Loading [MathJax]/extensions/tex2jax.js

0

111
0

文字

分享

0
111
0

門得列夫與週期表:頑固就是戰鬥民族的浪漫(下)

LIS_96
・2016/12/31 ・3259字 ・閱讀時間約 6 分鐘 ・SR值 558 ・八年級

-----廣告,請繼續往下閱讀-----

位於布拉提斯拉瓦斯洛伐克科技大學(Slovak University of Technology in Bratislava)中的門得列夫紀念碑。圖/By http://www.flickr.com/people/mmmdirt/ - http://www.flickr.com/photos/mmmdirt/279349599, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=1526889
位於布拉提斯拉瓦斯洛伐克科技大學(Slovak University of Technology in Bratislava)中的門得列夫紀念碑。圖/By mmmdirt@flickr, CC BY-SA 2.0, wikimedia commons.

文/姚荏富

1869 年 2 月 17 號,門得列夫已經思考了三天三夜,他將每個元素製作成一張張卡片,將卡片鋪於桌上,試圖要找到其中的規律,但遲遲沒有想出適合的排列組合。

正當吃早餐時,門得列夫看了看寄來的郵件,開始在郵件後方書寫了起來,把他所知道的三元素組依左到右照原子量大小排序,再由上而下的把低原子量者放上面,把高原子量者放下面。這時擅長卡牌遊戲的門得列夫想到,如果每個相似的元素組都屬於一種花色,然後原子量就像是卡牌上的點數,63 個元素就可以排出一個大概的圖形,最後可以得到一個有七組相似組,然後組內在由原子量大小作排列的奇怪表格,而這個化學紙牌遊戲就是化學週期表的前身。

門得列夫對週期表的出現是這麼形容的,「我的腦海中有一張表,元素們都照著定位排好,當他們清楚地出現時,我馬上就將其寫下」。這樣聽起來發現週期表好像對門得列夫來說並沒有那麼困難,但在寫出週期表之前,門得列夫每天都在進行原子量的測定,並到處蒐集各個元素的資訊,也因為奠定了這些基礎,才能夠在靈感來臨時,馬上將這些資訊進行整理,將腦海中的表格呈現出來。

-----廣告,請繼續往下閱讀-----

們德烈夫週期表

mendelejevs_periodiska_system_1871
門得列夫 1871 年的元素周期表。圖 / By Källa:Dmitrij Ivanovitj Mendelejev, 公有領域, wikimedia commons

門得列夫的第一版週期表其實就是將前人對元素關聯的推論,在加上自己的直覺做了一次整合,不過在這樣充滿元素符號的表格中,其實蘊藏了許多前人沒有發現到的神奇秘密。

這份週期表顯示出照原子量排序後每七個元素會有一循環(實際上是八個不過當時還沒發現惰性氣體),也就是前人說的八音律;每一循環就稱為一個週期,所以第一個元素會與第八個以及第十五元素都會有類似的性質,門得列夫將這樣類似性質的關係稱為 「族」。

這份週期表大致上是依照原子量排的,不過其中幾個元素並沒有照原子量的順序排入週期表,而是照元素性質被編入週期表的,例如:釷(Th)並不在第四週期而是在第三週期的底部。對於這種現象,門得列夫的反應是,他認為這些元素的原子量在測量上是有錯誤的。另外,如果有找不到符合他週期表性質的元素時,他選擇將其空白(就像圖表中 45、68、70 這樣),他認為 Al 和 Ur 之間還缺少一種元素(68),他將其命名為類鋁,甚至進一步預測其性質;依照週期表的規律,門得列夫預測了三個未知的元素的存在。

以下是門德烈夫提出的週期律

-----廣告,請繼續往下閱讀-----

1. 按照原子量編排,元素的性質顯然具有週期性

2. 擁有類似性質的元素不會是原子量類似的元素,但原子量會規律增加

3. 原子量決定元素性質

4. 未知元素是可以預期的

5. 得知元素在週期表的位置後可用來修正該元素之原子量

6. 從原子量可以預測元素特性

7. 週期表的縱向代表價數,亦即元素之結合力

門得列夫提出週期律後其實並沒有受到太多的關注,而且在同期間也不只門得列夫一人發表週期表,德國科學家梅爾在門得列夫發表週期表的隔年,也提出了類似的排列方式。可惜梅爾依照原子量的排列規則,在元素性質上有時會發生不符的現象,再加上這種推測當時並沒有理論可以證明,所以很快的梅爾就選擇放棄主張這樣的推論了。

反觀門得列夫,依照性質所排出的週期表,雖然不會完全遵守原子量排序,但更能符合門得列夫對於元素之間性質的關係。除此之外,門得列夫對週期表是這樣說的:「儘管有些不解之處,我仍有所懷疑,但我曾未懷疑過這種定律的通用性,因此這些絕對不可能是巧合。」

當時科學界並不接受這種推測,但就在 1875 年發生了一件事……

週期表精準預測新元素的發現!

1875 年法國科學家布瓦伯德朗在礦場中的礦物採樣中發現了新的元素,他將其命名為鎵(gallium),而鎵的原子量經由測量為 69,正是門得列夫週期表中預測的類鋁元素(68)。經過量測後發現多數的數據都與門得列夫所預測的性質相近,唯獨比重與預測的 5.9 低了一些只有 4.7。

-----廣告,請繼續往下閱讀-----

對此,門得列夫特別寄信去建議布瓦伯德朗,請他以更科學、更嚴謹的方式再次量測鎵的真實比重,科學家敢這麼狂的應該只有門得列夫了吧!不過有趣的是,經過重新量測後發現,鎵的比重確實是 5.9,竟與門得列夫預測的幾乎完全相同。這時,科學界才對門得列夫的週期表產生好奇。

table

將所知所學奉獻給俄國

在門得列夫的週期表成為科學界的旋風後,歐洲各國紛紛邀請門得列夫前去演講甚至做研究,但心繫祖國的們德烈夫還是選擇留在俄國,帶領俄國科學界一步步追上歐洲的水準。

可惜門得列夫的兇悍性格,與其支持的自由主義,使他陷入十分不利處境。一方面在科學界的仇家阻撓下與諾貝爾獎失之交臂,另一方面又因支持左翼學生(就是反政府的學生),使得俄國科學不敢接受門得列夫,以免散布更多革命思想。但俄國對這位貢獻甚鉅的科學家,還是希望能將其留在國內做貢獻,所以任命他為國家度量衡局的總裁,繼續為俄國的各方面進行努力。

1907 年,門得列夫因肺炎逝世,享壽 72 歲,喪禮當天數以百計人民前來送行,其中大部分是他在大學教書時的學生。這是俄羅斯歷史上與科學史上特別的時刻,在部隊前方人們舉著刻上週期表的木板,以紀念門得列夫的曠世巨作以及他過人的貢獻。

-----廣告,請繼續往下閱讀-----

在成功預測鎵的存在與性質後,還是有人認為這種毫無實驗證明的推論矇中一個並不代表什麼,不過時間再度給出了公正的答案。1879 年發現了原子量 45 的元素鈧(Sc),1886 年發現原子量為 72 的元素鍺(Ge),門得列夫當年預測的三個未知元素接連出現,且與其預測的性質幾乎完全相同,證實了週期表的推論並非僥倖,這種特殊的週期關係確實存在,自此科學界對門得列夫的週期表產生了高度的興趣。

們德烈夫紀念幣
們德烈夫獎章。圖 / By Robert Wielgórski, 創用CC, wikimedia commons 

現在看起來,預測了未知元素,發現元素規律、為前人的研究成果平反好像很厲害,但事實上週期表的價值遠大於這些讓人驚豔的成果。週期表的出現,證明了元素之間的週期性,但問題來了,這些週期性又是為什麼會出現呢?為何每七的元素會有一個循環(事實上是八個)?而每一族內的結合能力會如此相似(他稱為價數)?雖然現在我們知道這與電子組態有關,不過當時既沒有發現電子、也不曉得原子序。對於當時尚未釐清元素本質的化學界,週期律的驗證,確實給了當時的科學家們思考物質的新方向。

週期表嚴格來說並不算是一個科學成就,它一直都在,但它無法解釋現象,沒有其他的理論基礎(除了週期性之外的科學理論),他將許多發現兜在一塊,最後發現眾多規律中更大更密切的連結。週期表在科學史上的定位反而更像是一個大發現,他揭露了上帝對萬物的安排、所有物質之間微妙的關係,而這個蓋住週期表的面紗,正等著科學家們去掀開它呢!

 

LIS官方網站:http://www.lis.org.tw/

-----廣告,請繼續往下閱讀-----

LIS門德烈夫傳送門:〈決鬥吧!元素王(下)

參考資料

  1. 《化學通史》凡異出版
  2. 《門得列夫之夢—從煉金術到週期表的誕生》究竟出版
  3. 《他們創造了科學—改變人類命運的科學先驅》究竟出版
  4. 《數理化通俗演義》好讀出版
  5. 《不朽的科學家》洪建全出版
  6. 門得列夫(Dmitri Mendeleev)—高瞻自然科學教學資源平台
  7. 元素週期表的蛻變—《科學月刊》
  8. 門捷列夫元素週期表是怎麼發現的—歷史趣聞
  9. A Historic Overview:Mendeleev and the Periodic Table —genesis search for origins
  10. Dmitri Mendeleev—wikipedia(英文版)
-----廣告,請繼續往下閱讀-----
文章難易度
LIS_96
22 篇文章 ・ 11 位粉絲
LIS ( Learning in Science )情境科學教材,成立於2013年7月,是一個非營利組織,致力於為國中小自然教師及學生,設計有別於填鴨教育的科學教材,協助教師進行STEAM和科學素養導向的教學,讓教師更簡單地進行教學創新,幫助更多孩子找回對科學的學習動機,並培養解決問題的能力。 在 Youtube 頻道【LIS情境科學教材】上,我們會即時更新所有LIS教材的影片,而完整的教案、學習單,亦同步上傳於【LIS教材平台網】歡迎您前往瀏覽完整內容。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

2
0

文字

分享

0
2
0
破除歐洲殖民之前的非洲沒有科學發展史的迷思!非洲原來也有豐富的科學傳統?——《被蒙蔽的視野》
時報出版_96
・2023/06/14 ・3003字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

1577 年 11 月,廷布克圖(編按:城市名)上空出現了一陣壯麗的流星雨,那座城市就位於現今的馬利(Mali)(編按:位於西部非洲的國家)境內。有關西非天文現象的報告,在整個十六和十七世紀期間都不斷出現。十七世紀早期一位西非編年史家阿卜杜.薩迪(Abd al-Sadi)便曾記載道:

一顆彗星出現在眼前。它在黎明時分從地平線升起,接著一點一點上升,並在日落和黑夜之間達到正上空。最後它消失不見。

西非皇廷裡的天文學家

我們在本章已經見到,在這段時期,伊斯蘭世界各地,從撒馬爾罕到伊斯坦堡的統治者,對天文學是抱持著多麼濃厚的興趣。撒哈拉以南非洲地區也有這相同的情況。許多文學家受聘在桑海帝國(Songhay Empire)統治者阿斯基亞.穆罕默德(Askia Muhammad)的皇廷工作。桑海帝國是個伊斯蘭蘇丹國,16 世紀期間控制了西非大半地區。這些天文學家協助編制年曆並提供宗教指引,對桑海帝國統治做出貢獻。

海桑帝國在十五世紀的領土範圍。約在今日的西非撒哈拉沙漠和沙漠以南的區域。圖/wikipedia

阿斯基亞.穆罕默德本人是個虔誠的穆斯林,支付他的天文學家豐厚的俸祿,要他們協助計算禮拜時間和齋戒月日期。另有些人則奉命判定麥加的方向。

十六世紀廷布克圖出現了天文學家的身影,見證了撒哈拉以南非洲地區在現代科學史上所扮演的重要地位。這個地方比其他任何地帶都更被人排除在科學革命歷史之外。然而就連在認可更廣闊世界之重要性的科學史料當中,撒哈拉以南非洲地區,依然是令人起疑地完全缺席。

-----廣告,請繼續往下閱讀-----

然而,歐洲殖民時期之前的非洲並沒有科學的想法是個迷思,而且急需更正。就像世界其他地區,非洲也擁有豐富的科學傳統,而且在十五和十六世紀時,還隨著宗教和貿易網絡的擴張而經歷了重大轉變。

因此,與其將撒哈拉以南非洲地區看成與世界其他範圍區隔開來的地帶,我們必須把它看成我們在本章所深入探究的這同一段故事——全球文化交流的故事——的一個環節。

與世界各地聯繫 貿易網絡的擴張和伊斯蘭教的傳入

廷布克圖在十二世紀建城,接著在十五和十六世紀期間經歷了大幅擴張,特別是在桑海帝國興起之後。桑海帝國在一四六八年掌控了那座城市。這次擴張主要是跨撒哈拉地區的貿易勃興所驅動,商旅隊伍絡繹於途,從廷布克圖運送黃金、鹽和奴隸到埃及以及其他地方,並藉由絲路把西非與亞洲連接起來。

在這同一時期,其他非洲王國也開始在沿岸地區與歐洲人進行貿易。這標誌了跨大西洋奴隸貿易的開端,所造成的衝擊,我們在接下來兩章就會更詳細深入探究。

廷布克圖很快富裕起來,也讓桑海帝國的統治者得以支撐起「一所富麗堂皇,內裝豪華的宮廷」還加上了「眾多醫師、法官、學者、和祭司」。

-----廣告,請繼續往下閱讀-----

除了貿易、宗教之外,還有個關鍵因素讓非洲和更寬廣世界連繫起來。穆斯林在公元七世紀征服北非之後,從十世紀開始,伊斯蘭教便擴散跨越撒哈拉傳入西非。接著從十四世紀開始,伊斯蘭教就愈來愈廣泛散播開來,特別在鄉村地帶。就在這段期間,除了進口手抄本之外,西非伊斯蘭學者也開始在各地方著述愈來愈多原創手抄本,這些地點包括廷布克圖等都市。非洲統治者早就體認到,伊斯蘭教對於鞏固政權的重要性。阿斯基亞.穆罕默德甚至還曾於一四九六年,在廷布克圖許多學者陪同下,完成了一趟麥加朝聖之旅。

天文學知識的傳入 進一步引發科學發展

隨著貿易和朝聖而來的是知識。阿斯基亞.穆罕默德從麥加返國時,帶回了好幾百部阿拉伯手抄本,內容詳細記載了從天文學新觀點到伊斯蘭教法原則等一切事項。商人從撒哈拉各地回到西非時,也帶來了在伊斯坦堡和開羅購買的一批批阿拉伯手抄本。

「這裡有從巴巴里(Barbary)(編按:北非地名)帶來的手抄本書籍,比其他任何商品獲利都更豐厚,」十六世紀的著名旅行家利奧.阿非利加努斯(Leo Africanus)在他前往廷布克圖時便曾這樣寫道。

另有些手抄本則是隨著許多伊斯蘭學者抵達,他們是在天主教征服穆斯林西班牙時逃來此處,那次戰役最終便導致格拉納達酋長國(Emirate of Granada)在十五世紀末敗亡。稍後我們就會見到,阿拉伯手抄本在西非的散播,最終便導入了科學的轉型,這段故事與文藝復興時期的歐洲有驚人的相似之處。

-----廣告,請繼續往下閱讀-----
廷布克圖手抄本的其中一頁,內容是關於數學與天文學,並以阿拉伯文記載。這些收抄本也象徵著阿拉伯地區的知識傳入,對西非地區的科學發展史有重要的影響。圖/wikipedia

在伊斯蘭教傳播之前,非洲民眾就仰觀天象。古馬利多貢人(Dogon)為所有不同星辰命名,而南非的科薩人(Xhosa)則在夜間使用木星來引路。中世紀貝南王國(Kingdom of Benin,位於當今的現代奈及利亞)的統治者甚至還聘僱了很特別的一群天文學家來追蹤太陽、月球和星辰在全年期間的運行。這群專家稱為伊沃烏基(Iwo-Uki),也就是「月升協會」(Society of the Rising Moon)

這對於規劃農曆尤其重要。貝南王國首都的中世紀天文學家,密切監看獵戶座腰帶的推移並宣告「當這顆星從天空消失,民眾就知道,該種植山藥了」。伊費王國(Kingdom of Ife,也是位於現今奈及利亞境內)的中世紀統治者,同樣體認到天文學對於城內農業和宗教生活的重要性。伊費城是約魯巴文化(Yoruba culture)的一處核心,城內有許多神殿。國王在這附近建造了一批大型花崗岩柱,用來追蹤太陽運行,並判定宗教節日時間以及年度收成時節。

從十五世紀起,這些現存的天文學傳統經歷了重大變遷。就像在歐洲,非洲學者也開始藉由阿拉伯文譯本來研讀(諸如亞里士多德和托勒密等)古希臘思想家的著作。夜間,成群學生齊聚營火周圍,看著星辰流逝,並拿他們測定的結果來與見於種種阿拉伯手抄本的星曆表做個比較。

其中一部手抄本很可能在十六世紀的廷布克圖被用來教導天文學,書名稱為「星辰運動的知識」(Knowledge of the Movement of the Stars)。它一開始先解釋古希臘和羅馬作者的天文學理論,隨後轉向較為晚近的伊斯蘭思想家,好比海什木,他在十一世紀針對托勒密的天文學寫出一部影響深遠的批評著述。那部手抄本接著還解釋,如何判定特定星辰的位置,還有它們在占星上的重要意義。

-----廣告,請繼續往下閱讀-----

還有一部手抄本是廷布克圖一位名叫穆罕默德.巴哈約戈(Muhammad Baghayogho)的學者寫的,內容解釋了如何計算出白天(使用日晷)和夜晚(使用月球位置)的禮拜時間。巴哈約戈在十六世紀早期完成了一趟麥加朝聖,而且他擁有十分豐富的阿拉伯手抄本藏書,在廷布克圖首屈一指,他還針對十六世紀鄂圖曼一位名叫穆罕默德.塔朱里(Muhammed al-Tajuri)的天文學家所著作品撰寫了一部評註。沒錯,你在廷布克圖找得到的手抄本,不只是以阿拉伯文寫成的,還包括鄂圖曼土耳其文的內容,這就顯示在這段時期,鄂圖曼和西非的科學發展,有很密切的關係。

——本文摘自《被蒙蔽的視野:科學全球發展史的真貌》,2023 年 5 月,時報出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

1
0

文字

分享

0
1
0
你以為只有歐洲發展科學嗎?用不同角度看科學史,16 世紀伊斯蘭世界的「文藝復興」!——《被蒙蔽的視野》
時報出版_96
・2023/06/12 ・1712字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

學者八方雲集的伊斯坦堡

哥白尼在歐洲掀起一股風潮之時,鄂圖曼帝國的天文學家和數學家,也正進入他們自己的文藝復興時期。從十五到十六世紀之間,鄂圖曼科學思想家產生出了超過兩百項天文學原創著作,再次挑戰伊斯蘭科學隨著中世紀「黃金時代」結束而沒落的觀點。

16 世紀伊斯坦堡地圖。圖/wikimedia

一四五三年伊斯坦堡征服之後,眾多穆斯林學者來到鄂圖曼,並在蘇丹資助之下投入工作,塔居丁只是這當中的一個。烏魯伯格死後,撒馬爾罕天文台的首席天文學家阿里.卡什吉前往伊斯坦堡,受僱在設於城中的一所伊斯蘭學校中工作,當時鄂圖曼人創辦了好幾百所這樣的學院。其他學者也從伊斯蘭世界各地,分頭來到了伊斯坦堡,包括波斯和蒙兀兒印度(Mughal India)。

得天獨厚的研究環境

在此同時,我們有必要記得,伊斯坦堡從來就不是個排外的穆斯林城市。猶太人和基督徒也在鄂圖曼宮廷找到贊助。猶太天文學家大衛.本-殊山在伊斯坦堡天文台與塔居丁共事,而穆罕默德二世的御醫也是個猶太人,是從文藝復興時期義大利逃來的難民。座落於歐洲與亞洲的十字路口,早現代時期的伊斯坦堡是一座國際大都會,在這裡面― 誠如我們在其他地方已經見到的― 宗教和貿易網絡在十五和十六世紀時期的擴張,促成了科學的轉型。

事實上,鄂圖曼的這段故事和歐洲的科學革命史有很多相似之處。就如同文藝復興時期的歐洲,鄂圖曼的科學思想家對古希臘作者的著述,也抱著很濃厚的興趣。

-----廣告,請繼續往下閱讀-----

穆罕默德二世擁有大批古希臘手抄本藏書,全都在征服伊斯坦堡期間繳獲。秉持悠久的伊斯蘭傳統,蘇丹接連委派將這些古希臘作品重新翻譯成阿拉伯文。為配合鄂圖曼宮廷的國際性本質,這些譯本便由拜占庭希臘人完成。就像在歐洲的情況,鄂圖曼科學思想家也在這一時期開始閱讀並翻譯更早期的伊斯蘭思想家的著作。阿里.卡什吉的天文學手抄本也經翻譯為鄂圖曼土耳其文,圖西的作品也同樣如此。這位十三世紀的天文學家的種種觀點,對哥白尼造成了十分深遠的影響。

16 世紀的哥白尼畫像。 圖/wikimedia

到了十七世紀中期,鄂圖曼科學思想家也開始閱讀歐洲的天文學著述。一六六二年,一位名叫特茲基雷奇.科斯.易卜拉欣(Tezkireci Köse Ibrahim)的鄂圖曼天文學家便解釋道:

「哥白尼奠定了一個新基礎,並編結出一個小型『紡索』星曆表,假想地球會動。」

易卜拉欣甚至還畫了幅草圖,勾勒出哥白尼著名的日心宇宙模型。

與歐洲相似發展故事

因此,我們可以開始看到眾多與傳統歐洲科學革命故事相仿的雷同情節。鄂圖曼的科學思想家也閱讀並翻譯古希臘文本,而且他們也學習借鑑比較晚近伊斯蘭作者的著述,來批評這些比較古老的理念。畢竟,在伊斯坦堡這座都市― 歸功於它位於絲路上的位置― 你很容易就能接觸到以種種不同語文寫成的科學手抄本,包括從拉丁文到希臘文,乃至於波斯文和阿拉伯文的著述。

-----廣告,請繼續往下閱讀-----
在當時的伊斯坦堡,可以相對容易的獲得各種語言的著作。 圖/envato

不只如此,歐洲文藝復興的核心理念,在伊斯蘭世界也能找到雷同之處。這在阿拉伯文中稱為 tajdid(原文意指「更新」)。傳統上,這是宗教學者用來描述伊斯蘭教改革的術語。然而從十五世紀開始,tajdid 的概念就開始被使用得遠更為廣泛,成為某種關於振興的運動的一部分,而且被振興的不只宗教,也兼及伊斯蘭科學。這場運動並不局限於伊斯坦堡。到下一節我們就會看到,天文學、數學和伊斯蘭教之間的牽連,順著絲路向西傳播,跨越撒哈拉沙漠並來到非洲。

——本文摘自《被蒙蔽的視野:科學全球發展史的真貌》,2023 年 5 月,時報出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。