0

0
0

文字

分享

0
0
0

黑腹浮鷗在魚塭區集結出海

賴鵬智
・2012/01/17 ・1420字 ・閱讀時間約 2 分鐘 ・SR值 482 ・五年級

-----廣告,請繼續往下閱讀-----

黑腹浮鷗以往被稱為黑腹燕鷗,但分類上牠屬於鷗科浮鷗屬,不是燕鷗屬,所以稱「黑腹浮鷗」才符合分類認知。

數年來每逢冬季就有大量的黑腹浮鷗來台度冬,牠們常選擇在台南市北門區(2010年12月25日前稱台南縣北門鄉)的外海蚵架過夜,在黃昏時會上演從各白天覓食區前來集結飛舞的壯觀場面,是台南北門冬季熱門的賞鳥活動。不過壯觀場面並非每年都有,有時數量很少,2011年冬天甚至只來一小段時間後,就不在北門鹽田上空集結,改到布袋外海夜棲。(請參考自由時報20111130報導:北門數萬隻黑腹燕鷗 一夕「搬家」

2011年1月4日黃昏時刻,我在嘉義縣布袋鎮巧遇一串串黑腹浮鷗列隊飛過頭頂,那正是要回到海邊棲息過夜的集結飛行。尋得來源,是一片廣大的魚塭區。有的在魚塭水面上飛躍點食,有的在魚塭上空盤旋集結,最後一群群編隊往海邊方向飛去,煞是熱鬧!

此影片可全螢幕觀賞,如頻寬夠可在放映後點選更高畫素觀看,效果更佳。錄影器材:Panasonic HDC-HS700

-----廣告,請繼續往下閱讀-----

2011年12月15日,再到同樣地方攝影記錄:

快黃昏時,黑腹浮鷗在魚塭躍動。

在魚塭上空集結編隊
一波波飛往海邊過夜
飛越布袋鎮市區

您可點Flickr網路像簿「黑腹浮鷗(黑腹燕鷗)」看更多相關照片。

黑腹浮鷗在台灣是普遍過境鳥與部分冬候鳥,在河口、濕地或魚塭地帶幾乎全年可見,但以春秋過境期可見數量較多,夏季則少很多。

黑腹浮鷗食物主要是水生昆蟲、小魚、螺貝類、蝌蚪、青蛙等。在水域上空飛行覓食,一發現獵物會短暫定點振翅後俯衝入水捕食,有時則是淺啄水面的小生物。

-----廣告,請繼續往下閱讀-----

英文名:Whiskered Tern

Kingdom Animalia  動物界
 Phylum Chordata  脊索動物門
 Class Aves  鳥綱
 Order Ciconiiformes  鸛形目
 Family Laridae  鷗科
 Genus Chlidonias  浮鷗屬
  Chlidonias hybrida hybrida (Pallas, 1811) 黑腹浮鷗(黑腹燕鷗)

原發表於賴鵬智的野FUN特區

文章難易度
賴鵬智
45 篇文章 ・ 0 位粉絲
野FUN生態實業公司總經理

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
1

文字

分享

0
0
1
虱目魚、吳郭魚、石斑魚,快來認識帶來餐桌美食的水產養殖!
Suzuki
・2019/11/27 ・4263字 ・閱讀時間約 8 分鐘 ・SR值 522 ・七年級

本文由 國立海洋生物博物館 委託,泛科學企劃執行

愛吃海鮮存在台灣人的 DNA 中,無論是巷口虱目魚粥的風味,或是夜市裡的炸蚵嗲攤都是許多人的心頭好,想著想著,乾脆週末揪一團去熱炒店大啖肥嫩的龍虎斑好了!

你知道嗎?這些餐桌上的海鮮佳餚都是來自水產養殖!多數人對水產養殖的印象,好像只停留在魚塭池和打水馬達,到底養殖漁業在養什麼?養魚有什麼眉眉角角,泛科學專訪台灣大學漁科所王永松老師來為大家解答。

台灣養殖漁業產值佔漁業總產值四成

台灣人愛吃海鮮其來有自,台灣位在全球最大的大陸棚邊緣,又有黑潮通過,所以漁獲量多、魚種多樣性也高。除了遠洋近海魚業外,養殖漁業也相當發達。去(2018)年台灣水產養殖產量高達 28.3 公噸,產值高達369 億元,佔台灣漁業總產值的四成註1

-----廣告,請繼續往下閱讀-----

資料來源:2018 年漁業署漁業統計年報;製表:簡鈺璇

水產養殖包含觀賞魚養殖及食用魚養殖,本文主要討論食用面的水產養殖。食用魚養殖根據養殖的水質和地區分為:淡水魚塭、鹹水魚塭及海面養殖三大類。

淡水養殖與鹹水養殖都是在內陸設置魚塭,常見淡水養殖有鰻魚、泰國蝦、吳郭魚;鹹水養殖包括石斑魚、虱目魚。海面養殖則是將魚塭設於海上,像是箱網養殖或淺海養殖,牡蠣、文蛤和海鱺都屬此類。

台灣魚塭主要分布在雲林、嘉義和台南,不同魚種的養殖方式不同,以下介紹台灣常見的養殖魚種。

-----廣告,請繼續往下閱讀-----

台南七股魚塭大多以淺坪式魚塭為主,養殖種類包括:文蛤、草蝦及虱目魚。圖/wikipedia

台灣人最愛吃的魚——虱目魚、吳郭魚

虱目魚的魚塭面積是全台之最,吳郭魚則是產量最大的魚種,兩種魚種產量相加約有 11.6 萬公噸,佔養殖魚產量的四成左右。王永松表示,吳郭魚和虱目魚屬於廣鹽類魚類,可以適應淡水和海水環境,且不容易生病,相當好養殖。

虱目魚的養殖的紀錄至少可追溯至鄭成功治台時期。民間流傳許多「鄭成功與虱目魚」的逸聞,如據傳鄭成功來台吃到虱目魚覺得好吃,就問漁民說:「什麼魚?」當地人以為鄭成功替虱目魚命名,就把它叫做「虱目魚」(什麼魚的諧音)。王永松提到,當時漁民就會把魚苗養在魚塭中,顯見虱目魚的養殖歷史悠久。

不過,早期養殖技術不佳得撈野生魚苗來養,魚苗的來源受制於野生族群因此十分不穩定。一直到 1979 年才發展人工繁殖方式,以賀爾蒙催熟虱目魚,讓魚提早性成熟,現行則改以飼料調配讓魚自然產卵,這才讓虱目魚成功走上穩定量產之路註2

-----廣告,請繼續往下閱讀-----

虱目魚是台灣常見的魚種。圖/wikipedia

相較於虱目魚需要五、六歲才能性成熟,需特別培育種魚育種,吳郭魚在四個月就能達到性成熟,可以一直生一直生,很快地池子就會塞滿魚。此時,養殖業者又頭痛了。王永松表示,母魚產卵後成長速度就變慢,加上池子內魚太多,大家營養不良,價格就不好。

因此,吳郭魚必須要「公母」分開養殖,且以體型較大的公魚作為主要的經濟魚種,母魚僅是交配的種魚。王永松提到,常見方式有以超雄性(YY)的吳郭魚和母魚配種,生出來的就都是公魚,抑或是在魚苗時期以含有激素的飼料控制魚的性徵,確保魚苗皆呈現雄性的性狀。

吳郭魚是台灣常見魚種。圖/農委會

-----廣告,請繼續往下閱讀-----

然而,吳郭魚土味重不受大家歡迎,王永松表示,部分業者會讓淡水養殖的吳郭魚販賣前「過海水」兩三天、去土味。之後養殖業者改良飼養方式,以乾淨海水養殖吳郭魚,鹹魚翻身變「潮鯛」,肉質鮮美可作為生魚片,成功進軍日本市場註3

好料上菜 產值最高的魚種——石斑魚

每當餐桌上出現清蒸石斑,就知道這場宴客不簡單,不是婚宴就是重要的家庭聚會。常見的石斑魚種類有青斑(點帶石斑魚)、龍膽石斑(鞍帶石斑魚),及老虎斑和龍膽石斑混種的「龍虎斑」,皆以鹹水魚塭養殖為主。

石斑養殖皆以海水養殖,而這是石斑魚養殖池。圖片提供/王永松

魚種不同,價格也落差很大。根據去年漁業署資料,青斑池邊均價一公斤大約 240 元左右,龍膽石斑則是 375 元註4。隨著中盤商、零售商到餐廳,石斑魚的價格節節升高,到餐桌上一尾膠質肥厚的 90 公分龍膽石斑,喊價一公斤 800 元也是有可能的。

-----廣告,請繼續往下閱讀-----

「石斑魚價格高昂,除了肉質鮮美外,最主要是牠很難養,又要養很久。」王永松表示,石斑魚苗從孵化到長成 2 吋苗這段期間,容易被神經壞死病毒和虹彩病毒感染,一旦養殖池環境不好、魚免疫力降低,病毒就易好發,死亡率高達八成以上。

為了分散風險,王永松以龍膽石斑為例,說明石斑養殖業者發展出「三階段」的養殖型態:

  1. 魚苗孵育場:受精卵至孵化為白身苗,大約 48 天,一尾約 8-16 元。
  2. 中間育成場:白身苗養至2吋魚苗,大約 48 天,一尾約 32 元。
  3. 成魚養殖場:2 吋魚苗至成魚至運銷端,養殖期 2-3 年,一公斤 375 元。

(上述價格為池邊交易價)

圖為石斑魚孵出三天的樣貌,全身透明狀尚未染色,又稱為白身苗(圖片提供/王永松)。

-----廣告,請繼續往下閱讀-----

王永松表示,養魚賺頭大,風險也高。舉例來說,面臨颱風來襲,養殖業者就得做好準備,備好發電機、蓋好帆布,稍有不慎就可能百萬的心血付之一炬。因為數量太少無人收購。許多漁民看到價格差,甚至寧可放水流,重養一批。除此之外,養殖的日常也十分辛苦,王永松開玩笑表示,養殖業者曾歡迎他去養魚,「不過四點就要起床餵魚,一天要餵五餐!」可見養殖業並不輕鬆呢!

石斑魚是肉食性的兇猛魚種,易有彼此相食的現象,一殘殺起來,池裡的魚就更少了,所以養石斑魚就要讓牠們吃飽。

圖為龍虎斑,牠集合「老虎斑」會吃、肉細緻,以及「龍膽石斑」體型大隻、肉膠質多的優點,是現行很夯的養殖魚種(圖片提供/王永松)。

解不開的秘密  台灣努力30年仍無法人工繁殖鰻魚

儘管石斑魚產值這麼高,那麼養鰻魚產值不就更高嗎?在日本一份蒲燒鰻魚飯 500 元起跳呢!王永松表示,鰻魚價格高是因為至今全世界還沒有找到人工繁殖鰻魚苗的方式,所以目前飼養的鰻魚,都是在出海口抓準備進入河川長大的玻璃鰻(鰻線),來作為鰻苗來養殖。

-----廣告,請繼續往下閱讀-----

當玻璃鰻無法回到河川長大,再返回大海產卵,漸漸地鰻魚苗就會減少,價格也就提高了,目前常用來作為蒲燒鰻的日本鰻,已被國際自然保護聯盟(IUCN)評為瀕危物種。

為什麼鰻魚生殖秘密難以被破解呢?為什麼日本鰻難以完全人工養殖呢?

王永松表示,以日本鰻來說,牠一生只會產一次卵、一次精子,但難以掌握牠「性腺發育」的時機,過往從未有人看過一隻抱卵的野生母鰻魚,我們僅推知牠在台灣、日本或韓國河中長大後,會再回到太平洋中產卵,而現行人工飼養的鰻魚若不使用特殊的方法催熟,牠一輩子都不會性腺成熟。

人工繁殖鰻魚抱卵時,母鰻魚肚子膨脹很大,一次可產出100-600萬顆卵,鰻魚產卵、產精後就會死亡(圖片拍攝/簡鈺璇)。

王永松提到,早在 20、30 年前就有用「鮭魚腦下垂體」混合「促進性腺激素」注射催熟日本鰻,確實讓鰻魚性成熟,並成功孵出不到 5 釐米的透明小鰻魚,可是大都在 6、7 天就夭折了!

鮭魚腦下垂體常用於鰻魚催熟(圖片拍攝/簡鈺璇)。

人工孵化 42 小時的鰻魚,不到 5 釐米、魚身相當纖細,得用顯微鏡才看得清楚(圖片提供/王永松)

至今學界都還在努力解開難題,而台灣也努力了快 30 年,今年日本宣佈已成功將鰻卵成功養殖成鰻註五。對此,王永松卻保守地認為,日本應該不算完全成功,一是還不知道養殖方式,二則是鰻魚一次可產卵 100 萬顆至 600 萬左右,若只有幾隻可以長至成熟的鰻魚,也許有些是機率的問題。

鰻魚吃什麼、何時變態、喜歡在什麼環境產卵,還有好多事情是未知的。王永松表示,在未解開鰻魚之謎以前,保育工作要先做好。

養殖業者與科學家在養殖上投注許多心力,為了就是保護自然生態,避免野生魚源枯竭,破壞生態平衡,當我們有了這個省思後,就不必執著於吃野生現撈了,因為養的「嘛足 tshinn」(台語「很新鮮」的讀音)啊!!

參考資料

  1. 2018年漁業署漁業統計年報
  2. 水產試驗所特刊第9號
  3. 漁業署《漁業推廣》雜誌第284期
  4. 2018.10.29漁業署新聞稿
  5. 財經新報〈日本研究機構實現鰻魚完全人工養殖,朝向能量產的「完全飼養」目標邁進

「水產養殖實境探索」特展 10 月 25 日海生館登場

教育部技職司與國立社教館所辦理的職業試探體驗計畫,由國立屏東科技大學與國立海洋生物博物館合作的「水產養殖實境探索」特展,將於 10 月 25 日在海生館世界水域館 3 樓盛大開幕,藉由特展中介紹水產養殖業的各項面貌與科技化經營模式,吸引更多學生投入相關職涯產業。

台灣為生物多樣且水產養殖種類繁多的海島國家,根據政府統計資料顯示水產養殖從業人口逐年老化,年輕人投入此產業相當有限。目前國內大多數人對於水產養殖相關工作,停留於做苦力與低階工作的印象,事實上隨著國人對於環境保育與食物衛生安全的注重、生活水準提升,與產業科技進步,水產養殖生產模式逐步改變為精緻性且為技術導向,並著重管理的新興產業。

對此,本次特展透過 360 度 VR 虛擬實境探索的方式,幫助民眾了解台灣水產養殖的在地特色與養殖方式,以水產養殖相關的互動遊戲,了解養殖達人在實際操作漁具時的小技巧與藉由大自然結合產出的知識,並在現場以 IOT 物聯網科技的方式,執行養殖場的管理與操作,讓養殖變得更加便利與精簡,以翻轉社會大眾對於水產養殖產業的刻板印象。

「水產養殖實境探索」展期為 108 年 10 月 25 日至 110 年 12 月 19 日,歡迎蒞臨海生館世界水域館3樓,以實境方式探索水產養殖產業。

本文由 「國立海洋生物博物館」委託,泛科學企劃執行

Suzuki
18 篇文章 ・ 0 位粉絲
超純社會組學生,對未知的一切感到好奇,意外掉入科技與科學領域,希望在猛點頭汲取知識的同時,也能將箇中妙趣分享給大家。

0

0
0

文字

分享

0
0
0
長腳鷸避風、覓食、休息
賴鵬智
・2012/02/09 ・964字 ・閱讀時間約 2 分鐘 ・SR值 475 ・五年級

-----廣告,請繼續往下閱讀-----

長腳鷸在台灣是普遍冬候鳥及不普遍的留鳥,以前被稱為「高蹺鴴」(反嘴鴴科),分類上現在改為長腳鷸科,若還是稱為高蹺鴴,容易被誤認為是屬於鴴科的鳥,所以還是改稱「長腳鷸」比較妥當。

影像是20111215攝於嘉義縣東石鄉布袋鎮路邊水塘,長腳鷸在此避風、覓食、休息。影片後段一群長腳鷸在逆光魚塭歇息,其中夾雜了幾隻黑尾鷸(鷸科)。

英文名:Black-winged Stilt

Phylum Chordata  脊索動物門

Class Aves  鳥綱

-----廣告,請繼續往下閱讀-----

Order Ciconiiformes  鸛形目 

 Family Recurvirostridae  長腳鷸科 

Genus Himantopus  長腳鷸屬 

 Himantopus himantopus himantopus (Linnaeus, 1758) 長腳鷸(高蹺鴴;黑翅長腳鷸)

-----廣告,請繼續往下閱讀-----

影片: 

此影片可全螢幕觀賞,如頻寬夠可在放映後點選更高畫素觀看,效果更佳。錄影器材:Canon EOS 7D+EF 600×1.5

此影片可全螢幕觀賞,如頻寬夠可在放映後點選更高畫素觀看,效果更佳。錄影器材:Panasonic HDC-HS700

照片:

-----廣告,請繼續往下閱讀-----

您可點Flickr網路像簿「長腳鷸」看更多相關照片。

原文發表於賴鵬智的野FUN特區