Loading [MathJax]/extensions/tex2jax.js

0

111
0

文字

分享

0
111
0

門得列夫與週期表:頑固就是戰鬥民族的浪漫(下)

LIS_96
・2016/12/31 ・3259字 ・閱讀時間約 6 分鐘 ・SR值 558 ・八年級

-----廣告,請繼續往下閱讀-----

位於布拉提斯拉瓦斯洛伐克科技大學(Slovak University of Technology in Bratislava)中的門得列夫紀念碑。圖/By http://www.flickr.com/people/mmmdirt/ - http://www.flickr.com/photos/mmmdirt/279349599, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=1526889
位於布拉提斯拉瓦斯洛伐克科技大學(Slovak University of Technology in Bratislava)中的門得列夫紀念碑。圖/By mmmdirt@flickr, CC BY-SA 2.0, wikimedia commons.

文/姚荏富

1869 年 2 月 17 號,門得列夫已經思考了三天三夜,他將每個元素製作成一張張卡片,將卡片鋪於桌上,試圖要找到其中的規律,但遲遲沒有想出適合的排列組合。

正當吃早餐時,門得列夫看了看寄來的郵件,開始在郵件後方書寫了起來,把他所知道的三元素組依左到右照原子量大小排序,再由上而下的把低原子量者放上面,把高原子量者放下面。這時擅長卡牌遊戲的門得列夫想到,如果每個相似的元素組都屬於一種花色,然後原子量就像是卡牌上的點數,63 個元素就可以排出一個大概的圖形,最後可以得到一個有七組相似組,然後組內在由原子量大小作排列的奇怪表格,而這個化學紙牌遊戲就是化學週期表的前身。

門得列夫對週期表的出現是這麼形容的,「我的腦海中有一張表,元素們都照著定位排好,當他們清楚地出現時,我馬上就將其寫下」。這樣聽起來發現週期表好像對門得列夫來說並沒有那麼困難,但在寫出週期表之前,門得列夫每天都在進行原子量的測定,並到處蒐集各個元素的資訊,也因為奠定了這些基礎,才能夠在靈感來臨時,馬上將這些資訊進行整理,將腦海中的表格呈現出來。

-----廣告,請繼續往下閱讀-----

們德烈夫週期表

mendelejevs_periodiska_system_1871
門得列夫 1871 年的元素周期表。圖 / By Källa:Dmitrij Ivanovitj Mendelejev, 公有領域, wikimedia commons

門得列夫的第一版週期表其實就是將前人對元素關聯的推論,在加上自己的直覺做了一次整合,不過在這樣充滿元素符號的表格中,其實蘊藏了許多前人沒有發現到的神奇秘密。

這份週期表顯示出照原子量排序後每七個元素會有一循環(實際上是八個不過當時還沒發現惰性氣體),也就是前人說的八音律;每一循環就稱為一個週期,所以第一個元素會與第八個以及第十五元素都會有類似的性質,門得列夫將這樣類似性質的關係稱為 「族」。

這份週期表大致上是依照原子量排的,不過其中幾個元素並沒有照原子量的順序排入週期表,而是照元素性質被編入週期表的,例如:釷(Th)並不在第四週期而是在第三週期的底部。對於這種現象,門得列夫的反應是,他認為這些元素的原子量在測量上是有錯誤的。另外,如果有找不到符合他週期表性質的元素時,他選擇將其空白(就像圖表中 45、68、70 這樣),他認為 Al 和 Ur 之間還缺少一種元素(68),他將其命名為類鋁,甚至進一步預測其性質;依照週期表的規律,門得列夫預測了三個未知的元素的存在。

以下是門德烈夫提出的週期律

-----廣告,請繼續往下閱讀-----

1. 按照原子量編排,元素的性質顯然具有週期性

2. 擁有類似性質的元素不會是原子量類似的元素,但原子量會規律增加

3. 原子量決定元素性質

4. 未知元素是可以預期的

5. 得知元素在週期表的位置後可用來修正該元素之原子量

6. 從原子量可以預測元素特性

7. 週期表的縱向代表價數,亦即元素之結合力

門得列夫提出週期律後其實並沒有受到太多的關注,而且在同期間也不只門得列夫一人發表週期表,德國科學家梅爾在門得列夫發表週期表的隔年,也提出了類似的排列方式。可惜梅爾依照原子量的排列規則,在元素性質上有時會發生不符的現象,再加上這種推測當時並沒有理論可以證明,所以很快的梅爾就選擇放棄主張這樣的推論了。

反觀門得列夫,依照性質所排出的週期表,雖然不會完全遵守原子量排序,但更能符合門得列夫對於元素之間性質的關係。除此之外,門得列夫對週期表是這樣說的:「儘管有些不解之處,我仍有所懷疑,但我曾未懷疑過這種定律的通用性,因此這些絕對不可能是巧合。」

當時科學界並不接受這種推測,但就在 1875 年發生了一件事……

週期表精準預測新元素的發現!

1875 年法國科學家布瓦伯德朗在礦場中的礦物採樣中發現了新的元素,他將其命名為鎵(gallium),而鎵的原子量經由測量為 69,正是門得列夫週期表中預測的類鋁元素(68)。經過量測後發現多數的數據都與門得列夫所預測的性質相近,唯獨比重與預測的 5.9 低了一些只有 4.7。

-----廣告,請繼續往下閱讀-----

對此,門得列夫特別寄信去建議布瓦伯德朗,請他以更科學、更嚴謹的方式再次量測鎵的真實比重,科學家敢這麼狂的應該只有門得列夫了吧!不過有趣的是,經過重新量測後發現,鎵的比重確實是 5.9,竟與門得列夫預測的幾乎完全相同。這時,科學界才對門得列夫的週期表產生好奇。

table

將所知所學奉獻給俄國

在門得列夫的週期表成為科學界的旋風後,歐洲各國紛紛邀請門得列夫前去演講甚至做研究,但心繫祖國的們德烈夫還是選擇留在俄國,帶領俄國科學界一步步追上歐洲的水準。

可惜門得列夫的兇悍性格,與其支持的自由主義,使他陷入十分不利處境。一方面在科學界的仇家阻撓下與諾貝爾獎失之交臂,另一方面又因支持左翼學生(就是反政府的學生),使得俄國科學不敢接受門得列夫,以免散布更多革命思想。但俄國對這位貢獻甚鉅的科學家,還是希望能將其留在國內做貢獻,所以任命他為國家度量衡局的總裁,繼續為俄國的各方面進行努力。

1907 年,門得列夫因肺炎逝世,享壽 72 歲,喪禮當天數以百計人民前來送行,其中大部分是他在大學教書時的學生。這是俄羅斯歷史上與科學史上特別的時刻,在部隊前方人們舉著刻上週期表的木板,以紀念門得列夫的曠世巨作以及他過人的貢獻。

-----廣告,請繼續往下閱讀-----

在成功預測鎵的存在與性質後,還是有人認為這種毫無實驗證明的推論矇中一個並不代表什麼,不過時間再度給出了公正的答案。1879 年發現了原子量 45 的元素鈧(Sc),1886 年發現原子量為 72 的元素鍺(Ge),門得列夫當年預測的三個未知元素接連出現,且與其預測的性質幾乎完全相同,證實了週期表的推論並非僥倖,這種特殊的週期關係確實存在,自此科學界對門得列夫的週期表產生了高度的興趣。

們德烈夫紀念幣
們德烈夫獎章。圖 / By Robert Wielgórski, 創用CC, wikimedia commons 

現在看起來,預測了未知元素,發現元素規律、為前人的研究成果平反好像很厲害,但事實上週期表的價值遠大於這些讓人驚豔的成果。週期表的出現,證明了元素之間的週期性,但問題來了,這些週期性又是為什麼會出現呢?為何每七的元素會有一個循環(事實上是八個)?而每一族內的結合能力會如此相似(他稱為價數)?雖然現在我們知道這與電子組態有關,不過當時既沒有發現電子、也不曉得原子序。對於當時尚未釐清元素本質的化學界,週期律的驗證,確實給了當時的科學家們思考物質的新方向。

週期表嚴格來說並不算是一個科學成就,它一直都在,但它無法解釋現象,沒有其他的理論基礎(除了週期性之外的科學理論),他將許多發現兜在一塊,最後發現眾多規律中更大更密切的連結。週期表在科學史上的定位反而更像是一個大發現,他揭露了上帝對萬物的安排、所有物質之間微妙的關係,而這個蓋住週期表的面紗,正等著科學家們去掀開它呢!

 

LIS官方網站:http://www.lis.org.tw/

-----廣告,請繼續往下閱讀-----

LIS門德烈夫傳送門:〈決鬥吧!元素王(下)

參考資料

  1. 《化學通史》凡異出版
  2. 《門得列夫之夢—從煉金術到週期表的誕生》究竟出版
  3. 《他們創造了科學—改變人類命運的科學先驅》究竟出版
  4. 《數理化通俗演義》好讀出版
  5. 《不朽的科學家》洪建全出版
  6. 門得列夫(Dmitri Mendeleev)—高瞻自然科學教學資源平台
  7. 元素週期表的蛻變—《科學月刊》
  8. 門捷列夫元素週期表是怎麼發現的—歷史趣聞
  9. A Historic Overview:Mendeleev and the Periodic Table —genesis search for origins
  10. Dmitri Mendeleev—wikipedia(英文版)
-----廣告,請繼續往下閱讀-----
文章難易度
LIS_96
22 篇文章 ・ 11 位粉絲
LIS ( Learning in Science )情境科學教材,成立於2013年7月,是一個非營利組織,致力於為國中小自然教師及學生,設計有別於填鴨教育的科學教材,協助教師進行STEAM和科學素養導向的教學,讓教師更簡單地進行教學創新,幫助更多孩子找回對科學的學習動機,並培養解決問題的能力。 在 Youtube 頻道【LIS情境科學教材】上,我們會即時更新所有LIS教材的影片,而完整的教案、學習單,亦同步上傳於【LIS教材平台網】歡迎您前往瀏覽完整內容。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
科學新聞誰來說?當科學家與記者意見相左時!——《是炒作還是真相?媒體與科學家關於真相與話語權的角力戰》
商周出版_96
・2025/04/05 ・4280字 ・閱讀時間約 8 分鐘

同床異夢:科學家與科學記者間的緊張關係

為了新成立的科學媒體中心負責人一職準備面試期間,我讀到許多科學家的意見,他們指出媒體對MMR疫苗和基因改造等議題的報導削弱了公眾對科學的信任。然而,當我更深入閱讀當時的科學新聞時卻發現情況並不那麼單純,許多嘩眾取寵的報導出自綜合記者或政治與消費的分線記者,消息來源是善於操縱媒體的運動人士而非優秀科學家,反觀科學記者筆下的報導則多數公正平衡。

中心成立後的頭幾個月主要是諮詢,過程中我與一些傑出的科學記者交流,詢問新的科學新聞辦公室如何產生價值,他們花了很多時間回應我接二連三的提問。互動中我清楚意識到科學記者不需要別人教他們怎麼做報導,而且他們其實與科學家一樣苦惱,覺得手機、核能、複製技術等等議題有太多聳動新聞。後來討論焦點就放在科學媒體中心如何改善現況,方法包括鼓勵科學家接受訪問,以及提升科學專業在編輯室內的地位。

一種說法認為科學記者是個特別的記者類型。有人向英國廣播公司前新聞部主任弗蘭.安斯沃思(Fran Unsworth)提出疑問:為何她們的公司高層很少人有科學報導背景?她短暫遲疑後回答:英國廣播公司的科學記者大都熱愛自己的工作,喜歡報導更甚於管理。我在其他媒體也注意到同樣現象,許多科學、醫藥、環境記者在專門領域耕耘超過二十年。湯姆.菲爾登被問到為何熱愛科學報導,他的回答是:

科學報導的內容幾乎都是探索性而非指控性—代表我和科學家都能開開心心回家!而且我能在自由出入實驗室、見到地球上最聰明的一群人、對他們的畢生心血提出各種粗淺的問題,這是多麼大的特權。再來科學新聞多彩多姿,生醫、太空、氣候、生物多樣性、古生物……最後一點,科學新聞很重要,是現代社會不可或缺的一部分。

「要迅速還是要正確?」——新聞編輯室裡的艱難選擇

二○○二年科學媒體中心剛成立時,社會上針對科學和媒體之間為何緊張有過一波辯論,其中一個話題是科學價值觀與新聞價值觀的矛盾。已故的理查.多爾(Richard Doll)爵士教授是發現吸菸與癌症關聯的科學家,他曾經對著滿屋子的記者一語道破:「你們不喜歡老調重彈、報導大家都知道的事情,總想找些新鮮的。但很可惜,科學裡新的事物通常不對,真理需要透過時間慢慢建立。」

-----廣告,請繼續往下閱讀-----
科學追求真理累積,媒體偏好新鮮話題,價值觀自然衝突。圖/unsplash

另一方面,懂得反求諸己的記者通常也不諱言表示媒體反映真相有很多侷限。《華盛頓郵報》資深記者大衛.布羅德(David Broder)一九七九年曾說:「我希望媒體能一再重複、直到大家明白—每天送到門口的報紙,只是記者對過去二十四小時內聽聞的某些事情做出片面、匆促、不完整的敘述,內容不可避免會有瑕疵與偏差。」難怪科學家對記者戒慎恐懼,而記者與科學家合作時也倍感挑戰。曾經有位報紙編輯對著一房間的皇家學會成員說:在他的編輯室內,「要迅速還是要正確」這問題只會有一個答案。那些科學家的惶恐表情我歷歷在目。

我進入媒體關係工作之前拿的是新聞學學位,至今仍記得一位前記者曾在講座中告訴大家:「車禍後無人傷亡」不能成為新聞,「車禍導致五名青少年死亡」才能引起大眾關注。研究媒體的學生辯論新聞價值觀已經辯了數十年,也有人大膽嘗試不同做法,比方說《龜媒體》(Tortoise Media)之類新興平臺就訴求「慢新聞」,旨在建立有別於速度至上的新模型,透過「慢速新聞學」理念以更長時間來更加深入地製作更大、更複雜的報導。但儘管媒體業界發生許多變化,傳統的新聞價值觀仍屹立不搖。

科學媒體中心所有工作都是為了支持科學報導的高標準,不過我們在二○一一年列文森調查期間發現還有其他機會能夠撼動這些標準。該調查由布萊恩.列文森勳爵法官(Lord Justice Brian Leveson)主持,目的是在《世界新聞報》(News International)竊聽醜聞案後瞭解英國媒體業界有什麼慣例。我當時的同事海倫.賈米森(Helen Jamison)建議我們向調查庭提交證據,幾杯所謂的「女士汽油」下肚後,她操著濃厚曼徹斯特口音說:「傷害公眾利益的不是竊聽名人電話—而是糟糕的科學報導。」隔天我們發郵件給幾位科學通訊人員,詢問他們關注什麼議題,一週後就提交多頁書面證據。

我告訴同事自己被傳喚去做口頭證詞時她們還覺得我在瞎掰。小組內部連續幾週密切關注各大媒體如何報導列文森調查案,包含麗貝卡.布魯克斯(Rebekah Brooks)、阿拉斯泰爾.坎貝爾、保羅.戴克瑞(Paul Dacre)和安迪.考森(Andy Coulson)在內很多媒體界大人物都有出庭,而今居然也有我一份,令人興奮又忐忑—被傳喚的人只有我代表科學界,一定要把握好機會。

-----廣告,請繼續往下閱讀-----

標題戰爭:聳動 vs. 精準,誰來決定科學新聞的呈現?

但其實我沒進過法庭,緊張情緒一目瞭然。印象特別深的是御用大律師羅伯特.傑伊(Robert Jay)和列文森勳爵本人一再要我放慢語速。官方紀錄上,提醒我兩次還不見效,列文森這麼說:「不必因為半小時的限制就講很快,時間是可以延長的……而且我有點擔心,總覺得速記員頭上好像冒煙了。」

我的主要論點是媒體長期以來執著於同一套價值觀,在書面證詞中也有所描述:

追求引發恐慌的故事、誇大單一專家從小規模研究得出的結論、不願將令人擔憂的研究結果置於宏觀而令人安心的脈絡、為了平衡而捏造不存在的學界歧見、過分偏愛另類觀點等等。

當天《獨立報》恰好印證我的觀點,一篇跨兩頁的報導標題為:「眼盲者重見光明—患者因幹細胞『奇蹟』痊癒。」然而實際情況是患者並未痊癒,雖然回報視力小幅度改善(他們原本視力極差,已被登記為盲人),但這僅僅是一項安全性研究,而且只有兩名患者參與。當然,研究本身是值得報導的,在幹細胞研究剛起步、真人試驗剛開始的時期,這是個重要的進展。問題在於報導口吻暗示科學研究取得了巨大突破,可能給成千上萬黃斑部病變患者帶來不切實際的希望。

同一天稍晚我揪著心打電話給《獨立報》科學編輯史提夫.康諾,告知我將他的報導當作科學新聞不良案例交給列文森調查庭。他當然談不上高興,但至少沒發飆,所以我鬆了一口氣。原來前一天晚上他提交的原稿內容較精緻,但夜班編輯決定將報導放在頭版,所以文字編輯就對標題進行過加工。康諾將原稿發過來,我們倆就在辦公室玩起「找出不同點」的遊戲了。

-----廣告,請繼續往下閱讀-----

離開法庭時,《太陽報》總編輯攔住我。我在證詞中批評他們前一週煽動恐慌,報導內容是居家用品內的化學物質,但標題卻叫做「商店貨架上滿滿的乳癌『風險』」。原本我以為對方要吵架,沒想到他說《太陽報》真心想改善科學報導品質,邀請我們為報社裡的一般新聞記者開一場科學報導培訓班。隨著列文森調查案持續推進,業界標準似乎終於迎來變革,而且這一次沒有落下科學新聞。

作證時我順便提出有必要為科學報導制訂新的指導方針,還誇下海口表示只需要幾小時就能與記者和科學家共同完成草擬。一週後,調查庭將人召集起來要我們開始,沒想到折騰了整整一天,而且過程中好幾次我都擔心無法達成共識。標題就是特別棘手的項目,記者和文字編輯很堅持標題只追求簡潔和引人注目,沒必要精準總結文章內容,但科學家聽了很火大,認為這是合理化不精準的敘述。

科學家要求標題的正確性,記者堅持要簡潔吸引,雙方激辯不休。圖/unsplash

我感覺自己成了全球和平談判的調解員,必須設法安撫所有人不拍桌走人並達成協議。所幸雙方都有成就這樁美事的意願,最終相互妥協:標題不應誤導讀者對文章內容的理解,且不應以引號包裝誇大的敘述

總體來說,新指導方針鼓勵記者從協助大眾的角度切入,告訴閱聽人什麼證據是可靠的,又有什麼證據還在研究階段。例如其中有幾條的內容是:新聞故事應附上來源以便讀者查詢。應標明研究的規模、性質和侷限性。應指出研究處於何種階段,並從合理角度預估新療法或新技術能為民眾所用的時間點。

-----廣告,請繼續往下閱讀-----

我們將指導方針寄給列文森勳爵,很高興他在最終版本的報告裡也建議採用。調查案結束後成立了獨立報刊業標準組織(Independent Press Standards Organisation)在各大新聞編輯部推廣指導方針,由於制訂過程有編輯和記者的參與所以接受度很高,不至於引起反彈。

為科學家舉辦講座時,我會展示一些因為科學家參與而變得更客觀準確的新聞報導,其中個人特別喜歡的一篇出自二○○八年的《每日郵報》,內容提到一項小鼠研究發現常用的保濕霜與癌症有相關。記者費奧娜.麥克雷(Fiona MacRae)引用兩位不同專家的意見質疑這項研究與人類皮膚的相關性,並指出該研究需要能在人類身上複現才有意義。

專家之一表示:因為這項研究就停止使用保濕霜太「瘋狂」,還補充說明:「小鼠皮膚癌研究其實不太能幫助我們瞭解人類的皮膚癌。」最精彩在於標題是「保濕霜與皮膚癌相關(僅限小鼠)」,而且括號內外用了同樣大小的字體。

從這個案例來看,優秀的記者可以在講述有趣故事的同時確保讀者不會過早丟掉面霜。我還會在講座使用的幻燈片裡摻入一些小報的報導實例來挑戰學術界偏見,比方說《每日郵報》的社論或許爭議頗多,但他們的科學新聞通常品質並不差,不推廣特定立場的時候更是如此,有時甚至優於大報。我還會強調《每日郵報》在英國銷量排行第二,如果連線上版也算進去讀者數超越所有大報,因此務實一點說:如果科學家希望更有效地向大眾傳遞信息,完全沒有不與《每日郵報》合作的道理。

-----廣告,請繼續往下閱讀-----

——本文摘自《是炒作還是真相?媒體與科學家關於真相與話語權的角力戰:從基改食品、動物實驗、混種研究、疫苗爭議到疫情報導的製作》,2025 年 03 月,商周出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃