、統計以及幾何三大領域的版本:

-----廣告,請繼續往下閱讀-----

想像一個射飛鏢遊戲,以正中紅心為目標射許多次,飛鏢落點會以紅心為中心呈現類似鐘形的高斯分佈(或者稱常態分佈),如果以紅心為中心點同時畫一個圓和一個方形,高斯相關性不等式即是說飛鏢落在圓和方形的交集的機率會大於或者等於落在圓形的機率乘以落在方形的機率。

P(圓 ∩ 方)≥ P(圓)× P(方)

這裡不同於下面這種大家比較熟知的獨立事件機率,若 A 跟 B 是統計獨立的兩事件,則我們會有這個等式:

P(A ∩ B)= P(A)× P(B)

-----廣告,請繼續往下閱讀-----

直觀來說,由於圓形和方形有重疊部分區域,射中其中一個的情況下,同時也射中另一個的機率會因此提高。

事實上,GCI 猜測是針對任意維度 d 都成立,且兩個同中心的形狀只要是具有對稱性的凸集(symmetrical convex set)即可。

高斯相關性不等式(GCI)有許多不同的版本,其中最著名的是 1972 年連結機率、統計以及幾何三大領域的版本,來想像一下丟飛鏢。圖/By 15299 @ pixabay, CC0 Public Domain

GCI 猜想的原始型態是統計學中關於信賴區間的估算,由美國統計學家奧利佛.丹(Olive Dunn)在 1959 年首次提出。

-----廣告,請繼續往下閱讀-----

想像我們要針對一群人(已知平均身高是 170 公分,平均體重是 65 公斤),給出一個身高和體重的範圍,使身高體重同時落在此範圍內的人數佔全部的 90% 以上。 這任務可不太容易,因為人的身高和體重是彼此相關,並非獨立的。假設身高和體重分別都呈現高斯分佈(常態分佈)的情況下,依據[68-95-99.7 法則]我們知道

P(平均加減兩個標準差)≥ 95%

也就是說,如果身高和體重標準差分別是 7 和 8,我們會知道

P(身高介於 156 到 184 的人數)≥ 95%
P(體重介於 49 到 81 的人數)≥ 95%

-----廣告,請繼續往下閱讀-----

再由高斯相關性不等式可以推得

P(身高介於 156 到 184 公分且體重介於 49 到 81 公斤的人數)≥ 0.95 × 0.95 = 0.9025

維度 d=2 的情況早在 1977 年就被維吉尼亞大學的羅倫.彼特(Loren Pitt)教授證明出來。受訪時,羅倫緩緩地閉起眼睛,說起 1973 年某次和同事吃午餐時聽到這道「簡單」的數學問題時的回憶:

「嘿~羅倫,你知道有個有趣的數學問題 GCI 嗎? 就是想像一個射飛鏢遊戲,然後……」
「聽起來蠻有意思的,老墨~不過,你說這個還沒有人解出來?!」語氣顯得有點疑惑。
「恩!還沒有。」
「不太可能吧! 看起來不太難啊,應該很快就可以知道答案了。」我心裡當時這麼想。
「於是,我把自己關進一間房間,打算當我再次走出房門時就已經證明  GCI  是正確的或者錯了。」

-----廣告,請繼續往下閱讀-----

說到這裡,羅倫張開眼睛望向窗外不發一語。而時間一轉眼已經過了將近四十年……

湯瑪斯.羅炎

故事回到解開謎底的湯瑪斯.羅炎(Thomas Royen)身上,今年已經 70 歲的他是德國一位退休統計學家,在這次事件之前可能沒甚麼人聽過他,這點倒是和前幾年華裔數學家張益唐有點像,某天突然靈光一現洞悉真理的故事在數學界也不算少數,不過這次倒是有幾點值得特別一提的趣事。

要解決一道難題不妨先把它變得更難

首先,數學界有件事情是外界的人難以想像的。「經常發生一種情況是,解決一道看起來很困難不會解的問題的方法是把這個問題推廣成一個更難的問題,然後解決它。

聽起來有點荒謬,打個比方,就好像是一個屢次練習中連 10K 都跑不完的跑者,居然去挑戰極地超馬想藉此證明自己可以跑完 10K。羅炎的證明就是走這個套路,把猜想中高斯分佈這個條件推廣到更複雜、更一般的情況。神奇的是,問題居然就這樣解了,證明還只用了 3 頁!!!
(不過,有人覺得羅炎的版本太神了,可能不太好體會其奧妙之處,因此寫了個簡易 GCI 版的。)

-----廣告,請繼續往下閱讀-----

在數學界經常發生一種情況是,解決一道看起來很困難不會解的問題的方法是把這個問題推廣成一個更難的問題,然後解決它。圖/By skeeze @ pixabay, CC0 Public Domain

差點沉沒的寶石

第二,這個影響重大的論文羅炎居然把它投稿到一個名不見經傳的印度期刊,因此使得他的論文 2014 年發表之後又過了兩年 才漸漸引起學術界的注意。一顆璀璨的鑽石差點就沉沒汪洋大海之中。一個學術上極重要的成果發表兩年後才傳播開來,在這個通訊發達的年代,幾乎是怎麼想都不太可能發生的事情。

而不太可能發生的事情終究還是發生了。

峰迴路轉

羅炎不會用數學界編輯論文常用的 LaTeX 軟體,論文初稿是用 word 打的,完成後一份丟上 arXiv,一份寄給一年半以前曾指出他在一篇嘗試證明 GCI 的論文中所犯之錯誤的賓州州立大學丹諾.理查德斯(Donald Richards)教授,當理查德斯收到信件時,一眼他就知道「Bingo!就是你了!」

-----廣告,請繼續往下閱讀-----

事後回想起來,理查德斯有幾分懊惱,這個精簡的證明居然自己三十幾年來都沒有想到。這種心情搞數學的人一生中或多或少都會遇上個幾次吧。

不過,他也慶幸能在有生之年看到 GCI 的美妙證明問世。理查德斯興奮之餘還不忘將這個重大發現通知幾個同事,也熱心的幫忙把論文重新用 LaTeX 編輯,讓它看起來專業一點,符合頂尖期刊的水平。

可惜的是,投稿出去還是撞牆,原因是過去數十年來聲稱證明 GCI 猜想的論文每年都有一籮筐,期刊的審稿委員看都看膩了,通常一下子就能指出關鍵性的錯誤所在,要是碰上像羅炎這樣沒沒無聞的傢伙,通常也不會太認真對待。

羅炎的論文因此被草率忽略了!
羅炎的論文因此被草率忽略了!!
羅炎的論文因此被草率忽略了!!!

雖然有人曾建議羅炎投到最頂尖的期刊,像是統計年鑑(Annals of Statistics),這樣子一來消息很快就會傳到全世界,不過羅炎考量後還是決定投到很快就可以發表的印度期刊 Far East Journal of Theoretical Statistics,這種期刊的壞處就是即使刊出之後也不太有人知道這件事。一直到 2015 年底 Rafał Latała 和他的學生 Dariusz Matlak 重新寫了一個簡易 GCI 版本的論文,2017 年 3 月 28 日知名雜誌 Quanta Magazine 刊出一篇專欄報導,整個事件才得以散播出來。

最後,羅炎教授受訪時表示,他希望這個意外簡單的證明能夠鼓勵年輕的學生,善用自己的創意去尋找新的數學定理,畢竟那並不總是需要具備非常高深的理論基礎才辦得到。

“the surprisingly simple proof … might encourage young students to use their own creativity to find new mathematical theorems, since a very high theoretical level is not always required.”

本文轉載自UniMath,原文為[統計學突破]解開高斯相關性猜想,退休統計學家湯瑪斯羅炎的神來一筆

作者簡介:陳宏賓 - UniMath 主編、逢甲大學應用數學系助理教授。
數學既深且廣,我懂得不多,最喜愛組合數學相關領域,主要研究興趣是群試理論、圖論及最優化分解。2013 年出版「Partitions: Optimality and Clustering, Volume II: Multi-Parameter」一書(與 Uriel Rothblum 和 Frank K. Hwang 教授合著)。對於數學和教育有強烈的熱忱和使命感,積極創立 UniMath 電子數學媒體,致力於推廣數學文化。

關於UniMath:UniMath (You Need Math)是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。歡迎加入 Facebook 粉絲團知道第一手訊息!

參考文獻:

  1. L. D. Pitt, A Gaussian correlation inequality for symmetric convex sets, Ann. Probab. 5 (1977), 470– 474.
  2. T. Royen, A simple proof of the Gaussian correlation conjecture extended to multivariate gamma distributions, Far East J. Theor. Stat. 48 (2014), 139–145.
  3. R. Latala and D. Matlak. Royen’s proof of the Gaussian correlation inequality. ArXiv http://arxiv.org/abs/1512.08776, 2015.
  4. A Long-Sought Proof, Found and Almost Lost, Quanta Magazine, 2017/03/28.
文章難易度
UniMath_96
9 篇文章 ・ 209 位粉絲
UniMath (You Need Math) 是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。