0

1
1

文字

分享

0
1
1

P 值已死,嗎?莫須有罪名的最大受害者!

活躍星系核_96
・2017/01/12 ・4364字 ・閱讀時間約 9 分鐘 ・SR值 550 ・八年級

文/黃大維|目前在台灣大學就讀統計碩士學位學程。我的研究領域是特徵表達與降維分析、序列決策模型、以及財務時間序列,我喜歡用商業的觀點切入大數據與資料科學!

最近在泛科學上看到一篇非常精彩的文章〈p 值的陷阱〉,是在談論「值」在研究上的問題,其實看完之後滿有感觸的,儘管 值是個在初等統計學就會談到的統計量,但大部分的學生(甚至某些研究人員)學完後只記得:值 < 0.05 的話就拒絕虛無假設。因為這個條件非常簡單好記,而且大多數的統計軟體都會報告 值,所以不少人會直接看 值就做出結論。

P 值的陷阱系列

p 值的陷阱(上):p 值是什麼?又不是什麼

p 值的陷阱(下):「摘櫻桃」問題

圖/pixabay, CC0
圖/pixabay, CC0

其實 值本人是相當無辜的,美國統計協會(American Statistical Association, ASA)在 2016 年的聲明中提到一段有趣的對話:

Q: Why do so many colleges and grad schools teach p = 0.05?
A: Because that’s still what the scientific community and journal editors use.
Q: Why do so many people still use p = 0.05?
A: Because that’s what they were taught in college or grad school.

坦白說,值的誤用本質上可說是因為「教學」本身出了問題。我一直到大四為止也都覺得 值 <0.05,拒絕虛無假設,世界圓滿,現在看到許多學弟妹作分析,也會直接寫「值 <0.05,拒絕虛無假設,資料證明了 A 因子是 B 結果的重要原因」,其實這樣的推論是非常危險的。所以,我決定了寫一篇介紹 值的文章。

-----廣告,請繼續往下閱讀-----

假設檢定:Neyman-Pearson Paradigm

在探討 值的意義前,我們必須先了解假設檢定的基本精神。現在有一個統計模型(這個模型就是真理),裡面有個參數 θ,傳統統計的目標是希望去「推論」參數 θ 的性質,比如說:θ 的值為多少?(估計)現在有個假設/宣稱是 θ 落在某個區域 Θθ Θ,根據蒐集的資料這個假設是不是正確的?(檢定)

所謂的假設檢定(Hypothesis Test)便是如上所說:有個假設(hypothesis)是「參數 θ 落在區域 Θθ Θ」,希望根據蒐集到的資料,驗證上述假設的真實性。我們稱「參數 θ 落在區域 Θθ Θ」這個假設被稱為虛無假設(null hypothesis,H0,也就是無中生有的假設。

同時,也有對立假設(alternative hypothesis,H1),是與虛無假設完全相反的假設,也就是「參數 θ 並不落在區域 Θθ Θ」。因此,真實情況下只有兩種可能,「H為真」或是「H0 為假」。同時,我們觀察資料後也只能得到兩種結果:「資料有充分證據證明 H0 為假」以及「資料沒有充分證據證明 H為假」。

在假設檢定中有三個重要的要素:統計模型(真理)、虛無假設、資料。舉個例子吧!有一個好事者說:「大鼻長得帥。」大家當然會想要問:你憑什麼這麼說?有何證據?因此,好事者就說:好吧!那我就來隨機問問台北市的路人大鼻帥不帥,把第 i 個人的回答紀錄成 Xi,假設全台北市的人中覺得大鼻帥的人的比率為 θ,如果有超過 50% 的人說大鼻帥(也就是 θ> 0.5),如此一來我們就可以進行假設檢定了:

-----廣告,請繼續往下閱讀-----
  • 統計模型:Xi~Bernoulli(θ),其中每個人的回答都是獨立的。
  • 資料:隨機詢問 100 個台北市的路人,蒐集到了樣本 ( X1, …, X100 )。 。
  • 假設:H0: θ ≤ 0.5 (虛無假設為大鼻不帥,好事者想利用資料去證明虛無假設不是真的)。

在假設檢定中,我們可以考量兩個維度,其中一個維度是「真實情況下虛無假設是否為真」,另一個維度則是「根據蒐集來的資料,是否拒絕虛無假設」,由此我們可以得出在進行假設檢定時會有以下四種情況:

%e5%9c%96%e7%89%87-4

由於每一次抽出的樣本都會不同,比如說:好事者每天遇到的 100 個路人應該都不一樣,我們沒辦法保證每一次抽出的樣本都能反映出真實情況,因此在進行假設檢定時可能會犯兩種錯誤:

  1. 第一型錯誤(Type I Error):虛無假設為真,樣本卻顯示我們應該拒絕虛無假設。
  2. 第二型錯誤(Type II Error):虛無假設為偽,樣本卻顯示我們應該接受虛無假設。

理想上,我們希望能夠讓第一型錯誤與第二型錯誤的機率越低越好,最好都是 0,但假設檢定的天性,使得這件事無法發生。如果我們希望第一型錯誤發生的機率比較小(上圖紅色區域的面積),代表我們應當將「拒絕虛無假設」的標準訂得更嚴格一點(拒絕域比較窄),才不會一不小心就拒絕了虛無假設。然而,這麼一來就有可能在虛無假設為假的情況下,仍然不拒絕虛無假設,也就是第二型錯誤發生的機率(上圖藍色區域的面積)變高了!反之,如果我們希望第二型錯誤發生的機率比較小(下圖藍色區域的面積),代表我們應當將「拒絕虛無假設」的標準訂得寬鬆一點(拒絕域比較寬),但這樣一來第一型錯誤的機率(下圖紅色區域的面積)就會上升。

%e5%9c%96%e7%89%871-1

在第一型錯誤與第二型錯誤的機率存在抵讓(trade-off)關係時,統計學家決定:不如我們先限制其中一項錯誤的機率,再去看看要如何找出拒絕的標準,使得另一項錯誤發生的機率越低越好。因此,在進行假設檢定時,我們的首先會確保第一型錯誤的機率不超過一個很小的數值 α,一般習慣將 α 訂為 10%、5%、或是 1%(只是習慣),確保第一型錯誤發生的機率很低。接著,我們找出一個拒絕的標準,使得第二型錯誤發生的機率越小越好。通常,我們將「拒絕虛無假設的標準」寫成一個區域的型式,稱為拒絕域 RR(rejection region),當我們蒐集到的樣本落於拒絕域 RR 時,我們便拒絕虛無假設。

-----廣告,請繼續往下閱讀-----

因此,當第一型錯誤的機率 P( X1, …, X100 ) ∈ RRH0 is true≤  α α 控制住後,我們就可以依照某些方法,計算出實際得拒絕域 RR。一旦拒絕域決定了,我們便可以計算出第二型錯誤的機率 β = P( X1, …, X100 ) ∉ RRH0 is false)。此時,我們將一個假設檢定的檢定力(power)定義為 1- β。統計學家期待能夠在控制住第一型錯誤發生機率的情況下,得到一個拒絕域 RR*,使得第二型錯誤發生的機率最小,也就是使得檢定力最強。這樣利用 α 控制住第一型錯誤的方法,就是所謂的 Neyman-Pearson Paradigm。而針對給定的虛無假設,「拒絕域為 RR*」的檢定方法,就稱為「最強檢定力檢定」(most powerful test)。

值:幫助我們決定是否拒絕 H的好工具

前面講了一大串都沒有談到 值是什麼,現在終於要開始了!值最早是在 1900 年在 Pearson卡方檢定的論文中被提出的(皮爾森大大真是了不起 RRRR),其實 值本身有一個更一般化的定義,但在這裡我用的是平常我們看見的 值的定義。

假設現在好事者已經問完 100 個路人,得到了一組樣本。值的定義是,「在虛無假設為真的情況下,如果好事者明天再去蒐集一次樣本,得出的新樣本比目前的樣本更能拒絕虛無假設的機率。」

大鼻阿,你到底在說什麼啊…… 讓我來畫個圖跟大家說明。在下圖中,資料越靠近右邊,代表拒絕虛無假設的傾向越強,而灰色的線是今天好事者抽到的一組樣本,紅色的曲線是在虛無假設為真的情況下,樣本的機率密度(probability density),那麼落在這組樣本右手邊的紅色面積,就是所謂的 值:在做一次調查,得到一組與目前資料相比,「更傾向拒絕虛無假設」樣本的機率值。

-----廣告,請繼續往下閱讀-----

%e5%9c%96%e7%89%871-2

如果我們得到的 值很小,就代表著:目前這組樣本拒絕虛無假設的傾向已經非常強了,幾乎不可能再得到更傾向於拒絕虛無假設的樣本了,因此 值只要夠小,我們就可以拒絕虛無假設。

這時我們很自然會想問,值到底要多小,才算是夠小呢?其實我們可以 值跟 α 來比較,下圖中資料落於拒絕域的機率(藍色區域面積)為 α,我們可以很清楚的看到如果 值(紅色區域面積)比 α 還小,就代表今天蒐集到的樣本落於拒絕域。這就是為什麼我們常說 值 < 0.05 就拒絕虛無假設的原因。

%e5%9c%96%e7%89%872-720x416

小結:定義有說的才能,沒說的就不能

在大家了解 值的定義之後,我們就可以來看看美國統計協會的聲明中提供的 值使用指引:

P-values can indicate how incompatible the data are with a specified statistical model.

大家如果只單看這句話,可能會覺得「p-值可以用指出實際資料與預設統計模型的差異性」,但如果仔細看 ASA 文章裡的敘述,會知道「預設統計模型」是指「虛無假設為真情況下的統計模型」。

-----廣告,請繼續往下閱讀-----

P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.

聲明中提到,值並不是用來衡量「虛無假設不為真」的機率,若硬要談到「虛無假設不為真」的機率,其實要嘛是 1 (虛無假設不為真),要嘛是 0(虛無假設為真),值用來衡量的是在虛無假設為真的情況下,我再重新蒐集樣本,新的樣本比現有樣本更能拒絕虛無假設證據的機率。

Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.

從來每有一個統計學家會說,只要 值 < 0.05(或可說是達成統計顯著),就天下太平了。 值只是眾多統計指標中的一個衡量方法而已,如果在最初設計統計模型時就設計錯了,而沒有去檢驗最初模型設定的合理性,那麼 值 < 0.05 甚至會為你帶來一場災難!

Proper inference requires full reporting and transparency.

對於統計這麼學問掌握純熟的人,其實說到底很容易去「操弄 值」,說到底這是一個非常糟糕的行為,但就跟小時候做實驗掰數據一樣,很快就能產生好結果。真正要驗證一個理論的正確性時,是需要做許多不同的統計測試的,像是財務界頂尖期刊 Journal of Finance 裡面的統計驗證方法就非常嚴謹,值得效法。

A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.

在迴歸裡面,我們時常會去檢定一個解釋變數的係數是否為 0,有些人會覺得 值越小代表這個變數越重要,錯!其實只要你的樣本數大一點,任何的解釋變數係數是否為 0 的檢定都很容易得到足夠小的 值。有興趣的朋友可以看看這一篇論文,有詳細解釋大樣本時 值的問題。

-----廣告,請繼續往下閱讀-----

我自己習慣是,假設現在有 30 萬個資料,我可能會從裡面隨機抽出 10,000 組樣本數為 100 的小樣本,然後在每個小樣本上去跑回歸,看看 值 < 0.05 的比率有多高,但我不確定這個手法有沒有很嚴謹的統計證明,如果有朋友有方法的話還請告訴我!

By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

簡單來說,其實 值並不能完全代表真實資料與模型之間的差距,仍然需要進行更縝密的資料分析才能做到品質比較高的統計推論。其實很簡單,如果只是看看值就萬事大吉,還要這麼多統計學家幹嘛 XD

 

希望大家看完這篇文章,有更了解 值的本質。 值本人是相當無辜的,而且也從來沒人說 α = 0.05 是真理,需要依據你的問題與蒐集到的資料,來判斷 α 應該要落在哪個水準比較合理。在抨擊  值本人前,要想想世上無完人,他能夠做的就是他的本分,不要再逼迫已經年齡過百的他了 QAQ

本文轉載自作者部落格「大鼻觀點」,喜歡他的文章也可以追蹤同名臉書粉絲專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

2
2

文字

分享

2
2
2
買樂透真的可以賺錢?大數法則揭示了賭博的真相!——《統計,讓數字說話》
天下文化_96
・2023/03/05 ・2394字 ・閱讀時間約 4 分鐘

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是大數法則?

期望值的定義是:它是可能結果的一種平均,但在計算平均時,機率大的結果占的比重較高。我們認為期望值也是另一種意義的平均結果,它代表了如果我們重複賭很多次,或者隨機選出很多家戶,實際上會看到的長期平均。這並不只是直覺而已。數學家只要用機率的基本規則就可以證明,用機率模型算出來的期望值,真的就是「長期平均」。這個有名的事實叫做大數法則。

大數法則
大數法則(law of large numbers)是指,如果結果為數值的隨機現象,獨立重複執行許多次,實際觀察到的結果的平均值,會趨近期望值。

大數法則和機率的概念密切相關。在許多次獨立的重複當中,每個可能結果的發生比例會接近它的機率,而所得到的平均結果就會接近期望值。這些事實表達了機遇事件的長期規律性。正如我們在第 17 章提過的,它們是真正的「平均數定律」。

大數法則解釋了:為什麼對個人來說是消遣甚至是會上癮的賭博,對賭場來說卻是生意。經營賭場根本就不是在賭博。大量的賭客贏錢的平均金額會很接近期望值。賭場經營者事先就算好了期望值,並且知道長期下來收入會是多少,所以並不需要在骰子裡灌鉛或者做牌來保證利潤。

賭場只要花精神提供不貴的娛樂和便宜的交通工具,讓顧客川流不息進場就行了。只要賭注夠多,大數法則就能保證賭場賺錢。保險公司的運作也很像賭場,他們賭買了保險的人不會死亡。當然有些人確實會死亡,但是保險公司知道機率,並且依賴大數法則來預測必須給付的平均金額。然後保險公司就把保費訂得夠高,來保證有利潤。

-----廣告,請繼續往下閱讀-----
  • 在樂透彩上做手腳

我們都在電視上看過樂透開獎的實況轉播,看到號碼球上下亂跳,然後由於空氣壓力而隨機彈跳出來。我們可以怎麼樣對開出的號碼做手腳呢? 1980 年的時候,賓州樂透就曾被面帶微笑的主持人以及幾個舞台工作人員動了手腳。

他們把 10 個號碼球中的 8 顆注入油漆,這樣做會把球變重,因此可保證開出中獎號碼的 3 個球必定有那 2 個沒被注入油漆的號碼。然後這些傢伙就下注買該 2 個號碼的所有組合。當 6-6-6 跳出來的時候,他們贏了 120 萬美元。是的,他們後來全被逮到。

歷史上曾有主持人在樂透上做手腳,後來賺了 120 萬美元隨後被逮捕。圖/envatoelements

深入探討期望值

跟機率一樣,期望值和大數法則都值得再花些時間,探討相關的細節問題。

  • 多大的數才算是「大數」?

大數法則是說,當試驗的次數愈來愈多,許多次試驗的實際平均結果會愈來愈接近期望值。可是大數法則並沒有說,究竟需要多少次試驗,才能保證平均結果會接近期望值。這點是要看機結果的變異性決定。

-----廣告,請繼續往下閱讀-----

結果的變異愈大,就需要愈多次的試驗,來確保平均結果接近期望值。機遇遊戲一定要變化大,才能保住賭客的興趣。即使在賭場待上好幾個鐘頭,結果也是無法預測的。結果變異性極大的賭博,例如累積彩金數額極大但極不可能中獎的州彩券,需要極多次的試驗,幾乎要多到不可能的次數,才能保證平均結果會接近期望值。

(州政府可不需要依賴大數法則,因為樂透彩金不像賭場的遊戲,樂透彩用的是同注分彩系統。在同注分彩系統裡面,彩金和賠率是由實際下注金額決定的。舉例來說,各州所辦的樂透彩金,是由全部賭金扣除州政府所得部分之後的剩餘金額來決定的。賭馬的賠率則是決定於賭客對不同馬匹的下注金額。)

雖然大部分的賭博遊戲不及樂透彩這樣多變化,但要回答大數法則的適用範圍,較實際的答案就是:賭場的贏錢金額期望值是正的,而賭場玩的次數夠多,所以可以靠著這個期望值贏錢。你的問題則是,你贏錢金額的期望值是負的。全體賭客玩的次數合起來算的話,當然和賭場一樣多,但因為期望值是負的,所以以賭客整體來看,長期下來一定輸錢。

然而輸的金額並不是由賭客均攤。有些人贏很多錢,有些人輸很多,而有些人沒什麼輸贏。賭博帶給人的誘惑,大部分是來自賭博結果的無法預測。而賭博這門生意仰賴的則是:對賭場來說,結果並非不可測的。

-----廣告,請繼續往下閱讀-----
對賭場來說,贏錢金額期望值為正。圖/envatoelements
  • 有沒有保證贏錢的賭法?

把賭博很當回事的賭客常常遵循某種賭法,這種賭法每次下注的金額,是看前幾次的結果而定。比如說,在賭輪盤時,你可以每次把賭注加倍,直到你贏為止—或者,當然,直到你輸光為止。即使輪盤並沒有記憶,這種玩法仍想利用你有記憶這件事來贏。

你可以用一套賭法來戰勝機率嗎?不行,數學家建立的另一種大數法則說:如果你沒有無窮盡的賭本,那麼只要遊戲的各次試驗(比如輪盤的各次轉動)之間是獨立的,你的平均獲利(期望值)就會是一樣的。抱歉啦!

  • 高科技賭博

全美國有超過 700,000 台吃角子老虎(拉霸)。從前,你丟硬幣進去再拉下把手,轉動三個輪子,每個輪子有 20 個圖案。但早就不是這樣了。現在的機器是電動遊戲,會閃出許多很炫的畫面,而結果是由隨機數字產生器決定的。

機器可以同時接受許多硬幣,有各種讓你眼花撩亂的中獎結果,還可以多台連線,共同累積成連線大獎。賭徒仍在尋找可以贏錢的賭法,但是長期下來,隨機數字產生器會保證賭場有 5% 的利潤。

-----廣告,請繼續往下閱讀-----

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 2
天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

3
1

文字

分享

0
3
1
我的身高有特別矮嗎?為什麼大多數女性身高都「差不多」!——《統計,讓數字說話》
天下文化_96
・2023/03/04 ・2634字 ・閱讀時間約 5 分鐘

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是常態分布?

圖 13.3 和 13.4 裡的密度曲線,同屬一族特別重要的曲線:常態曲線。圖 13.7 再呈現了兩個常態密度曲線。常態曲線都是對稱、單峰、鐘形的,尾部降得很快,所以我們應該不會看到離群值。由於常態分布是對稱的,所以平均數和中位數都落在曲線的中間位置,而這也是尖峰所在。

常態曲線還有一個特別性質:我們可以用目測方式在曲線上找到它的標準差。對大部分其他的密度曲線,沒有法子這樣做。做法是這樣的。想像你要從山頂開始滑雪,山的形狀和常態曲線一樣。起先,你從山頂出發時,往下滑的角度非常陡:

幸好,在你還沒有直直墜下之前,斜坡就變緩了,你愈往下滑出去,坡度愈平:

曲率(curvature)發生改變的地方,是在平均數兩側、各距平均數一個標準差的位置。圖 13.7 的兩條曲線上都標示出了標準差。你如果用鉛筆沿著常態曲線描,應該可以感受到曲率改變的地方,進而找出標準差。

-----廣告,請繼續往下閱讀-----

常態曲線有個特別的性質是,只要知道平均數及標準差,整條曲線就完全確定了。平均數把曲線的中心定下來,而標準差決定曲線的形狀。變動常態分布的平均數並不會改變曲線的形狀,只會改變曲線在 x 軸上的位置。但是,變動標準差卻會改變常態曲線的形狀,如圖 13.7 所示。標準差較小的分布,散布的範圍比較小,尖峰也比較陡。以下是常態曲線基本性質的總結:

常態密度曲線的特性

常態曲線(normal curve)是對稱的鐘形曲線,具備以下性質:

  • 只要給了平均數和標準差,就可以完全描述特定的常態曲線。
  • 平均數決定分布的中心,這個位置就在曲線的對稱中心。
  • 標準差決定曲線的形狀,標準差是指從平均數到平均數左側或右側的曲率變化點的距離。

為什麼常態分布在統計裡面很重要呢?首先,對於某些真實數據的分布,用常態曲線可以做很好的描述。最早將常態曲線用在數據上的是大數學家高斯(Carl Friedrich Gauss, 1777 – 1855)。

天文學家或測量員仔細重複度量同一個數量時,所得出的量測值會有小誤差,高斯就利用常態曲線來描述這些小誤差。你有時候會看到有人把常態分布叫做「高斯分布」,就是為了紀念高斯。

-----廣告,請繼續往下閱讀-----

十九世紀的大部分時間中,常態曲線曾叫做「誤差曲線」,也就因為常態曲線最早是用來描述量測誤差的分布。後來慢慢發現,有些生物學或心理學上的變數也大致符合常態分布時,「誤差曲線」這個名詞就不再使用了。1889 年,高騰(Francis Galton)率先把這些曲線稱做「常態曲線」。高騰是達爾文的表弟,他開拓了遺傳的統計研究。

常態分布的形狀:鐘形曲線

人類智慧高低的分布,是不是遵循常態分布的「鐘形曲線」?IQ 測驗的分數的確大致符合常態分布,但那是因為測驗分數是根據作答者的答案計算出來的,而計算方式原本就是以常態分布為目標所設計的。要說智慧分布遵循鐘形曲線,前提是:大家都同意 IQ 測驗分數可以直接度量人的智慧。然而許多心理學家都不認為世界上有某種人類特質,可以讓我們稱為「智慧」,並且可以用一個測驗分數度量出來。

當我們從同一母體抽取許多樣本時,諸如樣本比例(當樣本大小很大、而比例的數值中等時)及樣本平均數(當我們從相同母體取出許多樣本時)這類統計量的分布,也可以用常態曲線來描述。我們會在後面的章節進一步細談統計分布。

抽樣調查結果的誤差界限,也常常用常態曲線來算。然而,即使有許多類的數據符合常態分布,仍然有許多是不符合的,比如說,大部分的所得分布是右偏的,因而不是常態分布。非常態的數據就和不平常的人一樣,不僅常見,而且有時比常態的數據還有趣。

-----廣告,請繼續往下閱讀-----

68 – 95 – 99.7 規則

常態曲線有許多,每一個常態曲線都可以用各自的平均數和標準差來描述。所有常態曲線都有許多共同性質,特別要提的是,對常態分布來說,標準差是理所當然的量度單位。這件事實反映在下列規則當中。

68 – 95 – 99.7 規則
在任何常態分布當中,大約有 68% 的觀測值,落在距平均數一個標準差的範圍內。
95% 的觀測值,落在距平均數兩個標準差的範圍內。
99.7% 的觀測值,落在距平均數三個標準差的範圍內。
圖13.8、68–95–99.7規則。圖/《統計,讓數字說話》。

圖 13.8 說明了 68 – 95 – 99.7 規則。記住這三個數字之後,你就可以在不用一直做囉嗦計算的情況下考慮常態分布。不過還得記住,沒有哪組數據是百分之百用常態分布描述的。不管對於 SAT 分數,或者蟋蟀的身長, 68–95–99.7 規則都只是大體正確。

年輕女性的身高常態

年輕女性的身高約略是平均數 63.7 英寸、標準差 2.5 英寸的常態分布。要運用 68 – 95 – 99.7 規則,首先得畫一個常態曲線的圖。圖 13.9 說明了這個規則用在女性的身高上會是什麼情況。

任何常態分布都有一半的觀測值在平均數之上,所以年輕女性中有一半高於 63.7 英寸。

-----廣告,請繼續往下閱讀-----

任何常態分布的中間68%觀測值,會在距平均數一個標準差的範圍內。而這 68 %中的一半,即 34 %,會在平均數之上。所以有 34 %的年輕女性,身高在 63.7 英寸及 66.2 英寸之間。把身高不到 63.7 英寸的 50% 女性也加上去,可以得知總共有84%的年輕女性身高不到 66.2 英寸。所以推知超過 66.2 英寸的人占 16%。

任何常態分布的中間 95% 的值,在距平均數兩個標準差範圍內。這裡的兩個標準差是 5 英寸,所以年輕女性身高的中間 95% 是在 58.7(= 63.7 − 5)和 68.7(= 63.7 + 5)英寸之間。

另外 5% 女性的身高,就超出 58.7 到 68.7 英寸的範圍之外。因為常態分布是對稱的,這其中有一半的女性是在矮的那一頭。年輕女性中最矮的 2.5% ,身高不到 58.7 英寸(149 公分)。

任何常態分布中幾乎所有(99.7%)的值,在距平均數三個標準差的範圍內,所以幾乎所有年輕女性的身高,都在 56.2 及 71.2 英寸之間。

-----廣告,請繼續往下閱讀-----

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。