0

0
0

文字

分享

0
0
0

揭開 p53 抑癌功能的足跡—《p53:破解癌症密碼的基因》

商周出版_96
・2016/09/18 ・2984字 ・閱讀時間約 6 分鐘 ・SR值 544 ・八年級

人類在 1979 年發現 p53 這個基因,這個基因是癌症這件大事最重要的因子之一,也就是人類細胞中的總開關,主要功用在於細胞 DNA 受損時防止腫瘤形成。1985 年至 1986 年間,科學家仍將 p53 視為致癌基因,但它不依循致癌基因規則的清況也讓人相當費解。

昆蟲病毒是外源蛋白的工廠

在學術假期間,普利斯(Carol Prives,紐約哥倫比亞大學生化學家)除了明白要在自認不足的領域中與人競爭是徒勞無功之事,也意識到,要了解一種蛋白,就必須想辦法取得足夠進行實驗的材料。

她有幸認識了桿狀病毒專家洛伊絲.米勒(Lois Miller)。桿狀病毒是種專門感染昆蟲、蜘蛛與甲殼動物等節肢動物的病毒。從歷史上來看,這些小小的生命體首度出現在描述蠶生病的中國古籍裡,而這些病毒藏身在蠶皮膚內的惡臭爛肉中。桿狀病毒不僅對十九世紀末期歐洲絲織工業的沒落有著舉足輕重的影響,至今對養蝦業也是一大威脅。

不過從 1980 年代起,桿狀病毒已有助於農業蟲害的生物控制。它們具有能夠製成友善環境的殺蟲劑的潛力,並促使人們進行大量相關的分子生物實驗。這些實驗顯示出桿狀病毒另一個同樣價值非凡的特性——它能夠大量生產蛋白,包括人工嵌入其 DNA 中之外源基因(foreign proteins)所編碼的蛋白。

10008-021
桿狀病毒。圖/科技大觀園

「洛伊絲似乎是在跟我討論過之後,覺得應該以桿狀病毒同時來表現 SV40(猿猴空泡病毒 40,simian vacuolating virus 40) 大 T 抗原(large T antigen,SV40 DNA中的致癌基因,會在受感染的宿主細胞中產生腫瘤)及 p53 蛋白。她也好心地給了我們這些病毒,」普利斯說。

她以兩種蛋白一起進行實驗,很快就有了重大發現——p53 會抑制猿猴病毒蛋白,防止它啟動細胞中的複製機制。她發表了自己的發現,時間就在 p53 被發現具有抑癌基因的正常功能後不久。

-----廣告,請繼續往下閱讀-----

「接著,我接到一通來自貝爾特.沃格斯坦(Bert Vogelstein)的電話,而我當時從沒聽說過這個人。他說:『妳可以寄些蛋白給我嗎?我們有些有趣的想法。』我就回說:『沒問題。』我對這個人完全不了解,但他似乎很友善。」

不久之後,沃格斯坦請求普利斯可否為他製造一些桿狀病毒,他要以此從各式癌症腫瘤中的 p53 突變基因來獲取蛋白。他想將這些蛋白的活性與正常 p53 的活性進行比對。

揭開 p53 功能的足跡

當沃格斯坦在巴爾的摩的實驗室中忙碌時,往北 270 公里的紐約,普利斯恰巧有了 p53 活動上的重大發現。一位名為喬.巴格那堤(Jo Bargonetti)的年輕博士後研究員,在實驗中有了新發現。巴格那堤那時剛加入普利斯的實驗室,她對 p53 究竟是如何避免大 T 抗原開啟猿猴病毒感染細胞中的 DNA 複製機制,表現出想要深入了解的興趣。「我們跟她嚴正聲明:別做那個,那很無趣,我們已經知道結果,去做其他的研究,」普利斯笑著說。但巴格那堤卻堅持說,她要做個「足跡」(footprint)實驗。

551px-Courtney_2008
足跡實驗示意圖。圖/By Cwhanna (talk) – Own work, Public Domain, wikimedia commons.

「足跡實驗是一種非常講究的實驗,一般不常做。」普利斯解釋道。這種實驗必須在監控下在試管中混合純化蛋白與 DNA,並在其中加入酶。酶的作用就如同化學剪刀,將 DNA 剪成小段。不過,如果蛋白與 DNA 結合,「剪刀」就無法剪斷此點的條狀遺傳物質。混合物最後會在凝膠中進行電泳,將 DNA 的片段排入「階梯」之中。若是蛋白與 DNA 沒有結合,階梯就跟原來一樣,若是蛋白與 DNA 結合了,階梯裡就會有空隙。「如果你知道要怎麼讀取序列,觀察凝膠就可以知道蛋白確切嵌在 DNA 的哪個位置上。」普利斯說。

這裡必須解釋一下,才能了解巴格那堤發現的東西具有何種重要性。一般而言,與 DNA 結合的蛋白(蛋白將自己附著在基因雙股螺旋的某個點上)的功能就是控制該區域的基因表現,適時開啟及關閉基因。具有此種功能的蛋白稱為「轉錄因子」(transcription factors),事實上也就是細胞內活動的總指揮。當時已經知道大 T 抗原是種轉錄因子,因為它會在感染 SV40 病毒的細胞內啟動 DNA 複製機制。巴格那堤混合大 T 抗原及 p53 蛋白進行足跡實驗,就是想實際從中了解 p53 如何阻礙大 T 抗原與 DNA 結合,讓它們無法開啟機制。「我們跟她說:『好吧!如果妳堅持的話,那就去做吧!』」普利斯說,她什麼也沒多想,留下這位年輕科學家跟她自己的器材就離開了。

-----廣告,請繼續往下閱讀-----

但巴格那堤發現的比普利斯預期的還要多。「有一天她來找我說:『我成功了,但有個大問題……p53 在凝膠上出現了這些模式。』」知道這是科學上罕見的大發現時刻,普利斯回應道:「這不成問題——妳是世界上最幸運的人了!」

p53在 DNA 階梯出現清楚且意料之外的足跡,這即是抑癌基因如何運作的第一個線索,因為它也是個轉錄因子。我們現在知道它是個非常強大的轉錄因子,坐鎮在我們身體內每個細胞中、掌管生死訊號的網絡中心。

沃格斯坦也透過另外一個途徑發現到 p53 是個轉錄因子。他的實驗室觀察到 p53 蛋白是在細胞核中活動,而非在細胞質中——細胞核是細胞儲存 DNA 的發電廠。轉錄只發生在細胞核中,而許多在此活動的蛋白都與基因表現的控制有直接或間接的關係。因此,沃格斯坦團隊開始進行實驗,以了解 p53 是否會與 DNA 結合(這是轉錄因子的特性),也發現確實是這樣。

Bert_Vogelstein_giving_the_Trent_Lecture
在 p53 研究中的重要一角——約翰霍金斯癌症中心癌症學家貝爾特.沃格斯坦(Bert Vogelstein)。圖/By Raymond MacDougall – National Institutes of Health, Public Domain, wikimedia commons.

「這件事另外有個同樣重要的部分,」沃格斯坦解釋,「我們不只看到它結合的 DNA 序列,也發現它除了結合到這些序列外,還活化了『下游』基因——也比較所有情況下的野生型(也就是正常基因,可發揮天生的功用)與突變型(行為異常的基因) p53。」讓我們覺得滿意且認定自己是朝正確方向邁進的是,我們觀察到每個突變型 p53 都缺乏與 DNA 結合的能力。我們已經能夠複製它們了,記得吧?這讓我們可以明確測試突變是否會干擾這項功能——結果無一例外,每個突變型 p53 都無法與 DNA 結合。這讓我們相信結果是正確的—我認為世界上其他人也會這麼認為。」

巴格那堤也使用沃格斯坦的突變型 p53 蛋白,做為自己野生型 p53 實驗的對照組來進行足跡實驗。「巴格那堤說:『你知道嗎?只有野生型有這樣的模式,突變型並沒有,』」普利斯接著說,並將手放在胸口表現出對此發現興奮到無法呼吸的模樣。「我簡直是,啊啊啊……像死了上天堂那樣!我的意思是,這真是完美啊!……巴格那堤的足跡實驗並不完美,結果不是非常明顯,但它的確明白顯示野生型辨識 DNA 的模式,而突變型則無法辨識。這是絕對清楚明白的。」普利斯停下來思索一會,然後說:「你知道嗎?我從事科學這麼多年,從不認為自己有做出什麼,直到出現些有意義的東西為止。」

-----廣告,請繼續往下閱讀-----

普利斯實驗室也經由檢測放置在實驗室培養皿中的細胞,來驗證足跡實驗的發現。他們發現野生型 p53 確實如同轉錄因子般作用,而突變型不會。同時,沃格斯坦實驗室也顯示他們在生物體內也有同樣的發現。這兩間實驗室在那時經常交流,並於 1991 年以共同作者的身分,在深具影響力的期刊《科學與致癌基因》(Science and Oncogene)中發表論文。

但 p53 身為總開關的活動情況,與它保護我們免於癌症侵擾之間的關聯是什麼?抑癌基因本身如何啟動?當這一切發生時,p53 確切又做了什麼?這些是接下來要思考的部分。


BU0121_p53-立體書封300

 

 

本文摘自《 p53:破解癌症密碼的基因》商周出版

文章難易度
商周出版_96
119 篇文章 ・ 362 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
1

文字

分享

0
1
1
腦腫瘤新對策:微創開顱手術避免傷及重要神經
careonline_96
・2024/07/10 ・2039字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

劉育志醫師:大家好,我是劉育志醫師,歡迎林亞銳醫師來到照護線上。

林亞銳醫師:大家好,我是林亞銳醫師。

劉育志醫師:請問顱底腫瘤可能產生哪些症狀?

林亞銳醫師:基本上顱底腫瘤會牽涉到顱底的一些神經跟血管,所以大部分造成的症狀,都是顱神經的症狀,比如說壓迫到視神經,就會造成視線的模糊,壓到眼球運動的神經,就會造成複視的狀況,如果壓到聽力、顏面神經,就會有一些相對應的顏面神經癱瘓,或是聽力受損,進而如果是在比較接近頸椎的部分,有時候就會有吞嚥,跟聲音沙啞的狀況,因為顱底也有一些腦幹的解剖構造,所以也會造成步態偏移的症狀。

-----廣告,請繼續往下閱讀-----

劉育志醫師:顱底腫瘤的手術會面臨哪些挑戰?

林亞銳醫師:顱底腫瘤附近有很多重要的神經血管,因此要在這些重要的神經血管中,移除腫瘤,同時保存這些重要的神經血管,這是其中最重大的挑戰。

劉育志醫師:目前有哪些工具,能輔助顱底腫瘤的手術?

林亞銳醫師:以顱底手術而言,都會需要借助高畫質的顯微鏡,可以幫助我們更清楚,分辨重要神經血管的位置,跟腫瘤相對應的關係,也必須藉由一些高速的氣鑽,幫助我們將旁邊的一些骨頭移除,才可以把腫瘤安全的拿掉,其中當然還是需要一些,精密的術中神經功能監測,可以讓我們在手術中,更能知道重要的血管,或是重要的神經的位置,這樣我們就可以更放心,把腫瘤移除。

-----廣告,請繼續往下閱讀-----

劉育志醫師:請問什麼是微創鑰匙孔開顱手術?

林亞銳醫師:顧名思義就是藉由比較小的傷口,以一個像鑰匙孔大小的開顱手術,來進行腫瘤的移除,因為電腦斷層跟磁振造影,影像的進步,讓我們可以知道這些腫瘤附近,有沒有重要的神經血管,再經由比較高畫質的顯微鏡,我們就可以經由比較小的傷口,去看清楚腫瘤的位置,也在手術的切除過程當中,可以更安心的把周圍的神經血管看清楚,可以更小心的剝離,達到微創的開顱手術。

劉育志醫師:相較於傳統手術,微創鑰匙孔開顱手術有哪些優勢?

林亞銳醫師:傳統的開顱手術通常傷口會非常大,也會將骨頭做大規模的移除,這樣來講病人的失血量,跟未來的美觀上面,都會遭受到很大的影響,因此現在有微創的開顱手術,傷口可以縮小到 3 至 5 公分,骨頭可以只鋸掉大概 2×2 公分的大小,經由這個切口就可以進去移除腫瘤,這樣對於病人來講,未來的外觀上面會相當美觀,整個手術的進行,也會讓失血量相當少,病人的恢復也會相當快,可以把住院的天數也同時縮短,優點很多。

-----廣告,請繼續往下閱讀-----

劉育志醫師:請問微創鑰匙孔開顱手術,會如何進行?

林亞銳醫師:我們通常是藉由眉毛上面,劃一個 3 至 5 公分的切口,把傷口藏在眉毛裡面,從這邊去做一個小的開顱,進而進到我們的顱底,可以經由這麼小的傷口,移除一個相當巨大的顱底腫瘤。

林亞銳醫師:有一位大概 50 幾歲的男性,因為頭暈、頭痛就到急診求診,同時伴有噁心、嘔吐、視力模糊,做電腦斷層,發現有蜘蛛網膜下腔出血,這種最常見的就是動脈瘤破裂出血,因此在急診,我們就有給他做電腦斷層的血管攝影,電腦斷層的血管攝影,發現他有前交通動脈瘤的破裂,在它旁邊剛好也有一顆小顆的動脈瘤,因此他同時有兩顆動脈瘤,因為位置正好在附近,我們就進行了鑰匙孔開顱手術,去針對這兩顆動脈瘤做夾閉的手術,進行的過程非常順利,病人恢復也很快,在術後的第一天,就從加護病房轉到普通病房,並在術後的第七天就出院回家,現在在門診追蹤都恢復得相當好,傷口也相當美觀,病人相當的滿意。

林亞銳醫師:微創鑰匙孔開顱手術,從 2011 年開始引進林口長庚,至今我們大概已經有累積將近 200 個病例,隨著技術的成熟與演進,目前我們已經將微創鑰匙孔開顱手術,應用在很多,除了腫瘤之外,包括動脈瘤的手術上面,如果我們經由一個微創鑰匙孔開顱手術,讓病人可以恢復得很快,以外科手術來夾閉動脈瘤,會讓動脈瘤的復發率降到最低。

-----廣告,請繼續往下閱讀-----

劉育志醫師:感謝林醫師來到照護線上,我們下次再見,掰掰。

林亞銳醫師:掰掰。

討論功能關閉中。

1

3
0

文字

分享

1
3
0
不抽菸也會得肺癌?PM2.5 如何「叫醒」沉睡的癌細胞?
PanSci_96
・2024/06/25 ・4400字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

不好意思,你很可能會得這種癌症。其實,我也是。

它就是台灣十大癌症榜首,肺癌。

現在,根據 2023 年 11 月衛福部發布的最新統計數字,肺癌一年的新增病人數已經超越大腸直腸癌,成為台灣每年癌症發生人數之最,堪稱臺灣人的「國民病」。

可怕的是,肺癌在癌症之中有三個之最:死亡率最高、發現時已經是晚期的比例最高、醫藥費也最高。現在再加上發生人數最高,堪稱從癌症四冠王。

-----廣告,請繼續往下閱讀-----

你說肺癌是抽菸的人的事?錯!台灣抽菸人口比例在全球排名 30,比日本、韓國、中國和多數歐洲國家都還低!顯然抽菸並不是肺癌的唯一主因!那難道是二手菸?還是空污惹的禍?還是台灣人的基因天生脆弱?我們到底要怎麼做才能遠離肺癌?

臺灣人的肺癌特別在哪?癌症和基因有關嗎?

根據衛福部國健署的說法,肺癌人數的增加,其實與 2022 年 7 月開始推動肺癌篩檢的政策有關。

隨著篩檢量的上升,近年內肺癌的確診人數預期還會再往上。

原來是因為篩檢量啊,那就不用擔心了。但換個角度想,這才是肺癌最可怕的地方,它可能已經存在在很多人身體裡,而我們卻沒能發現它。肺癌早期幾乎沒有症狀,高達 50% 的患者發現時已經是第 4 期。屆時不只肺部遍布腫瘤,癌細胞可能還轉移到大腦、骨頭等器官,讓治療變得加倍困難。

-----廣告,請繼續往下閱讀-----

對付肺癌,最關鍵點是愈早發現愈好。按照國健署統計,如果第 1 期就發現,5 年存活率可達九成以上,第 2 期發現降為六成,第 3 期存活率大約三成,一旦到第 4 期,僅僅剩下一成。

當然,最好的方法,就是做好預防,打從一開始就不讓癌細胞誕生。

那麼我們就要先了解問題到底是出在環境,還是你、我身體中的基因? 過去關於肺癌的遺傳研究,多半以歐美國家為主,套用到我們身上總有些牛頭不對馬嘴。幸好,我這裡一份以臺灣人為主角的大規模研究報告,將為我們揭露答案。

這份研究是由中央研究院團隊主導,結合臺灣大學、臺北醫學大學、臺中榮總等單位的研究,還登上生物領域頂尖期刊《Cell》2020 年 7 月的封面故事。非常具有權威性,不能不看。

-----廣告,請繼續往下閱讀-----

同時,這也是全球第一次完整剖析東亞地區肺癌的成因。他們的主題很明確:「為什麼不吸菸也會得肺癌?」

在西方,肺癌病人裡面只有 20% 左右的人不吸菸。但是在臺灣,卻有超過一半的肺癌病人都不抽菸,顯示有其他致癌要素潛伏在基因裡作怪。另外,臺灣肺癌病人的男女比例和西方人也大不同,臺灣女性通常更容易罹患肺癌。 為了瞭解肺癌,研究團隊取得肺癌病人的腫瘤和正常組織,解讀 DNA 序列和蛋白質表現量,最後鑑定出 5 種和西方人明顯不同的變異特徵。

其中最受關注的,是一種 APOBEC 變異,因為它有可能是臺灣女性為什麼容易罹患肺癌的關鍵。

這種變異特徵屬於內生性的,也就是人體機制自然產生的 bug。

-----廣告,請繼續往下閱讀-----

APOBEC 不是指單一基因,它是細胞內負責編輯 mRNA 的一組酵素,包含 11 個成員。主要功用是把胞嘧啶核苷酸(C)轉變尿嘧啶核苷酸(U)。簡單來說,APOBEC 原本是細胞正常活動的一環。但因為它有改寫核酸序列的能力,在 DNA 修復過程同時活躍時,就很有可能出事。這就像是一個創意豐富的阿嬤,看到破損的古畫,就在沒和別人討論的情況下上去東湊西補,用自己的方式重新修復了這件藝術。一個與原本不同的突變細胞可能就這樣產生了。

APOBEC 變異在臺灣女性病人身上特別明顯,舉例來說,60 歲以下沒有吸菸的女性患者,就有高達四分之三有這種變異特徵。研究團隊認為,APOBEC 出錯造成的基因變異可能是導致女性肺癌的關鍵。 除了內生性變異,另外一個容易導致肺癌發生的,就是周遭環境中的致癌物。

致癌物有哪些?

研究團隊總結出 5 種肺癌危險物質:烷化劑、輻射線、亞硝胺(Nitrosamine)、多環芳香烴(PAHs),還有硝基多環芳香烴(Nitro-PAHs)。

其中,亞硝胺類化合物主要來自食品添加物和防腐劑,多環芳香烴大多來自抽菸和二手菸,硝基多環芳香烴則是透過汽機車廢氣和 PM2.5 等毒害肺部。

-----廣告,請繼續往下閱讀-----
圖/unsplash

他們進一步分析,大略來說,女性在不同年紀,致癌因素也有差異。60 歲以下的女性肺癌病人,APOBEC 特徵的影響比較明顯;70 歲以上的女性患者,和環境致癌物的相關度比較高。 既然找到致癌原因,我們該如何著手預防呢?你知道肺癌,其實有疫苗可打!?

空氣污染和肺癌有關嗎?有沒有癌症疫苗?

想預防肺癌,有 2 種對策,一種是「打疫苗」,一種是「抗發炎」。

是的,你沒聽錯,英國牛津大學、跟佛朗西斯.克里克研究所,還有倫敦大學學院在 2024 年 3 月下旬公布,他們正在研發一款預防性的肺癌疫苗,就叫 LungVax。它所使用的技術,和過往牛津大學協同阿斯特捷利康藥廠製造 COVID-19 AZ 疫苗時的方法相似。

他們已經募到一筆 170 萬英鎊的經費,預計未來兩年資金陸續全數到位,第一批打算先試生產 3000 劑。不過,關於這款肺癌疫苗,目前透露的消息還不多,我們挺健康會持續追蹤這方面研究的進展。

-----廣告,請繼續往下閱讀-----

在疫苗出來之前,我們還有第二個對策:抗發炎。發炎和肺癌有什麼關係呢?這就要先回到一個問題:為什麼空污會提高得肺癌的機率呢?

一個很直觀又有力的推測是,空污會導致肺部細胞 DNA 突變,因此而催生出腫瘤。

圖/unsplash

但是修但幾勒,科學要嚴謹,不能只看結果。科學史上發生過很多次表象和真實截然不同的事件,空污和肺癌會不會也是這樣?

2023 年 4 月《Nature》的一篇封面故事,明確地說:Yes!肺癌真的和我們想的不一樣。

-----廣告,請繼續往下閱讀-----

其實早在 1947 年,就有以色列生化學家貝倫布魯姆(Isaac Berenblum)質疑主流觀點,他提出的新假設是:除了 DNA 突變以外,癌細胞還需要其他條件才能坐大。用白話說,就是肺癌是個會兩段變身的遊戲副本頭目,正常細胞先發生變異,接著再由某個條件「扣下扳機」,突變細胞才會壯大成腫瘤。

也就是説,只要攔住任一個階段,就有機會能防範肺癌。假如這論點正確,全球肺癌防治的方向將會直角轉彎。

《Nature》的研究支持這個假說,扭轉了過去 70 多年來的看法。在這項里程碑研究中,臺灣也是要角。

時間回到 2020 年,《Nature Genetics》上發表了一份針對 20 種致癌物質的研究報告,包括鈷、三氯丙烷和異丙苯等,但注意,這研究指出這些致癌物大多沒有增加實驗鼠的 DNA 變異量。

這個現象實在太違反直覺,過了 3 年,疑團還是懸而未決。直到《Nature》的跨國研究出爐,才解開部分謎底。

英國倫敦佛朗西斯.克利克研究所主導 2023 年的一項研究,他們鎖定對象為肺腺癌。肺腺癌是典型「不吸菸的肺癌」,台灣每 4 個肺癌病人就有 3 人是肺腺癌,尤其是女性肺腺癌患者有高達九成不抽菸。 為了抽絲剝繭探明空污和肺癌的關係,研究團隊聚焦在肺腺癌患者常發生的表皮生長因子受體基因變異,縮寫 EGFR。他們收集英國、加拿大、韓國和臺灣四國大約 3 萬 3 千名帶有 EGFR 突變的病人資料,進行深入分析,並且發現 PM2.5 和肺腺癌發生率有顯著關聯。研究團隊進一步用小鼠做試驗,把小鼠分成吸入和未吸入 PM2.5 兩組,結果發現吸入組更容易長出惡性腫瘤。

圖/pexels

到目前為止都還不算太意外,然而,團隊切下肺部細胞、分析 DNA 以後發現,DNA 的突變量居然沒有明顯增加!但是有另一件事發生了:堆積在肺的 PM2.5 顆粒會吸引免疫細胞從身體各處聚集過來,並分泌一種叫做 IL-1β 的發炎因子,導致肺組織發炎。

這下子有趣了,根據克利克研究所團隊的檢驗結果,估計每 60 萬個肺部細胞有 1 個帶有 EGFR 突變,這些細胞在發炎環境裡會快馬加鞭生長。相反的,當他們給小鼠注射抑制 IL-1β 的抗體,肺癌發病率就跟著下降。 《Nature》一篇評論引述美國加州大學舊金山分校分子腫瘤學專家波曼(Allan Balmain)的看法。他總結說,空污致癌的主要機制,可能不是因為空污誘發了新突變,而是持續發炎會刺激原本已帶有突變的細胞生長。換句話說,本來在熟睡的壞細胞會被發炎反應「叫醒」。

這會給肺癌防治帶來巨大衝擊,這樣一來,問題就從「用公衛或醫療方法防止 DNA 變異」變成了「如何抑制發炎」。

人體的細胞每天不斷分裂,用新細胞替換老舊細胞。但是這就像工廠生產線,良率無法百分百,組裝幾十萬產品難免會做出幾件瑕疵品,也就是帶有基因突變的細胞。換句話說,從自然界角度來看,DNA 變異是一種自發現象,醫療手段實際上幾乎不可能阻止。

但是,降低發炎卻是有可能做到的,例如注射抑制 IL-1β 因子的抗體。不過,就公共衛生來說,要給幾千萬人施打抗發炎因子藥物根本不切實際,因為太花錢,而且也可能造成其他的副作用。 波曼在《Nature》評論裡建議,透過簡易可行的飲食方式來降低體內發炎,或許有機會減少某些癌症的風險。這也就是說,科學家應該重新回來審視,怎樣把每天的生活點滴點石成金變成防癌手段。

圖/unsplash

這也等於預告了肺癌的下一階段研究方向,除了內科、外科醫療科技持續精進,尋求預防惡性疾病的最佳飲食要素,也成為聚焦重點。

也想問問你,關於肺癌,你最看好的下一個突破是什麼呢?

  1. 希望有篩檢技術 2.0,不但百發百中,如果連X光都不必照,只要抽血就能順便驗出有沒有癌細胞,那該多好。
  2. 當然是癌症疫苗,最好是能一勞永逸。
  3. 科學證實有效的抗發炎防癌食物組合,我一定立刻加入菜單,不過還是希望味道要好吃啦。

留言告訴我們你的想法吧,如果你覺得這集的內容特別實用,記得分享給你的親朋好友!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1