0

1
1

文字

分享

0
1
1

P 值已死,嗎?莫須有罪名的最大受害者!

活躍星系核_96
・2017/01/12 ・4370字 ・閱讀時間約 9 分鐘 ・SR值 550 ・八年級

-----廣告,請繼續往下閱讀-----

文/黃大維|目前在台灣大學就讀統計碩士學位學程。我的研究領域是特徵表達與降維分析、序列決策模型、以及財務時間序列,我喜歡用商業的觀點切入大數據與資料科學!

最近在泛科學上看到一篇非常精彩的文章〈p 值的陷阱〉,是在談論「值」在研究上的問題,其實看完之後滿有感觸的,儘管 值是個在初等統計學就會談到的統計量,但大部分的學生(甚至某些研究人員)學完後只記得:值 < 0.05 的話就拒絕虛無假設。因為這個條件非常簡單好記,而且大多數的統計軟體都會報告 值,所以不少人會直接看 值就做出結論。

P 值的陷阱系列

p 值的陷阱(上):p 值是什麼?又不是什麼

p 值的陷阱(下):「摘櫻桃」問題

圖/pixabay, CC0
圖/pixabay, CC0

其實 值本人是相當無辜的,美國統計協會(American Statistical Association, ASA)在 2016 年的聲明中提到一段有趣的對話:

Q: Why do so many colleges and grad schools teach p = 0.05?
A: Because that’s still what the scientific community and journal editors use.
Q: Why do so many people still use p = 0.05?
A: Because that’s what they were taught in college or grad school.

坦白說,值的誤用本質上可說是因為「教學」本身出了問題。我一直到大四為止也都覺得 值 <0.05,拒絕虛無假設,世界圓滿,現在看到許多學弟妹作分析,也會直接寫「值 <0.05,拒絕虛無假設,資料證明了 A 因子是 B 結果的重要原因」,其實這樣的推論是非常危險的。所以,我決定了寫一篇介紹 值的文章。

-----廣告,請繼續往下閱讀-----

假設檢定:Neyman-Pearson Paradigm

在探討 值的意義前,我們必須先了解假設檢定的基本精神。現在有一個統計模型(這個模型就是真理),裡面有個參數 θ,傳統統計的目標是希望去「推論」參數 θ 的性質,比如說:θ 的值為多少?(估計)現在有個假設/宣稱是 θ 落在某個區域 Θθ Θ,根據蒐集的資料這個假設是不是正確的?(檢定)

所謂的假設檢定(Hypothesis Test)便是如上所說:有個假設(hypothesis)是「參數 θ 落在區域 Θθ Θ」,希望根據蒐集到的資料,驗證上述假設的真實性。我們稱「參數 θ 落在區域 Θθ Θ」這個假設被稱為虛無假設(null hypothesis,H0,也就是無中生有的假設。

同時,也有對立假設(alternative hypothesis,H1),是與虛無假設完全相反的假設,也就是「參數 θ 並不落在區域 Θθ Θ」。因此,真實情況下只有兩種可能,「H為真」或是「H0 為假」。同時,我們觀察資料後也只能得到兩種結果:「資料有充分證據證明 H0 為假」以及「資料沒有充分證據證明 H為假」。

在假設檢定中有三個重要的要素:統計模型(真理)、虛無假設、資料。舉個例子吧!有一個好事者說:「大鼻長得帥。」大家當然會想要問:你憑什麼這麼說?有何證據?因此,好事者就說:好吧!那我就來隨機問問台北市的路人大鼻帥不帥,把第 i 個人的回答紀錄成 Xi,假設全台北市的人中覺得大鼻帥的人的比率為 θ,如果有超過 50% 的人說大鼻帥(也就是 θ> 0.5),如此一來我們就可以進行假設檢定了:

-----廣告,請繼續往下閱讀-----
  • 統計模型:Xi~Bernoulli(θ),其中每個人的回答都是獨立的。
  • 資料:隨機詢問 100 個台北市的路人,蒐集到了樣本 ( X1, …, X100 )。 。
  • 假設:H0: θ ≤ 0.5 (虛無假設為大鼻不帥,好事者想利用資料去證明虛無假設不是真的)。

在假設檢定中,我們可以考量兩個維度,其中一個維度是「真實情況下虛無假設是否為真」,另一個維度則是「根據蒐集來的資料,是否拒絕虛無假設」,由此我們可以得出在進行假設檢定時會有以下四種情況:

%e5%9c%96%e7%89%87-4

由於每一次抽出的樣本都會不同,比如說:好事者每天遇到的 100 個路人應該都不一樣,我們沒辦法保證每一次抽出的樣本都能反映出真實情況,因此在進行假設檢定時可能會犯兩種錯誤:

  1. 第一型錯誤(Type I Error):虛無假設為真,樣本卻顯示我們應該拒絕虛無假設。
  2. 第二型錯誤(Type II Error):虛無假設為偽,樣本卻顯示我們應該接受虛無假設。

理想上,我們希望能夠讓第一型錯誤與第二型錯誤的機率越低越好,最好都是 0,但假設檢定的天性,使得這件事無法發生。如果我們希望第一型錯誤發生的機率比較小(上圖紅色區域的面積),代表我們應當將「拒絕虛無假設」的標準訂得更嚴格一點(拒絕域比較窄),才不會一不小心就拒絕了虛無假設。然而,這麼一來就有可能在虛無假設為假的情況下,仍然不拒絕虛無假設,也就是第二型錯誤發生的機率(上圖藍色區域的面積)變高了!反之,如果我們希望第二型錯誤發生的機率比較小(下圖藍色區域的面積),代表我們應當將「拒絕虛無假設」的標準訂得寬鬆一點(拒絕域比較寬),但這樣一來第一型錯誤的機率(下圖紅色區域的面積)就會上升。

%e5%9c%96%e7%89%871-1

在第一型錯誤與第二型錯誤的機率存在抵讓(trade-off)關係時,統計學家決定:不如我們先限制其中一項錯誤的機率,再去看看要如何找出拒絕的標準,使得另一項錯誤發生的機率越低越好。因此,在進行假設檢定時,我們的首先會確保第一型錯誤的機率不超過一個很小的數值 α,一般習慣將 α 訂為 10%、5%、或是 1%(只是習慣),確保第一型錯誤發生的機率很低。接著,我們找出一個拒絕的標準,使得第二型錯誤發生的機率越小越好。通常,我們將「拒絕虛無假設的標準」寫成一個區域的型式,稱為拒絕域 RR(rejection region),當我們蒐集到的樣本落於拒絕域 RR 時,我們便拒絕虛無假設。

-----廣告,請繼續往下閱讀-----

因此,當第一型錯誤的機率 P( X1, …, X100 ) ∈ RRH0 is true≤  α α 控制住後,我們就可以依照某些方法,計算出實際得拒絕域 RR。一旦拒絕域決定了,我們便可以計算出第二型錯誤的機率 β = P( X1, …, X100 ) ∉ RRH0 is false)。此時,我們將一個假設檢定的檢定力(power)定義為 1- β。統計學家期待能夠在控制住第一型錯誤發生機率的情況下,得到一個拒絕域 RR*,使得第二型錯誤發生的機率最小,也就是使得檢定力最強。這樣利用 α 控制住第一型錯誤的方法,就是所謂的 Neyman-Pearson Paradigm。而針對給定的虛無假設,「拒絕域為 RR*」的檢定方法,就稱為「最強檢定力檢定」(most powerful test)。

值:幫助我們決定是否拒絕 H的好工具

前面講了一大串都沒有談到 值是什麼,現在終於要開始了!值最早是在 1900 年在 Pearson卡方檢定的論文中被提出的(皮爾森大大真是了不起 RRRR),其實 值本身有一個更一般化的定義,但在這裡我用的是平常我們看見的 值的定義。

假設現在好事者已經問完 100 個路人,得到了一組樣本。值的定義是,「在虛無假設為真的情況下,如果好事者明天再去蒐集一次樣本,得出的新樣本比目前的樣本更能拒絕虛無假設的機率。」

大鼻阿,你到底在說什麼啊…… 讓我來畫個圖跟大家說明。在下圖中,資料越靠近右邊,代表拒絕虛無假設的傾向越強,而灰色的線是今天好事者抽到的一組樣本,紅色的曲線是在虛無假設為真的情況下,樣本的機率密度(probability density),那麼落在這組樣本右手邊的紅色面積,就是所謂的 值:在做一次調查,得到一組與目前資料相比,「更傾向拒絕虛無假設」樣本的機率值。

-----廣告,請繼續往下閱讀-----

%e5%9c%96%e7%89%871-2

如果我們得到的 值很小,就代表著:目前這組樣本拒絕虛無假設的傾向已經非常強了,幾乎不可能再得到更傾向於拒絕虛無假設的樣本了,因此 值只要夠小,我們就可以拒絕虛無假設。

這時我們很自然會想問,值到底要多小,才算是夠小呢?其實我們可以 值跟 α 來比較,下圖中資料落於拒絕域的機率(藍色區域面積)為 α,我們可以很清楚的看到如果 值(紅色區域面積)比 α 還小,就代表今天蒐集到的樣本落於拒絕域。這就是為什麼我們常說 值 < 0.05 就拒絕虛無假設的原因。

%e5%9c%96%e7%89%872-720x416

小結:定義有說的才能,沒說的就不能

在大家了解 值的定義之後,我們就可以來看看美國統計協會的聲明中提供的 值使用指引:

P-values can indicate how incompatible the data are with a specified statistical model.

大家如果只單看這句話,可能會覺得「p-值可以用指出實際資料與預設統計模型的差異性」,但如果仔細看 ASA 文章裡的敘述,會知道「預設統計模型」是指「虛無假設為真情況下的統計模型」。

-----廣告,請繼續往下閱讀-----

P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.

聲明中提到,值並不是用來衡量「虛無假設不為真」的機率,若硬要談到「虛無假設不為真」的機率,其實要嘛是 1 (虛無假設不為真),要嘛是 0(虛無假設為真),值用來衡量的是在虛無假設為真的情況下,我再重新蒐集樣本,新的樣本比現有樣本更能拒絕虛無假設證據的機率。

Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.

從來每有一個統計學家會說,只要 值 < 0.05(或可說是達成統計顯著),就天下太平了。 值只是眾多統計指標中的一個衡量方法而已,如果在最初設計統計模型時就設計錯了,而沒有去檢驗最初模型設定的合理性,那麼 值 < 0.05 甚至會為你帶來一場災難!

Proper inference requires full reporting and transparency.

對於統計這麼學問掌握純熟的人,其實說到底很容易去「操弄 值」,說到底這是一個非常糟糕的行為,但就跟小時候做實驗掰數據一樣,很快就能產生好結果。真正要驗證一個理論的正確性時,是需要做許多不同的統計測試的,像是財務界頂尖期刊 Journal of Finance 裡面的統計驗證方法就非常嚴謹,值得效法。

A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.

在迴歸裡面,我們時常會去檢定一個解釋變數的係數是否為 0,有些人會覺得 值越小代表這個變數越重要,錯!其實只要你的樣本數大一點,任何的解釋變數係數是否為 0 的檢定都很容易得到足夠小的 值。有興趣的朋友可以看看這一篇論文,有詳細解釋大樣本時 值的問題。

-----廣告,請繼續往下閱讀-----

我自己習慣是,假設現在有 30 萬個資料,我可能會從裡面隨機抽出 10,000 組樣本數為 100 的小樣本,然後在每個小樣本上去跑回歸,看看 值 < 0.05 的比率有多高,但我不確定這個手法有沒有很嚴謹的統計證明,如果有朋友有方法的話還請告訴我!

By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

簡單來說,其實 值並不能完全代表真實資料與模型之間的差距,仍然需要進行更縝密的資料分析才能做到品質比較高的統計推論。其實很簡單,如果只是看看值就萬事大吉,還要這麼多統計學家幹嘛 XD

 

希望大家看完這篇文章,有更了解 值的本質。 值本人是相當無辜的,而且也從來沒人說 α = 0.05 是真理,需要依據你的問題與蒐集到的資料,來判斷 α 應該要落在哪個水準比較合理。在抨擊  值本人前,要想想世上無完人,他能夠做的就是他的本分,不要再逼迫已經年齡過百的他了 QAQ

本文轉載自作者部落格「大鼻觀點」,喜歡他的文章也可以追蹤同名臉書粉絲專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 130 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

2
2

文字

分享

2
2
2
買樂透真的可以賺錢?大數法則揭示了賭博的真相!——《統計,讓數字說話》
天下文化_96
・2023/03/05 ・2394字 ・閱讀時間約 4 分鐘

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是大數法則?

期望值的定義是:它是可能結果的一種平均,但在計算平均時,機率大的結果占的比重較高。我們認為期望值也是另一種意義的平均結果,它代表了如果我們重複賭很多次,或者隨機選出很多家戶,實際上會看到的長期平均。這並不只是直覺而已。數學家只要用機率的基本規則就可以證明,用機率模型算出來的期望值,真的就是「長期平均」。這個有名的事實叫做大數法則。

大數法則
大數法則(law of large numbers)是指,如果結果為數值的隨機現象,獨立重複執行許多次,實際觀察到的結果的平均值,會趨近期望值。

大數法則和機率的概念密切相關。在許多次獨立的重複當中,每個可能結果的發生比例會接近它的機率,而所得到的平均結果就會接近期望值。這些事實表達了機遇事件的長期規律性。正如我們在第 17 章提過的,它們是真正的「平均數定律」。

大數法則解釋了:為什麼對個人來說是消遣甚至是會上癮的賭博,對賭場來說卻是生意。經營賭場根本就不是在賭博。大量的賭客贏錢的平均金額會很接近期望值。賭場經營者事先就算好了期望值,並且知道長期下來收入會是多少,所以並不需要在骰子裡灌鉛或者做牌來保證利潤。

賭場只要花精神提供不貴的娛樂和便宜的交通工具,讓顧客川流不息進場就行了。只要賭注夠多,大數法則就能保證賭場賺錢。保險公司的運作也很像賭場,他們賭買了保險的人不會死亡。當然有些人確實會死亡,但是保險公司知道機率,並且依賴大數法則來預測必須給付的平均金額。然後保險公司就把保費訂得夠高,來保證有利潤。

-----廣告,請繼續往下閱讀-----
  • 在樂透彩上做手腳

我們都在電視上看過樂透開獎的實況轉播,看到號碼球上下亂跳,然後由於空氣壓力而隨機彈跳出來。我們可以怎麼樣對開出的號碼做手腳呢? 1980 年的時候,賓州樂透就曾被面帶微笑的主持人以及幾個舞台工作人員動了手腳。

他們把 10 個號碼球中的 8 顆注入油漆,這樣做會把球變重,因此可保證開出中獎號碼的 3 個球必定有那 2 個沒被注入油漆的號碼。然後這些傢伙就下注買該 2 個號碼的所有組合。當 6-6-6 跳出來的時候,他們贏了 120 萬美元。是的,他們後來全被逮到。

歷史上曾有主持人在樂透上做手腳,後來賺了 120 萬美元隨後被逮捕。圖/envatoelements

深入探討期望值

跟機率一樣,期望值和大數法則都值得再花些時間,探討相關的細節問題。

  • 多大的數才算是「大數」?

大數法則是說,當試驗的次數愈來愈多,許多次試驗的實際平均結果會愈來愈接近期望值。可是大數法則並沒有說,究竟需要多少次試驗,才能保證平均結果會接近期望值。這點是要看機結果的變異性決定。

-----廣告,請繼續往下閱讀-----

結果的變異愈大,就需要愈多次的試驗,來確保平均結果接近期望值。機遇遊戲一定要變化大,才能保住賭客的興趣。即使在賭場待上好幾個鐘頭,結果也是無法預測的。結果變異性極大的賭博,例如累積彩金數額極大但極不可能中獎的州彩券,需要極多次的試驗,幾乎要多到不可能的次數,才能保證平均結果會接近期望值。

(州政府可不需要依賴大數法則,因為樂透彩金不像賭場的遊戲,樂透彩用的是同注分彩系統。在同注分彩系統裡面,彩金和賠率是由實際下注金額決定的。舉例來說,各州所辦的樂透彩金,是由全部賭金扣除州政府所得部分之後的剩餘金額來決定的。賭馬的賠率則是決定於賭客對不同馬匹的下注金額。)

雖然大部分的賭博遊戲不及樂透彩這樣多變化,但要回答大數法則的適用範圍,較實際的答案就是:賭場的贏錢金額期望值是正的,而賭場玩的次數夠多,所以可以靠著這個期望值贏錢。你的問題則是,你贏錢金額的期望值是負的。全體賭客玩的次數合起來算的話,當然和賭場一樣多,但因為期望值是負的,所以以賭客整體來看,長期下來一定輸錢。

然而輸的金額並不是由賭客均攤。有些人贏很多錢,有些人輸很多,而有些人沒什麼輸贏。賭博帶給人的誘惑,大部分是來自賭博結果的無法預測。而賭博這門生意仰賴的則是:對賭場來說,結果並非不可測的。

-----廣告,請繼續往下閱讀-----
對賭場來說,贏錢金額期望值為正。圖/envatoelements
  • 有沒有保證贏錢的賭法?

把賭博很當回事的賭客常常遵循某種賭法,這種賭法每次下注的金額,是看前幾次的結果而定。比如說,在賭輪盤時,你可以每次把賭注加倍,直到你贏為止—或者,當然,直到你輸光為止。即使輪盤並沒有記憶,這種玩法仍想利用你有記憶這件事來贏。

你可以用一套賭法來戰勝機率嗎?不行,數學家建立的另一種大數法則說:如果你沒有無窮盡的賭本,那麼只要遊戲的各次試驗(比如輪盤的各次轉動)之間是獨立的,你的平均獲利(期望值)就會是一樣的。抱歉啦!

  • 高科技賭博

全美國有超過 700,000 台吃角子老虎(拉霸)。從前,你丟硬幣進去再拉下把手,轉動三個輪子,每個輪子有 20 個圖案。但早就不是這樣了。現在的機器是電動遊戲,會閃出許多很炫的畫面,而結果是由隨機數字產生器決定的。

機器可以同時接受許多硬幣,有各種讓你眼花撩亂的中獎結果,還可以多台連線,共同累積成連線大獎。賭徒仍在尋找可以贏錢的賭法,但是長期下來,隨機數字產生器會保證賭場有 5% 的利潤。

-----廣告,請繼續往下閱讀-----

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 2
天下文化_96
142 篇文章 ・ 626 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

3
1

文字

分享

0
3
1
我的身高有特別矮嗎?為什麼大多數女性身高都「差不多」!——《統計,讓數字說話》
天下文化_96
・2023/03/04 ・2634字 ・閱讀時間約 5 分鐘

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是常態分布?

圖 13.3 和 13.4 裡的密度曲線,同屬一族特別重要的曲線:常態曲線。圖 13.7 再呈現了兩個常態密度曲線。常態曲線都是對稱、單峰、鐘形的,尾部降得很快,所以我們應該不會看到離群值。由於常態分布是對稱的,所以平均數和中位數都落在曲線的中間位置,而這也是尖峰所在。

常態曲線還有一個特別性質:我們可以用目測方式在曲線上找到它的標準差。對大部分其他的密度曲線,沒有法子這樣做。做法是這樣的。想像你要從山頂開始滑雪,山的形狀和常態曲線一樣。起先,你從山頂出發時,往下滑的角度非常陡:

幸好,在你還沒有直直墜下之前,斜坡就變緩了,你愈往下滑出去,坡度愈平:

曲率(curvature)發生改變的地方,是在平均數兩側、各距平均數一個標準差的位置。圖 13.7 的兩條曲線上都標示出了標準差。你如果用鉛筆沿著常態曲線描,應該可以感受到曲率改變的地方,進而找出標準差。

-----廣告,請繼續往下閱讀-----

常態曲線有個特別的性質是,只要知道平均數及標準差,整條曲線就完全確定了。平均數把曲線的中心定下來,而標準差決定曲線的形狀。變動常態分布的平均數並不會改變曲線的形狀,只會改變曲線在 x 軸上的位置。但是,變動標準差卻會改變常態曲線的形狀,如圖 13.7 所示。標準差較小的分布,散布的範圍比較小,尖峰也比較陡。以下是常態曲線基本性質的總結:

常態密度曲線的特性

常態曲線(normal curve)是對稱的鐘形曲線,具備以下性質:

  • 只要給了平均數和標準差,就可以完全描述特定的常態曲線。
  • 平均數決定分布的中心,這個位置就在曲線的對稱中心。
  • 標準差決定曲線的形狀,標準差是指從平均數到平均數左側或右側的曲率變化點的距離。

為什麼常態分布在統計裡面很重要呢?首先,對於某些真實數據的分布,用常態曲線可以做很好的描述。最早將常態曲線用在數據上的是大數學家高斯(Carl Friedrich Gauss, 1777 – 1855)。

天文學家或測量員仔細重複度量同一個數量時,所得出的量測值會有小誤差,高斯就利用常態曲線來描述這些小誤差。你有時候會看到有人把常態分布叫做「高斯分布」,就是為了紀念高斯。

-----廣告,請繼續往下閱讀-----

十九世紀的大部分時間中,常態曲線曾叫做「誤差曲線」,也就因為常態曲線最早是用來描述量測誤差的分布。後來慢慢發現,有些生物學或心理學上的變數也大致符合常態分布時,「誤差曲線」這個名詞就不再使用了。1889 年,高騰(Francis Galton)率先把這些曲線稱做「常態曲線」。高騰是達爾文的表弟,他開拓了遺傳的統計研究。

常態分布的形狀:鐘形曲線

人類智慧高低的分布,是不是遵循常態分布的「鐘形曲線」?IQ 測驗的分數的確大致符合常態分布,但那是因為測驗分數是根據作答者的答案計算出來的,而計算方式原本就是以常態分布為目標所設計的。要說智慧分布遵循鐘形曲線,前提是:大家都同意 IQ 測驗分數可以直接度量人的智慧。然而許多心理學家都不認為世界上有某種人類特質,可以讓我們稱為「智慧」,並且可以用一個測驗分數度量出來。

當我們從同一母體抽取許多樣本時,諸如樣本比例(當樣本大小很大、而比例的數值中等時)及樣本平均數(當我們從相同母體取出許多樣本時)這類統計量的分布,也可以用常態曲線來描述。我們會在後面的章節進一步細談統計分布。

抽樣調查結果的誤差界限,也常常用常態曲線來算。然而,即使有許多類的數據符合常態分布,仍然有許多是不符合的,比如說,大部分的所得分布是右偏的,因而不是常態分布。非常態的數據就和不平常的人一樣,不僅常見,而且有時比常態的數據還有趣。

-----廣告,請繼續往下閱讀-----

68 – 95 – 99.7 規則

常態曲線有許多,每一個常態曲線都可以用各自的平均數和標準差來描述。所有常態曲線都有許多共同性質,特別要提的是,對常態分布來說,標準差是理所當然的量度單位。這件事實反映在下列規則當中。

68 – 95 – 99.7 規則
在任何常態分布當中,大約有 68% 的觀測值,落在距平均數一個標準差的範圍內。
95% 的觀測值,落在距平均數兩個標準差的範圍內。
99.7% 的觀測值,落在距平均數三個標準差的範圍內。
圖13.8、68–95–99.7規則。圖/《統計,讓數字說話》。

圖 13.8 說明了 68 – 95 – 99.7 規則。記住這三個數字之後,你就可以在不用一直做囉嗦計算的情況下考慮常態分布。不過還得記住,沒有哪組數據是百分之百用常態分布描述的。不管對於 SAT 分數,或者蟋蟀的身長, 68–95–99.7 規則都只是大體正確。

年輕女性的身高常態

年輕女性的身高約略是平均數 63.7 英寸、標準差 2.5 英寸的常態分布。要運用 68 – 95 – 99.7 規則,首先得畫一個常態曲線的圖。圖 13.9 說明了這個規則用在女性的身高上會是什麼情況。

任何常態分布都有一半的觀測值在平均數之上,所以年輕女性中有一半高於 63.7 英寸。

-----廣告,請繼續往下閱讀-----

任何常態分布的中間68%觀測值,會在距平均數一個標準差的範圍內。而這 68 %中的一半,即 34 %,會在平均數之上。所以有 34 %的年輕女性,身高在 63.7 英寸及 66.2 英寸之間。把身高不到 63.7 英寸的 50% 女性也加上去,可以得知總共有84%的年輕女性身高不到 66.2 英寸。所以推知超過 66.2 英寸的人占 16%。

任何常態分布的中間 95% 的值,在距平均數兩個標準差範圍內。這裡的兩個標準差是 5 英寸,所以年輕女性身高的中間 95% 是在 58.7(= 63.7 − 5)和 68.7(= 63.7 + 5)英寸之間。

另外 5% 女性的身高,就超出 58.7 到 68.7 英寸的範圍之外。因為常態分布是對稱的,這其中有一半的女性是在矮的那一頭。年輕女性中最矮的 2.5% ,身高不到 58.7 英寸(149 公分)。

任何常態分布中幾乎所有(99.7%)的值,在距平均數三個標準差的範圍內,所以幾乎所有年輕女性的身高,都在 56.2 及 71.2 英寸之間。

-----廣告,請繼續往下閱讀-----

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 626 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。