0

11
1

文字

分享

0
11
1

科學寶可夢 #76 隆隆岩:登山客的惡夢

Rock Sun
・2016/12/24 ・3241字 ・閱讀時間約 6 分鐘 ・SR值 523 ・七年級

-----廣告,請繼續往下閱讀-----

身為一名訓練師,你真的了解你的寶貝們嗎?寶可夢圖鑑讀熟了沒?

其實圖鑑告訴你的比想像中的還多喔!每個星期周末跟著 R 編一起來上一門訓練師的科學課吧!來跟大家分析這些寶可夢們是如何使用科學力來戰鬥的。

(圖/comic-vine-gamespot)
圖/comic-vine-gamespot

體重成謎、上山請小心#76 隆隆岩

雖然標題只寫著隆隆石,但這一個「小拳石–隆隆石–隆隆岩」的石頭三人組值得更多檢視。因為當我一如往常在檢視每一隻寶可夢的基本數據時,馬上遇到了一個……不~三個問題。

沒錯~又是身高體重出事了。

圖鑑中,這三隻神奇寶貝的數據如下:

%e5%9c%96%e7%89%871

我們先假設牠們都是一顆完整的球體,以方便計算牠們的體積(註1),並直接以牠們的體重除以體積來求密度。你覺得這些數據看起來很正常嗎?

-----廣告,請繼續往下閱讀-----

%e5%9c%96%e7%89%872

別說一般岩石的密度 2,515 kg/m了,我們的石頭三人組中密度最大的小拳石才只不過比水的密度一半大了一點點而已,連木材(700 kg/m3)都比不上!最悲劇的是進化之後連軟木塞的密度(240 kg/m3)都比牠們大。注意!我們這裡的單位是公斤/立方公尺(kg/m3),水的密度在這單位下是 1,000 kg/m3

20公斤小菜一疊,但你知道牠的體重有問題嗎?(圖/bulbapedia bulbagarden)
20 公斤小菜一疊,但你知道牠的體重有問題嗎?圖/bulbapedia bulbagarden

這該怎麼解釋呢?有幾個可能,一個是小拳石、隆隆岩牠們的表面是石頭構成的沒錯,但牠們骨子裡其實是由某種密度相當低的物質所組合的;二是圖鑑根本寫錯了。

我們先拿第一個假說來檢驗一下,並只以形狀最接近球形的隆隆岩作為範本。為了滿足體重 300 公斤的結果,貨真價實的岩石只能覆蓋隆隆岩全身 2 公分厚,而這一層石頭就重 250 公斤,剩下的 50 公斤則是留給半徑 0.68 公尺的球形身體。經過計算,這種情況下構成隆隆岩身體的物質密度為 37 公斤/立方公尺

就連保麗龍的密度都有 70 公斤/立方公尺喔~ 這樣子在山上橫衝直撞真的好嗎?先別說薄的可憐、毫無岩石系寶可夢尊嚴的 2 公分厚岩石身體,只要隆隆岩稍微碰撞一下,體內器官不會就這麼碎一地嗎?只好打消 300 公斤的念頭、打臉這位記錄隆隆岩的博士,用紙筆重新判定隆隆岩的體重。

-----廣告,請繼續往下閱讀-----

一樣拿隆隆岩為範例,既然身為一脈岩石系神奇寶貝的最終進化版,我想外皮至少有 20 公分厚的岩石應該算蠻合理的,而身體為剩下的半徑 50 公分圓球。這樣隆隆岩體內肌肉和岩石體積比例剛好差不多是 1:1,分別為 0.7 和 0.737 立方公尺,所以乘上密度、相加之後隆隆岩的理想體重應該要是 2553.56 公斤,他圖鑑體重的 8 倍多。(註2)

可以請這位負責的博士出面一下嗎?你的飯碗岌岌可危啊~

別擔心,你會浮起來~(圖/Amino Apps)
別擔心,你會浮起來~圖/Amino Apps

討論了一大堆之後,回歸到這次的主角隆隆岩,就算體重成謎,牠的圖鑑敘述中還是有幾個輕忽不得的點。(註3)

隆隆岩的豐功偉業之一是牠「能夠爆發出很強的能量,從這座山跳到另一座山」(銀、魂銀)

在不過度誇張的情況下,筆者從大屯火山群的地圖中找到了理想的地點:從七星山頂(1,120 公尺)飛越中湖戰備道路,跳到七股山頂(890 公尺),這兩座山頭只相差 1.2 公里,相對於從玉山跳到合歡山、從聖母峰跳到 k2 峰我想這是比較「合理」的情況了,所以這下子隆隆岩要怎麼跳呢?

-----廣告,請繼續往下閱讀-----
sgf
我畫不出冷水坑 🙁

根據拋物線運動公式,我們能夠得出如果隆隆岩要飛過這 1.2 公里的距離,牠必須以 108.4 m/s 的速度呈 45⁰ 起跳,整個過程費時 18.2 秒後,落在七股山頭,牠著地時時速為 127 m/s,釋放出 2,430,000 焦耳左右的能量。如果有一個不幸的傢伙剛好站在七股山頭看著冷水坑的美景,他會被相當於 2 輛 2 噸重的汽車以時速 115 公里同時撞上,或是 2 公斤的 TNT 炸藥爆炸的能量,而隆隆岩自己這樣還能毫髮無傷的話,那就表示牠是貨真價實的堅硬啊!(註4)

給大家參考一下,如果是你會挑哪兩座山?(圖/陽明山國家公園)
給大家參考一下,如果是你會挑哪兩座山?圖/陽明山國家公園

另一個隆隆岩的特性是牠 「時常從山上滾下來,留下一道深溝」(紅寶石、藍寶石、珍珠、終極紅寶石、始原藍寶石)

其實這是個一脈相傳的特性(註5),不管是小拳石還是隆隆石的圖鑑中都有如此記載,應該說從山上滾下來這件事對他們而言在正常不過,但牠們之中最重的隆隆岩從山上滾下來是會造成多大的影響呢?

既然會危害到人類表示隆隆岩經過的地方應該是道路,所以首先我們得知道山坡段到底該有多陡。一段道路有多陡有個時常出現的說法為「坡度」,如果你是單車愛好者一定知道。「坡度」並不是指道路的角度,而是這段道路每前進 100 公尺會上升多少公尺,再換算成百分比,跟斜率相當類似。而從台灣交通部的資料中我們知道一旦道路的坡度 >7% ,就會設下警告標示,所以我們就當隆隆岩沿著坡度 7% 的道路滾下,在水平移動 100 公尺之後撞到某個不幸的路人。

fgasg
那個是隆隆岩,不是什麼雞蛋

經過計算之後,隆隆岩帶著 0.684 m/s2 的加速度衝下道路,當牠在 4.523 秒之後到達道路尾端時,時速為 11 公里,帶著總能量 55,350 焦耳,這能量差不多是高速公路上行駛的車子的一半,人直接被撞上大概會內傷吧….好消息是時速 11 公里跟腳踏車差不多,所以要閃開應該相當容易。

-----廣告,請繼續往下閱讀-----

但別忘記這只是 7% 的路段,如果是新竹五指山的 17% 斜坡又另當別論了(註6)。如果隆隆岩從這裡滾下,在 100 公尺之後牠的時速會高達 85.5 公里,能量高達 334,400 焦耳,相當於被 3 輛 2 噸重的汽車以時速 115 公里同時撞上

大家快閃喔(圖/Giphy)
大家快閃喔!!!!圖/Giphy

而且以上的狀況都是在只有一隻隆隆岩的情況下,如果加上牠的後輩們,成群的小拳石、隆隆岩一起沿著斜坡滾下來…….在寶可夢世界登山或騎單車真的是在玩命啊!真希望牠們的實際體重在少一點,一點點就好~

 

註解:

  1. 大家我沒忘記牠們都有手,隆隆岩甚至還有腳,小拳石更有跟自己臉一樣大的拳頭,但這樣只會徒增體積而已。
  2. 這裡我們假設構成隆隆岩身體的物質跟肌肉相似,也就是密度約等於水。經過一樣的計算之後隆隆岩的理想體重應該為 909 公斤,而最不球形的小拳石我沒有計算,但可能也是 8~9 倍,想像一下小剛把小拳石抱在手上…
  3. 除了以下會提到的幾點之外,8 成的隆隆岩介紹是 「每年會退一次皮,然後身體會迅速硬化」(黃、金、火紅、綠寶石、鑽石、心金、….等)、 「連炸藥都無法對牠造成損傷」(紅、藍、水晶、鑽石、葉綠、白金、鑽石….等),從這些介紹我們可以得知兩點:隆隆岩真的是生物;牠的皮應該不只是岩石,可能是更堅固的東西,但在更堅固只會讓牠的體重更不合理。
  4. 從註 3 我們提到了炸藥對隆隆岩一點用都沒有,所以這圖鑑敘述完全合乎常理,全寶可夢世界可能只有這傢伙能這樣玩了。
  5. 小拳石的介紹幾乎圍繞著牠「長得很像一般的石頭,登山客常踩到牠,小心牠會生氣」和「用粗壯的手臂爬到山頂」,至於爬到山頂幹嘛呢?我們從隆隆石的介紹知道了「時常從山上滾下來,路上壓過任何東西,停不下來」、「慢慢走回山頂,在滾下來」,還有最有趣的介紹是「牠一天能吃下 1 噸的石頭,尤其喜歡長滿苔蘚的」,從這個介紹我們知道牠們是貨真價實的動物,要吃下 1 噸的石頭大概是要過濾苔蘚吧~這樣根本多此一舉啊,直接肯苔蘚不就好了,幹嘛沒事吃比自己體重多那麼多倍的石頭啊~ 不會消化不良嗎?大便怎麼辦?
  6. R 編隊單車一竅不通,所以有任何讀者想要補充的嗎?似乎台灣還有 27% 的坡道,但那基本上少數人才會經過吧~

參考資料:

-----廣告,請繼續往下閱讀-----
  1. Pokemon Database
  2. Wikipedia(能量數量級密度坡度
  3. CalculatorSoup
  4. Simetric 密度表
  5. 陽明山國家公園官方網站(交通系統圖)
  6. 單車 01 論壇
文章難易度
Rock Sun
64 篇文章 ・ 895 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者

0

10
1

文字

分享

0
10
1
最讓水珠站不住腳的塗料
胡中行_96
・2023/11/06 ・2183字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

不少影視作品,善用水滴暗喻流淚。離散的場面哀戚,暗夜裡風雨飄搖。雨絲打在窗上,衝擊著觀眾敏感的心。主觀鏡頭宛如主角的目光,透過玻璃望向遠方。可是任誰都無法忽略,前景那一顆在表面移動的雨滴,默默地、緩緩地滑到一半,止住了。雨過天晴,窗外的玫瑰花瓣托著晨露,晶瑩剔透,水珠怎麼飽滿,也沒溜下來。如此揪心的情緒渲染,倘若換作荷葉或鐵氟龍鍋具,效果肯定蕩然無存。稍稍傾斜,便把持不住一滴,三兩下流得乾乾淨淨,不著痕跡。於是,被騙得一把鼻涕一把淚的觀眾,拭乾雙眼,體會刻骨銘心:摩擦力大的表面,即使垂直,水滴也可能攀附;摩擦力小,則些微的斜度,就會流失水滴。[1]

圖/Gary Ellis on Unsplash

接觸線摩擦力

想留住水滴,就如同要挽回即將離去的戀人,免不了得談客觀條件。芬蘭阿爾託大學(Aalto University)和于韋斯屈萊大學(University of Jyväskylä)合作的團隊,在《自然化學》(Nature Chemistry)期刊上,介紹新創塗料時,列出下面 4 個影響水滴流動的要素:[1]

  1. 接觸線摩擦力(contact line friction):受到水滴的大小、表面張力、接觸面的形狀,以及水滴後退角(receding contact angle)與前進角(advancing contact angle)(如下圖)的差距所影響。接觸線摩擦力是這裡羅列的項目中,唯一會導致靜摩擦力(static friction),[1]阻礙移動發生的力量。[2]接下來的幾個,都是在水滴已經開始移動後,才會出現。[1]
  2. 黏滯耗散(viscous dissipation):流動的過程中,其黏性將部份動能,不可逆地轉換成熱能。[3]
  3. 氣阻(air resistance):通過氣體的時候,氣流對其表面產生的阻力。[4]
  4. 靜電力(electrostatic forces):某些物體相互摩擦後會帶電,因而有推或拉的力量。[5]當水滴在疏水性的表面上移動,引發電荷分離(charge separation),水滴通常帶正電,該表面則帶負電。靜電力對斜面上水滴下滑速度的影響,甚至可以超過重力。[6]
a. 水滴在(左)親水性和(右)疏水性表面上的情形;b. 水滴後退角(θR)與前進角(θA)的差距,會影響接觸線摩擦力。圖/參考資料 7,Figure 1(CC BY 4.0

水滴對固體表面的依附,使它處處惹人嫌。比方說,在汽車的擋風玻璃,以及先進駕駛輔助系統的鏡頭上,會妨礙視線,干擾行車安全。[7]常言道:「所有感情問題,一律建議分手。」研究團隊想利刀斬孽緣,則所開發的塗料,要能有效減少物體表面的接觸線摩擦力,使水滴在上頭「站不住腳」。過往的研究認為,關鍵是降低形貌或化學的異質性[1]

開發新塗料

研究團隊調節時間、溫度和水份等變因,讓疏水性的辛基三氯矽烷(octyltrichlorosilane),在親水性的二氧化矽(SiO2)板上,自然「生長」成自組裝單層膜(self-assembled monolayer)。[1]無論這層膜在矽板上的密度低,也就是表面大多都是二氧化矽;或者密度高,即辛基三氯矽烷佔多數,都可以視為異質性低的情形。反之,若表面密度中等,則異質性高。理論上,異質性低對削弱接觸線摩擦力有幫助,但是研究團隊認為塗料密度低的時候,表面親水性過高,效果可能不彰。[1, 8]

-----廣告,請繼續往下閱讀-----

然而實驗結果有些出乎意料:當這層膜在矽板上的表面密度較低,水竟然自由地於塗料的分子間流動,很容易滴落;而表面密度高時,水則停留在塗料上面,也可以輕易滑下來。唯有介於兩者之間,水才會緊巴著矽板。[1, 8]

表面塗料低、中和高的密度,造成不同的異質性(heterogeneity)與摩擦力(friction)。圖/參考資料 1,Figure 1a(CC BY 4.0

防潑水塗料的用途

芬蘭研究團隊的成品,應該是目前全世界最滑溜的塗料,防潑水的能力超級好。[8]麻煩的是厚度太薄,耐用性有待提升。將來如果成功改善,有望廣泛運用於除冰、抗霧、暖氣管線等諸多方面。[1, 8]

表面塗料密度低,斜度漸增,攝影機跟著轉動。影/參考資料 1,Supplementary Video 2(CC BY 4.0
表面塗料密度中等,斜度漸增,攝影機跟著轉動。影/參考資料 1,Supplementary Video 3(CC BY 4.0
表面塗料密度高,斜度漸增,攝影機跟著轉動。影/參考資料 1,Supplementary Video 4(CC BY 4.0

參考資料

  1. Lepikko S, Jaques YM, Junaid M, et al. (2023) ‘Droplet slipperiness despite surface heterogeneity at molecular scale’. Nature Chemistry.
  2. Müser MH. (2008) ‘How static is static friction?’. Proceedings of the National Academy of Sciences, 105(36):13187-8.
  3. Malik MY, Hussain A, Salahuddin T, et al. (2016) ‘Effects of viscous dissipation on MHD boundary layer flow of Sisko fluid over a stretching cylinder’. AIP Advances, 6, 035009.
  4. Oxford University Press. ‘Air Resistance’. Oxford Reference. (Accessed on 27 OCT 2023)
  5. Electrostatics: A non-contact force’. (31 DEC 2018) Department of Education, Victoria State Government, Australia.
  6. Díaz D, Li X, Bista P, et al. (2023) ‘Self-generated electrostatic forces of drops rebounding from hydrophobic surfaces’. Physics of Fluids, 35(1):017111.
  7. Hodgson G, Passmore M, Skarysz M, et al. (2021) ‘Contact angle measurements for automotive exterior water management’. Experiments in Fluids, 62, 119.
  8. Researchers create the most water-repellent surface ever’. (23 OCT 2023) Aalto University, Finland.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

6
2

文字

分享

0
6
2
「軌跡體」重複滾出任何的特定曲線
胡中行_96
・2023/10/26 ・2128字 ・閱讀時間約 4 分鐘

要一顆黏土球順著緩坡直線滾下,輕而易舉!若是畫一條斜線,令球換個方向前進,就稍微困難一點。為了怕走偏,我們使出力氣,壓著它滾動,於是把黏土球推成柱狀。現在它有左、右兩頭和一個曲面。接下來滾動的時候,它總是曲面接觸地面,直直向前。不過,如果先前施力不均,黏土球變成一邊大一邊小,得到的形狀就可能類似圓錐體,或是接近紙杯般圓錐台體的模樣。這個時候滾出來的路線,會是曲線,而非直線。[1]如果想要滾得更華麗,形狀又該長怎樣呢?

滾動的oloid。影/Eleni999 on YouTube

形狀與軌跡

假設剛才這樣滾來滾去,各位讀者沒暈的話,還可以看看過去科學家設計出來的,各種奇形怪狀的固體,例如:oloid、sphericon、platonicon 和 two-circle roller 等。它們雖然形狀迥異,但是都能滾出特定重複的軌跡。[2]比方說,oloid是兩個呈直角,分別插入一半,結合在一起的等大圓盤,外面包覆平滑的曲面(如圖)。其中一個圓盤的邊緣,會通過另一個的圓心。[3, 4]數學家 Paul Schatz 於 1929 年首次描述 oloid 的特質:曲面的形狀會在它滾動時,順勢呈現出來;而質量中心的高度,雖然有所起伏,但是變化不大,所以滾起來還算平順。[3]換句話說,在滾動的過程中,oloid 宛如繞著軸心旋轉,其曲面的每個地方,幾乎都會接觸地面,於是畫出來的軌跡,就是表面展開的模樣。[3, 5]聽起來很酷吧?有沒有超想做一個來當玩具?(模板)(教學)不過,任職於南韓基礎科學研究院(Institute for Basic Science)的 Yaroslav Sobolev 等科學家,覺得這樣還不夠看。[2]

Oloid 結構示意圖。圖/Dr. S. Wetzel on Wikimedia Commons(CC BY-SA 3.0
Oloid 的外型、結構和表面展開圖。圖/參考資料 4,Figure 1, 2, and 3(CC BY 3.0

軌跡體

以前那些能滾出漂亮波浪的造型,其實已經很厲害了。然而研究團隊懷抱更宏大的野心,決定提高挑戰性:他們想開發一個程式,來演算各種形狀的固體。讓這些固體在從斜坡滾下去的時候,理論上可以依循任何特定的軌跡,而且無限重複。以此程式設計,再 3D 列印出來的新東西,被稱為「軌跡體」(trajectoid)。最後在中心塞入 1 顆鋼珠,加重較容易滾動,然後實測它們的路徑是否順暢。[2]

研究團隊在模擬的平面上,畫了一條歪七扭八,毫無規則可言的短線。將此短線複製貼上幾次,連成一條非常難看,還永無止盡繼續醜下去的長線。再把平面的一邊稍微提高,製造出坡度,方便之後在上面滾東西。這就是最終要滾的目標醜線,但是萬丈高樓平地起:先從簡單的圓柱體於水平面上滾直線開始,之後才調整形狀、方向和坡度等變因。[2]圓柱體質量中心相對於平面的高度,是它始終如一的半徑,所以能穩定前行;[1, 2]而軌跡體的質量中心,是比3D列印材質沉重許多的鋼珠,因而不太受外型設計影響。[2]

-----廣告,請繼續往下閱讀-----

在塑形的時候,要注意諸多條件,比方說:軌跡體每次滾完短線,得毫無偏頗地回歸原始方向,準備再滾下一段完全相同的短線。想像軌跡體與平面接觸的地方,若會壓出紋路,那麼滾完第一段短線後,這條紋路的頭尾必要相接,才能滾得出下一段同樣的短線。此時,紋路在軌跡體上,區隔出來的兩邊表面積必須相等,各佔 1/2。要是紋路的長度,不夠繞軌跡體一周,就重複延長一倍,好令頭尾互碰。在這個情況下,需要特別控制的表面積只有 1/4,使設計更為容易。另外,軌跡體的尺寸,絕對不能做得太大。不然會像大卡車難走九彎十八拐,三兩下就前進某個距離,卻畫不出其中細微的蜿蜒。[1]

經過多番嘗試之後,研究團隊終於成功了。他們不僅於 2023 年 8 月的《自然》(Nature)期刊發表論文,[2]在 YouTube 釋出簡介影片,[1, 6]還開放程式原始碼,給想擁有軌跡體的人自行 3D 列印。[2, 5]有興趣的讀者,趕快來試試吧!

軌跡體實測。影/參考資料 6

  

參考資料

  1. NCCR SwissMAP. (10 AUG 2023) ‘Solid-body trajectoids shaped to roll along desired pathways’. YouTube.
  2. Sobolve Y, Dong R, Tlusty T, et al. (2023) ‘Solid-body trajectoids shaped to roll along desired pathways’. Nature, 620, 310–315.
  3. Hirsch D, Seaton KA. (2020) ‘The polycons: the sphericon (or tetracon) has found its family’. Journal of Mathematics and the Arts, 14(4):345-359.
  4. Coope MB. (2019) ‘Manufacturing of the Oloid. CAD/CAM Workflow’. Journal of Physics: Conference Series, 1425(1):012106.
  5. Orf D. (20 OCT 2023) ‘Scientists Figured Out How to Design Dice to Roll Any Way You Want’. Popular Mechanics.
  6. Nature Video. (10 AUG 2023) ‘These shapes roll in peculiar ways thanks to new mathematics’. YouTube.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

2

11
4

文字

分享

2
11
4
小鳥為什麼不走路要用彈跳的?——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/25 ・1493字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

彈跳的鳥類

用雙腳移動時,只有鳥類會使用而人類不會用的動作,那就是彈跳。這種名為彈跳的運動既困難又麻煩,為什麼鳥要這樣子彈跳呢?其實到現在我們還無從得知。

如同前述,彈跳是兩腳幾乎同時一起跳的運動方式。我們常見的鳥,像是麻雀和日菲繡眼這種小鳥就是用彈跳的(圖一),而烏鴉在急的時候也會彈跳。

麻雀是兩腳並用一起跳,但也有兩腳稍微錯開來彈跳的物種。例如巨嘴鴉之類的鳥類身體會微微傾斜,左右腳些微錯開,用「噠噠、噠噠」這樣的節奏來彈跳。這兩種本質上的差異目前還不清楚,不如說彈跳跟跑步的差異也還不清楚,所以步行研究者目前也是束手無策。

圖一、麻雀的彈跳,左右腳微微錯開著地(照片 ③ 中偏差大約是 1/120 秒)

歐亞喜鵲這種鳥同時會彈跳也會跑步,但比較兩者的研究顯示,在跑步與彈跳中,腳的運動方式跟肌肉動作幾乎一樣。彈跳跟跑步一樣,是高速移動的方式,活用肌腱像是彈簧的功能來轉換動能跟彈性位能。然後,兩種的差別只有「雙腳交互動作」或是「幾乎一起動作」而已。

-----廣告,請繼續往下閱讀-----

彈跳和跑步除了腳動的時機以外沒有什麼不同,那為什麼只有一部分的鳥是用彈跳的呢?

這個問題,很遺憾現在的科學還沒有解開,現階段一致贊同的只有:一般認為會彈跳的鳥是相對小型的種類,以及常待樹上的種類。看了許多鳥以後,會發現確實小型的鳥很常彈跳。另外,喜歡待在樹上的鳥則是常用兩腳一起從一根樹枝跳到另一根樹枝上,所以在地上也同樣會用兩腳一起跳躍,這樣說來可能就會覺得可以理解。

但是在樹上彈跳,在地上也還是可以步行不是嗎?不這樣區分移動方式,應該是因為有什麼身體構造或生理學上的理由才對,但這問題至今仍然是謎。

-----廣告,請繼續往下閱讀-----
圖/giphy

另一方面,小型的鳥喜歡彈跳的理由,如果用「彈跳適合用來高速移動」,可以解釋一部分的疑問。比起小型鳥,大型鳥的步幅更大,一般步行速度也比較快。如果小型鳥想跟大型鳥用同樣速度移動的話,就需要走得很快。像是人類,也很常在路上看到小孩要小跑步拚命跟上大人的走路速度。跟那個狀況相同,小型鳥有使用相對身體尺寸的高速進行移動的必要性。

想像看看會啄食掉落在地面的種子的鴿子和麻雀,如果用同樣密度灑餌,鴿子只要數步就能抵達下一個餌也說不定,但小型的麻雀需要移動相對更遠的距離才能拿到餌(圖二)。這樣一來就需要比較急著移動,這麼解釋或許也很合理。

圖二、假設在距離鴿子兩個身體遠的地方放餌,對體型較小的麻雀來說,同距離就需要移動六個身體的長度,不移動更遠的距離就沒辦法拿到餌。

但是彈跳和跑步如果是同樣的運動,那為什麼不能用跑的呢?「小型鳥比較需要快速移動」這種說明,很遺憾地似乎不能完全解釋為什麼要選擇彈跳。

但這麼簡單的問題,21世紀的科學還無法解釋,真是令人驚訝。

-----廣告,請繼續往下閱讀-----

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

所有討論 2
晨星出版
12 篇文章 ・ 3 位粉絲