Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

為甚麼物理學家需要讀歷史?只做研究不行嗎?—《物理雙月刊》

物理雙月刊_96
・2016/12/13 ・3933字 ・閱讀時間約 8 分鐘 ・SR值 580 ・九年級

文/常雲惠|清華大學歷史研究所碩士班,科技史組肄業,紐西蘭懷卡托大學(University of Waikato)運動休閒研究所學士後。紐西蘭公務員,目前定居紐西蘭,為科普讀物譯者

本文是由任教於紐約大學加勒廷自主學習學院的(New York University’s Gallatin School of Individualized Study)科學史教授史丹利(Matt Stanley)所著。並發表於今年七月的《今日物理》(Physics Today)期刊上。

史丹利教授在文章一開始便指出,物理學家的養成教育不夠完整。而缺乏的這個部分,正是個毫無章法,且讓每件事都變得困難的區塊。亦即,個人與社群之間的溝通,特別是需要釐清誤解、說服對手,甚至與不願配合的盟友打交道的能力。由於物理學者們缺乏這方面的認識,以至於經常忽略「人事問題」對於科學研究的影響力。因而,他們經常得透過艱辛的過程,才逐漸體會到這個層面的重要性。其實,他們原是可以透過學習而認識這個偕同合作的真實世界,而非那個理想化、遺世而獨立的虛幻世界。

read
可以透過學習而認識這個偕同合作的真實世界,而非那個理想化、遺世而獨立的虛幻世界。圖 / 物理雙月刊提供

接著,史丹利教授建言,歷史「可以幫助」改善這個狀態。他指出,科學史這個專門研究人與科學的學門,在面對科研的實務層面時,可以提供物理學家更多樣的思考工具,來彌補這個區塊的不足。

-----廣告,請繼續往下閱讀-----

接下來,史丹利教授分就七個方面,深入說明科學史研究對科學進展的重要性:

%e7%9c%bc%e9%8f%a1
史丹利教授建言,歷史「可以幫助」改善這個狀態。圖 / 物理雙月刊提供

一、物理研究是一項社會集體努力的活動

研究科學的是人。物理學家跟一般人一樣有個人好惡;他們會捍衛家園,也有政治立場,哲學偏好,乃至於個人情感。因此,學習科學史除了有助於了解物理學家,並非只是一群不同於常人,擁有理性思考的天才之外,也令物理學變得更平易近人,貼近日常生活經驗。

初入門的物理學生,透過科學史得以管窺物理學家的內心世界,才不至於將物理學者看成計算機器,而逐漸失去學習物理的興致與動機。再者,希望能夠一窺堂奧的物理初學者,更可以透過科學史而進一步學習與了解物理學家及其社群之間的互動以及溝通的重要性。

二、物理的本質很少是一目了然的

自然界很少給出一目了然的答案。教科書所呈現出來不證自明的實驗,以及最多只需幾頁數學式便可證明的理論,事實上都是千錘百練後的結果。科學家們之所以將答案背後的繁瑣工作加以淡化,只因為他們認為,簡潔比複雜性更具說服力。

-----廣告,請繼續往下閱讀-----

史丹利教授以「密立根油滴實驗」為例,其實驗室繁瑣的數據記錄本,就是最好的佐證。科學研究的實務工作,是繁瑣而複雜的,絕非像教科書所呈現的「事後諸葛」那樣,只是簡潔的邏輯推理。因此,擁有物理學史的素養,莘莘學子們更能夠理解,科學問題的解決,往往不是單一途徑,在不同時空背景之下,各個理論會呈現出不同的重要性,也會影響物理社群的取捨與偏好。

6211600207_b889d09219_o
科學研究的實務工作,是繁瑣而複雜的,絕非像教科書所呈現的「事後諸葛」那樣,只是簡潔的邏輯推理。圖 / By Suzette – www.suzette.nu @ flickr, CC BY 2.0

量子電動力學的發展史,是另一個絕佳的例子。戴森(Freeman Dyson)向大家證明了,費曼(Richard Feynman)、施溫格(Julian Schwinger)和朝永振一郎(Sin-itito Tomonaga)三人的重整化方法,都是等效的,沒有人是錯的,只是需要換個框架,重新來審視他們的思考方法而已。以這三人合得 1965 年的諾貝爾獎為標誌,量子電動力學算是正式有了基礎,解決了從 1920 年代狄拉克(Paul Dirac)以來,經歷 1930、1940 年代的一些困難,時至今日,量子電動力學已經成了量子場論研究的堅實基礎。

三、物理研究需要各式各樣的人

創造力,可以把錯綜複雜的自然現象,轉換成優美的物理觀念。然而,我們從來無法事先得知,需要有怎樣詭異(或天才)的想法,才能幫助我們釐清某些讓人困惑的觀察或實驗數據。

以熱力學第二定律為例,克爾文爵士(Lord Kelvin)並不是坐在書桌前,憑空想像出這個理論的。他不僅帶著對廢棄物處理與工程效率的痴迷,也帶著他在宗教上的信仰背景,例如:聖經的詩篇 102,「天地都要如外衣漸漸舊了」的詩句,啟發了他對宇宙熱寂(heat death)的研究,令他採取不同於德國物理學家的途徑,而成為熱力學第二定律的主要奠基者之一。

-----廣告,請繼續往下閱讀-----

此外,科學史也告訴我們,許多解決物理問題的關鍵想法,經常來自風馬牛不相及的領域或學門。例如,馬克斯威爾 (James Clerk Maxwell)所提出的「統計變異」觀念,是從歷史學家身上得到的靈感。而粒子物理學者阿爾瓦雷茲 (Luis Alvarez)運用他在同位素研究的專長,幫助兒子找到恐龍滅絕的因素,也是彰顯了跨學科有益於科學發展的例證。

此外,他又指出打破族裔,文化傳統認定的重要性。例如,被排拒在男性白人科學社群之外,卻發明核乳膠技術的女性猶太科學家布勞 (Marietta Blau),以及因出身為猶太族裔,而無法進哥倫比亞大學就讀的物理學者費曼等,許多非白人物理學家,都對科學發展做出巨大貢獻。因此,知識與制度的多樣性,對於促進科學發展至關緊要,在物理發展史上,類似的例證,不勝枚舉。

marietta_blau
發明核乳膠技術的女性猶太科學家布勞。圖 / By Source, Fair use, wikimedia commons

四、物理的研究是進行式而非完成式

觀念、想法與詮釋的多樣性,提醒著我們,物理是處於「進行式」而「完成式」。所有的科學知識,都只是「暫時的」。對於某個問題,我們永遠可以找到新的方法或觀點,來試著解決它。而在這個過程中,我們也永遠可以從中學到一些新的東西。在物理學史上,已有太多的例子,讓我們無法宣稱,我們目前已知的理論是究竟的、是永恆的。

有人或許會擔心,承認科學的這種「不確定」性,會讓它變得較不重要,或失去對大眾的吸引力。然而,事實上是完全相反的。試著想像有兩位工人,一位正在蓋大教堂,一位則是在快要完成的一面牆上,砌上最後的幾塊磚,哪一位的工作會比較吸引人呢?正因為物理科學的研究尚未完整,而且還有很大的發展空間,這反倒鼓舞著年輕學子與研究學者的豪情壯志與好奇心。

-----廣告,請繼續往下閱讀-----

因此,若物理教學或科學教科書,可以更確切地反映出科學研究的真實面貌,包括對現有理論的質疑或不確定性,或是教導學生如何根據科學證據來思考,而非著重在羅列已知的理論與學說。畢竟,能鼓動人心去追求的,是發掘未知,除了知道「有什麼」(What)之外,我們更想知道的是「還有什麼」(What else?)以及「如果這樣,會變成怎樣?」(What if?)

五、物理的概念並非一成不變

我們一般人多半會假設,當下的狀態是一種常態。然而,歷史卻清楚地呈現出過去與現在的不同。如果我們接受現在的物理與過去的不同,那麼我們就不難接受,未來的物理,必定會不同於現在的面貌。

透過歷史訓練,個人在看待既有的思維時,更能夠跳脫框架思考,而非只是理所當然地接受現狀。而且透過研讀史料的啟發,新進科學家或可發現有待開發的新領域,或重新研究因為某種原因而遭到棄置的冷門領域。在其眾多舉證當中,年輕時任職專利局的愛因斯坦,如何受到奧地利捷克實驗物理學家馬赫 (Ernst Mach)的科學史論著影響,以至於看待科學原理時更具批判性,應是眾所周知的例子之一。

六、物理研究的規則並不死板

第一次接觸科學史的人,經常對於科學的實務操作,並非如課堂上教導的科學方法而感到驚訝不已。科學家,就如愛因斯坦晚年反省時所描述的,是「不擇手段的機會主義者」,因為他們並不遵循死板的規則,進行線性的解題。相反地,他們可能是從一個假設、奇怪的觀測或是某個實驗中的異例開始,並根據可以收齊到手的證據,做出完美的解釋罷了。

-----廣告,請繼續往下閱讀-----

例如,當天王星的運行軌道與牛頓的重力理論不相符時,較早期的科學家提出的解釋是,因為受到潛藏在黑暗中的新星(即海王星)重力影響的緣故。因此,隨後當水星軌道與重力理論牴觸時,天文學家便因循同樣的解決辦法,致力於尋找潛藏在太陽光中的「火神星」(Vulcan)。許多科學發現的故事幫助我們了解,事實上,所謂的「科學方法」並非是一套神聖不可違背的標準作業程序。

uranus_-_voyager_2
當天王星的運行軌道與牛頓的重力理論不相符時,較早期的科學家提出的解釋是,因為受到潛藏在黑暗中的新星(即海王星)重力影響的緣故。圖 / By NASA,公有領域,wikimedia commons

七、屏棄「昨非今是」的科學史觀

歷史學有一個重要的的思維:為什麼古人視為正確的想法,我們現在卻抱持相反的觀點?在物理學史上,最著名的例子就是,透過牛頓力學眼光來看,亞里斯多德物理學簡直一無是處。事實上,亞里斯多德並非不能理解牛頓力學,他只是站在完全不同的觀點去看同樣的現象罷了。換句話說,古人不過是關心不同的議題,並嘗試以各種不同的方式尋求解答罷了。如果認識到這一點,我們就不會犯下如英國「輝格史學派」(Whig history)以今非古的錯誤。而能夠理解科學的本質是不斷提問的過程,而非一連串的聲明與陳述。這些提問不只會繼續不斷地發生,並有助於我們理解那些問題已經被討論過。

 

史丹利教授於結論中,再一次強調科學史的趣味性,以及將其融入科學家養成教育,或者非科學主修生的重要性與意義。期能幫助科學家成為更好的公民,甚至重新探索已知的未知。

 

原始論文:

-----廣告,請繼續往下閱讀-----

38%e5%8d%b710%e6%9c%88%e8%99%9f%e5%b0%81%e9%9d%a2

 

本文摘自《物理雙月刊》38 卷 10 月號 ,更多文章請見物理雙月刊網站

-----廣告,請繼續往下閱讀-----
文章難易度
物理雙月刊_96
54 篇文章 ・ 15 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

1
1

文字

分享

1
1
1
經濟重要還是環境重要?明朝末年發生了什麼事?氣候如何影響國家?——《價崩》導讀
衛城出版_96
・2024/05/07 ・4105字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

眼皮底下的事實:環境史研究者看《價崩》

洪廣冀(臺灣大學地理環境資源學系副教授)

著名的漢學家卜正民以如下段落為《價崩:氣候危機與大明王朝的終結》一書定調:

生活在這個時代,我們彷彿逃不出莫測變幻的手掌心。變化讓人這麼痛苦、氣餒,為了安慰自我,我們便告訴自己:當代的生活特徵就是接連不斷的變化,正是這種不穩定,讓世界變得比以往更複雜。

他告訴我們,作為一個「長壽之人」,「過去十年來,氣候變遷、物價通膨,以及政治豪奪的速度與規模」,他認為也是前所未見。只是,作為一個歷史學者,他還是想問,若我們放大時空的尺度,當代人在過去十年來經歷的變化,真的是前所未見嗎?他的答案是否定的。在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。

在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。
圖/unsplash

藏在眼皮下的事實是什麼?小冰期如何發生?

一六四○年代初期的中國發生什麼事?這便是卜正民試圖回答的問題。他反對傳統史學的兩大見解:一者是訴諸人禍,即訴諸當時宮廷內的派系鬥爭,統治階層道德淪喪,導致民不聊生;二者是訴諸十六至十七全球的白銀貿易,即當時從美洲與日本湧入中國的白銀,造成物價波動與社會不安。卜正民認為,訴諸人禍與貿易會讓我們看不見「藏在眼皮底下的事實」:小冰河時期(簡稱小冰期)。

-----廣告,請繼續往下閱讀-----

廣義地說,小冰期是從十四世紀至十九世紀初期的地球寒化現象,氣溫平均掉了攝氏兩度。乍看之下,攝氏兩度的溫差或許微小,但對作物而言,這樣的溫差已經足夠讓作物減少一次收成,或根本無法收成。再者,必須注意,兩度的溫差是「平均」,即可能是極熱與極寒的氣溫交錯變化造就此兩度溫差。這確實也是在小冰期中發生的事。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。影響所及,所謂「聖嬰-南方震盪現象」(El Niño-Southern Oscillation, ENSO,即傳統上所說的「聖嬰現象」加「反聖嬰現象」)變得格外激烈,乾旱、水災等極端氣候頻傳。不僅如此,地球科學家也指出,小冰河期也是火山活動格外頻繁的時期。火山噴出的煙塵,遮蔽了太陽輻射,更加速了地球的寒化。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。
圖/unsplash

小冰期的起因為何?目前普遍接受的見解是太陽活動改變。此外,也有研究者指出,這與所謂歐洲人「發現」新大陸有關。受到所謂「哥倫布大交換」的衝擊,美洲原住民大量消失,森林擴張,吸收大量二氧化碳。眾所周知,二氧化碳是溫室氣體;二氧化碳濃度的減低,讓大氣保溫的能力下降,與前述太陽活動與火山噴發的效果耦合,讓寒化成為不可逆的過程。總之,我們現在已經知道,地球是個混沌系統,牽一髮不只動全身,甚至整個身體都會分崩離析。

回到《價崩》這本書。卜正民指出,明朝的存續時間(一三六八至一六四四年)即落在小冰期,並成為明朝覆亡的主因。他將小冰期之於明朝的影響分為六個泥沼期:一、永樂泥淖期(一四○三年至一四○六年)。二、景泰泥淖期(一四五○年至一四五六年)。三、嘉靖泥淖期(一五四四年至一五四五年)。四、萬曆一號泥淖期(一五八六年至一五八九年)。五、萬曆二號泥淖期(一六一五年至一六二○年)。六、崇禎泥淖期(一六三八年至一六四四年)。

-----廣告,請繼續往下閱讀-----

永樂泥淖期欠缺災荒記載,景泰泥淖期以饑荒收尾,嘉靖泥淖期氣候異常乾冷,萬曆一號泥淖期爆發饑荒、洪水、蝗災與大疫,「人民相食,枕籍死亡」;萬曆二號泥淖期的乾旱與水災頻繁,饑荒再度爆發,「朝廷賑濟的請願如潮水湧來」。崇禎泥淖期是明代乃至於「整個千年期間最慘痛的七年」,「米粟踊貴,餓殍載道」。一六四四年四月末,闖王李自成兵臨北京,致書要求崇禎帝歸順。崇禎不從,在命皇后、貴妃與女兒自盡後,他爬上皇居後的煤山,自縊身亡。李自成稱帝後,滿人入關,將中國納入大清國版圖。

不可忽視的幽靈?拔除合理征服者的解釋,明朝滅亡原因還有哪些?

如此的歷史解釋是否會流於環境決定論?卜正民的回答是:「如果環境決定論的幽靈就在門外徘徊,我也不會在分析時將其拒於門外。」那麼,是什麼讓寫出《縱樂的困惑》、《維梅爾的帽子》等名著的歷史學者相信環境的決定作用?答案就是糧價。

卜正民先生像。
圖/wikipedia

以他的話來說,「太陽能與人類需求的關係,是透過糧價調節的。從景泰年間到崇禎年間,糧價在五次環境泥淖其中激增,每一次都把價格多往上推一截,這樣的事實也說服我必須採用氣候史的大框架。」卜正民表示,「一旦經濟體仰賴太陽輻射為能源來源,那麼無論大自然是幽而不顯還是顯而易見,都必然是社會或國家生命力的決定因素。」

在結語「氣候與歷史」中,卜正民再次反駁那些把明朝覆滅推給「失德」的見解。他認為,這種論調是「合理化明清兩朝遞嬗的過程」,且「編出這種敘事並為之背書的,就是征服者」。他強調,「明朝的滅亡固然不能推給災荒糧價,但講述崇禎末年重大危機時不把氣候因素納入考慮,那簡直就像莎士比亞所言,宛如癡人說夢,充滿著喧譁與騷動,卻沒有任何意義。」

-----廣告,請繼續往下閱讀-----

然而,不至於將環境決定論「拒於門外」是一回事,認為社會變遷就此被環境「決定」,又是另一回事。卜正民並不認為,面對氣候因素帶來的種種挑戰,明朝各級官員只能雙手一攤,感嘆天要亡我,不做任何努力。就如其他生活在小冰期的人們一般,卜正民認為,明朝人建設基礎設施、育種、建立制度、開發新科技與控制生育力等;但問題是,一六三○年代晚期的種種災害,並未催出社會的適應力,反倒是摧毀其適應力。

拜此時勃發的火山活動與激烈的聖嬰-南方震盪現象「之賜」,不論是政府還是市場,都變不出糧食。卜正民認為,至少在前五個泥淖期,明朝人還是表現出相當的韌性,努力予以調適。然而,進入崇禎泥淖期後,春夏乾冷,田地龜裂,運河無水。當每公斤的米得需要兩千五百公升的水,而老天爺就是不願意降下一滴雨時,糧食供應體系就此崩潰,連帶把物價與政治體系拖下去陪葬。

是誰忽略了眼皮底下的事實?這段歷史帶給我們什麼警訊?

回到卜正民所稱的「眼皮底下的事實」。我們要問,是誰忽略了這項事實?誰是這對眼皮的擁有者?卜正民的答案有二。一則是以研究社會、政治與環境變遷的人文社會科學研究者。以小冰期的相關研究為例,他表示,當他開始研究明代中國糧價變異與氣候變化之關係時,驚訝地發現,「其他地方的環境史對糧價幾乎不提」。與之對照,精通糧價的歷史研究者,如不是太快地把糧價理解為「公平交易」的指標,便是視之為社會關係的一環,忽略了糧食必得是在特定的環境條件下孕育出來的。

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。
圖/unsplash

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。然而,卜正民的分析告訴我們,即便明代中國離現在相當遙遠,所謂的小冰期至少也是一百五十年以上的事,但物價恐怕還是可作為某種氣候指標。換言之,若人們以關心物價的熱誠來關心環境,面對當代的環境危機,說不定人們多少可找出個解方。

-----廣告,請繼續往下閱讀-----

此外,讓人心生警惕的是,卜正民告訴我們,小冰期多少是個漫長的地球系統變化。小冰期本身並未造成明朝衰亡,是相伴的極端氣候摧毀了明代社會的韌性與調適。他也認為,面對小冰期、火山噴發與聖嬰-南方震盪現象誘發的極端氣候,從後見之明來看,明朝人也做了他們可以做的,但也只多苟延殘喘了七年,且還是生存條件都被剝奪、生活尊嚴都被否定的七年。

那麼,當人類誘發的氣候變遷可能已加劇了聖嬰-南方震盪現象,讓去年(二○二三年)夏天成為有紀錄以來地球最熱的夏天,而極端氣候彷彿成為日常,人類還有多少時間可以調適?如果說明朝多少是被地球系統的正常運作摧毀,當今地球系統的異常,是人類自己造成的,數百年後的歷史學家,在回顧這段歷史時,恐怕無法如卜正民對待明朝人一樣地寬厚,只能說這是咎由自取。諸如此類的思考,都讓《價崩》有了跨越時代的現實意義。

畢竟,明朝人不是外星人,他們跟我們都生活在同一個地球上。

——本文摘自《價崩:氣候危機與大明王朝的終結》,2024 年 05 月,城出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
衛城出版_96
4 篇文章 ・ 4 位粉絲
"每個人心中都有一座城。每個人在心裡攜帶著文明的種子。 守衛讀者心中之城,與文明的生命力。"

0

0
0

文字

分享

0
0
0
批評反而促成發展?科學化中醫和宋朝佛儒交融類似?——《非驢非馬》
左岸文化_96
・2024/04/26 ・3068字 ・閱讀時間約 6 分鐘

「雜種醫」的挑戰

余巖在一九三二年出版《醫學革命論文選》第二版之時,新版序的開場白就敘述了朋友對他的氣憤埋怨。他們說:

近年外面半新半舊非驢非馬的醫說,橫行得了不得。這點狡獪都是你教訓他們的。你若不去向他們攻擊,他們永遠不會變遷。舊的索性舊,新的索性新,倒是界限分明,容易解決。⋯⋯你拚命攻擊舊醫,結果是教訓他們尋出一條生路。

余巖先生像。
圖/wikipedia

在一九二九年的衝突之後,許多批判中醫的人都注意到一個令他們毛骨悚然的現象:一夕之間,出現了一種「非驢非馬」的雜種醫。在很短的時間裡,雜種醫就在醫界大行其道,而之前這種混種現象只盛行於商業界的藥品市場而已。雖然抱持第一與第三立場的人對於中醫科學化的意見相反,但他們都把陸淵雷與譚次仲的方案抨擊為「非驢非馬」。

為何被譯為「雜種醫」?

在此,我想清楚說明為什麼把「非驢非馬醫」翻譯為「雜種醫」(mongrel medicine),而不是聽起來比較正面的「混種醫」(hybrid medicine)。第一,兩者間有一個重要的不同之處,就在於「雜種醫」是當年的歷史行動者所使用的概念。當年批判中醫的人士把「非驢非馬醫」等同於「雜種醫」,因爲他們想強調這種醫療是一個背叛了父母的雜種,是對兩個純種醫學傳統的雙重背叛。

這樣強烈的負面意涵便引出我的第二個論點:作為歷史行動者的概念而言,當年沒有任何中醫師會自我標榜為「非驢非馬」,「非驢非馬」是中醫批評者強加在他們身上的一種貶抑性的標籤。相較於「雜種」與「非驢非馬」所帶有的強烈的負面意涵,「混種性」(hybridity)這個後殖民概念的功能剛好相反,它強調「後殖民文化的混種性是一個優點,而不是弱點。」我想傳達的訊息卻正是混種的負面意涵:對於那些企圖匯通中西醫的人而言,他們必須承受對手加諸己身的羞辱與限制,被對手定義為「雜種」。為了傳達「非驢非馬」一詞的貶抑與羞辱,我決定將其意譯為「雜種醫」。

-----廣告,請繼續往下閱讀-----
對於那些企圖匯通中西醫的人而言,他們必須承受對手加諸己身的羞辱與限制,被對手定義為「雜種」。為了傳達「非驢非馬」一詞的貶抑與羞辱,我決定將其意譯為「雜種醫」。
圖/unsplash

備受罵名,仍要追求中醫科學化的原因為何?

面對來自雙方的攻擊,陸淵雷決定在那份備受爭議的中醫科學化提案當中,將接納雜種醫列為五項前提之一:「故整理國醫藥學術,引用科學原理時,不任受破壞國粹之名。」在此陸淵雷清楚表示不認同將中醫視為「國粹」而保存其本真性(authenticity)。

這是一項重要的證據,顯示至少對陸淵雷而言,國醫運動不當被等同為一種文化民族主義運動。他特別提及儒學與佛教在宋朝(九六○ — 一二七八)成功融合的例子,而主張中醫科學化是性質接近的事業,是以一種大膽而富有創意的方式來融合中國與外國文化。就這個意義上而言,像陸淵雷這樣的人士不僅發動了中醫科學化方案,更心甘情願地承受論敵貼在他們身上的貶抑性標籤,因為他們追求的目標不是保存中醫既有的樣貌,而是要發展出國醫館所揭示的那種新生的混種醫。

陸淵雷提及儒學與佛教在宋朝成功融合的例子,而主張中醫科學化是性質接近的事業,是以一種大膽而富有創意的方式來融合中國與外國文化。
圖/ wikipedia

余巖的友人責怪余巖協助創造了這種雜種醫。他們是對的。雜種醫之所以會興起,就是為了回應余巖和其他中醫批評者所倡議的醫學革命。這並不是說在余巖對中醫提出抨擊之前,不曾有人試圖融合這兩種醫學型態──唐宗海就是一個明顯的先例。重點是,雜種醫之所以突然間變地那麼值得追求、那麼引人痛毀極詆、那麼危機四伏,這一切都源於人們堅持要以科學方法整理中醫──換句話說,就是中醫科學化。有史以來第一次,當中醫師想像中醫與西醫的關係之時,他們無可逃避地必須共同直面科學的概念。

雜種醫與中醫科學化的關係?

雜種醫與中醫科學化之間,有一種相互建構與壓制的辯證關係。這兩者的關係具有相互建構性,因為中醫師會想追求雜種醫這種古怪的東西,完全是因為國民黨國家提倡中醫科學化,並強迫抗爭雙方以其作為停戰條件。正是這個科學化的目標,迫使中醫師在改革中醫時認真看待科學的概念以及相關的現代性論述──例如余巖對於中醫的三分法。就這個意義上而言,他們的改革體現現代性的特徵,因此截然不同於由唐宗海為代表的那種前現代式的匯通中西醫。

-----廣告,請繼續往下閱讀-----

另一方面,這兩者之間的關係也具有壓抑性,因為正是科學的概念使人難以想像中醫與生物醫學之間能夠經由跨種雜交而產生有意義的成果。單純想像把兩種醫學型態混合起來,或許不需要擔心會產生怪物。但若是想像將科學與異己的他者進行跨種雜交,感覺上幾乎是褻瀆神聖。由於大家都覺得這是一個無法想像的作法,無怪乎批評者將這種新式醫學描述為「非驢非馬」。

中醫師會想追求雜種醫這種古怪的東西,完全是因為國民黨國家提倡中醫科學化,並強迫抗爭雙方以其作為停戰條件。正是這個科學化的目標,迫使中醫師在改革中醫時認真看待科學的概念以及相關的現代性論述。
圖/pexels

就像那無法繁殖後代的騾,雜種醫雖然表面上看來充滿活力,卻絕對不可能長久存續,無法成為一個富有生命力的活著的傳統(living tradition)。正因為這種醫學廣受大眾歡迎,反對者覺得必須利用雜種醫這個貶抑性的概念,以提醒眾人逾越界線的危險,使人們產生強烈的負面情緒。總而言之,就是因為論爭雙方都接納中醫科學化方案,是以雜種醫才會變成一個廣受中醫師支持的、值得追求的、卻又沒有希望成功的方案;另一方面,也變成西醫師眼中巨大的威脅。

結論

西醫師為何強烈地偏好「中醫科學化」這句口號,而不是「以科學方法整理中醫」?關鍵就在防止雜種醫。由於這句口號包含了「科學化」這個在地發明的概念,因此也就把我們帶回了本章一開頭提出的那個問題:在一九三○年代初期的中西醫論爭中,中醫科學化方案做為一股關鍵歷史力量,究竟發揮了什麼樣的功能?最直白的答案就是,將科學轉化為一個動詞(科學化),其實是最有效的方式來展示世界上存在著一種同質性的實體叫做科學。

如果科學不能被理解為一種同質性的單一實體,那便難以想像將某個東西「科學化」究竟是什麼意思。更重要的是,當人們習以為常、不假思索地使用「科學化」這個動詞時,大家的行為便預設並且強化了一個想法:科學及其對反(中醫)是兩個可以清楚辨識的實體,就像具體的物品一樣真實。

-----廣告,請繼續往下閱讀-----

——本文摘自《非驢非馬:中醫、西醫與現代中國的相互形塑》,2024 年 02 月,左岸文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
左岸文化_96
39 篇文章 ・ 11 位粉絲
左岸的出版旨趣側重歷史(文明史、政治史、戰爭史、人物史、物質史、醫療史、科學史)、政治時事(中國因素及其周邊,以及左岸專長的獨裁者)、社會學與人類學田野(大賣場、國會、工廠、清潔隊、農漁村、部落、精神病院,哪裡都可以去)、科學普通讀物(數學和演化生物學在這裡,心理諮商和精神分析也在這裡)。