0

2
1

文字

分享

0
2
1

神經科學新技術─ 如何解開大腦的神祕訊息?

PanSci_96
・2016/08/27 ・4423字 ・閱讀時間約 9 分鐘 ・SR值 540 ・八年級
相關標籤: 神經 (89)

817px-DTI-sagittal-fibers
圖/By Thomas Schultz – Own work, CC BY-SA 3.0, wikimedia commons.

試想,如果一本書只能隨機讀取千分之一的文字,是要如何瞭解書中的內容呢?這是一直以來困擾科學家的問題──到底要如何大規模記錄每一個神經元所傳遞的訊號呢?

文/陳摘文|於台大與德國歌廷根大學取得電機學士與神經科學博士學位,畢業後到美國珍利亞研究所進行博士後研究,於 2015 年回臺任教,目前任職於國立陽明大學神經科學研究所。

每天當你睜開雙眼,流暢的高畫質影音便自動傳入你的大腦,毫不費力地,大腦對這巨量的訊息進行即時分析,辨識出影像中的每張面孔,跟記憶中上百張臉比對。依據過去的經驗,你做出了決定。你的念頭在一瞬之間抵達了位於左腦的語言皮質,在那裡合成出你的反應──「親愛的,早安。」這一切都發生在幾個毫秒之間,你的大腦是怎麼辦到的?

竊聽神經元訊號

人類的大腦由上千億顆神經細胞組成,每顆神經元的型態不盡相同,可是他們都透過調變細胞膜內外的電位差來傳遞訊號。一個多世紀以前,科學家就已經知道神經細胞的訊號,是以全有(1)或全無(0)的數位方式傳遞,猶如電腦的運作方式。神經細胞的 1,是大小約 0.1 伏特,持續約 0.001 秒的膜電位脈衝,科學家們稱之為「動作電位(action potential)」。

Action_potential_propagation_animation
動作電位示意圖。圖/By John Schmidt – Mars, GFDL, wikimedia commons.

一般認為,大腦神經元所有的溝通跟運算,都是透過動作電位來執行。這也難怪,一百多年來,科學家絞盡腦汁想要記錄神經元的電訊號,就如同特務在電話交換機夾上竊聽器一般,科學家在大腦中插入電極來竊聽神經元的秘密。可是,神經細胞的訊號非常微小,想要竊聽到單一細胞的訊號,電極必須要放在細胞旁邊,甚至要插到細胞裡面才行。然而,大腦像是個超高密度的積體電路,每立方公釐的組織裡擠著數萬個神經元。不夠微小的電極,或是實驗中最細微的震動,都是精密的神經網路最致命的殺手。

-----廣告,請繼續往下閱讀-----

這些困難都難不倒鍥而不捨的神經科學家。隨著科技的發展,如頭髮一般細的微電極,超靈敏、低雜訊的放大器,以及穩定的機器手臂陸續發明。這讓科學家能將電極準確插入腦中,並在麻醉或甚至是清醒的大腦裡分離出單一神經元訊號,讓我們一窺大腦運作的秘密。到目前為止至少有十多位諾貝爾獎得主的研究(包括 2014 年生醫獎的 3 位獲獎者),都與神經電訊號的紀錄與分析有關。

然而,即使在科技進步的今天,用微電極記錄腦中的每一個神經細胞,仍然是遙不可及的夢想。因為這代表著要在腦中插入無數的電極,並精準放置在每個細胞旁邊。以目前最先進的電極陣列,在一立方公釐大小的空間裡最多能記到約十多顆神經元,只占總細胞數的千分之一。試想,如果一本書只能隨機讀取千分之一的文字,是要如何瞭解書中的內容呢?這是一直以來困擾科學家的問題──到底要如何大規模記錄每一個神經元所傳遞的訊號呢?

分子探針潛入細胞

如果有一種超小型探測器,小到能輕易的放到細胞裡,量測細胞的訊號並且用無線的方式傳送出來,這樣我們是否有機會大量竊取神經細胞的密碼呢?這聽起來像是天方夜譚,可是 2008 年諾貝爾獎得主錢永健(Roger Yonchien Tsien) 竟然在 20 多年前就想到了辦法。他的實驗室開發出一系列超小型的無線生理訊號探針。令人驚訝無比的是,這些探針竟然比細胞小了 1000 倍以上,而且可以由細胞自行合成,稱之為分子探針(molecular probe)。

615px-Roger_Tsien-press_conference_Dec_07th,_2008-2
研發出分子探針的諾貝爾獎得主錢永健。圖/Prolineserver (talk) , GFDL 1.2, wikimedia commons.

生物學家很早以前就知道,細胞其實是複雜無比的微型工廠,無時無刻根據儲存在 DNA 序列中的基因藍圖,製造出細胞生存所需的超小型零件──蛋白質。根據不同 DNA 序列可製造不同的蛋白質,有的幫助細胞運送貨物,有的負責偵測細胞內的生理反應,有的協助細胞產生電訊號。

-----廣告,請繼續往下閱讀-----

海洋生物學家下村脩(Osamu Shimomura)發現,海中水母的細胞竟然會製造可發出螢光的蛋白質。換句話說,早在千萬年前,演化的愛迪生就已經發明了超小型的分子燈泡,在黑暗中照亮著大海。錢永健有個充滿野心的想法:既然演化創造了能偵測生理反應的蛋白質,以及可發出螢光的蛋白質,我們是不是能結合這兩種蛋白的功能,把細胞內的生理訊號轉換成螢光的訊號,傳送給在細胞外觀察的科學家

640px-Aequorea4
維多利亞多管發光水母(Aequorea victoria)。海洋生物學家下村脩就是從這種水母身上發現綠色熒光蛋白(Green Fluorescence Protein, GFP),而得到2008年的諾貝爾獎。圖/By Sierra Blakely, Attribution, wikimedia commons.

運用基因工程的技術,以及不斷的嘗試,錢永健的實驗室成功結合不同功能的蛋白質,創造出許多嶄新的螢光分子探針。這包括在 1997 年與宮脇敦史(Atsushi Miyawaki)首度發表的鈣離子螢光探針「變色龍(Cameleon)」。

Cameleon 是可由細胞自己合成的蛋白質分子,會根據周遭環境的鈣離子濃度,發出不同亮度的螢光。在細胞質內表現 Cameleon,科學家便可透過觀察細胞發出的螢光強弱,即時地推測細胞內鈣離子濃度的高低。在神經細胞之中,鈣離子濃度與細胞電訊號(即神經動作電位)有非常緊密的關連。每當神經細胞產生動作電位時,細胞內的鈣離子濃度都會有短暫且微小的上升。讀取這些細微的鈣離子濃度變化,將能讓科學家間接推知神經細胞所傳送的電訊號密碼。

超敏感螢光探針

在錢永健的 Cameleon 推出之後,日本的中井淳一(Junichi Nakai),德國的格里斯貝克(Oliver Griesbeck)等人陸續嘗試改良鈣離子螢光探針的敏感度,希望能將神經電訊號透過鈣離子探針轉換成光訊號。我在美國珍利亞研究中心(Janelia Farm Research Campus)進行的博士後研究,也以改良鈣離子螢光探針的敏感度為主題。運用大規模突變與自動化功能篩選,我們的團隊在 2013 年發表了新一代的超敏感鈣離子螢光探針 GCaMP6。GCaMP6 對微小鈣離子訊號的敏感度比過去提高了十倍之多。這讓科學家第一次能夠可靠地在活體動物的腦中偵測到單一細胞、單一個動作電位所產生的螢光訊號

-----廣告,請繼續往下閱讀-----

用光學影像偵測神經訊號有什麼樣的好處呢?首先,非侵入式的螢光造影免除了插入電極造成的傷害。目前最常使用的雙光子顯微鏡技術,運用紅外線脈衝光來激發螢光分子,可穿透數十層的細胞,偵測到大腦皮質深處單一細胞的微弱螢光訊號。其次,光學顯微鏡可以清楚解析細胞的型態與位置,讓我們瞭解所記錄細胞的身份。最重要的,光學方法讓大規模的神經訊號讀取不再是夢想。運用基因轉殖,科學家可在腦中每一顆神經細胞都放入鈣離子偵測蛋白。結合視野較大的鏡頭,可同時記錄數百或數千顆神經細胞。這種紀錄規模是過去運用微電極所無法想像的。

Print
在活體老鼠上,運用螢光探針與雙光子顯微鏡,觀察大腦皮質中數百個神經細胞對視覺刺激的反應,不同顏色代表著對不同視覺刺激產生反應的細胞。變化,將能讓科學家間接推知神經細胞所傳送的電訊號密碼。圖/作者提供。

大規模讀取神經訊號

短短幾年間,運用螢光探針大規模讀取神經訊號的技術已被廣泛運用在果蠅、斑馬魚及小鼠等模式生物研究。去(2015)年 12 月,一個日本東京大學的團隊甚至將此技術成功運用在讀取靈長類動物的神經訊號。觀察活體腦中細胞的實驗大都需要在頭部固定的情況下進行,以避免影像的振動。但實驗者仍可透過虛擬實境,研究大腦對外界刺激的反應與編碼。當中野心最大的計畫之一,是由微軟共同創辦者艾倫(PaulAllen)資助 3 億美金的「大腦天文台(Brainobservatory)」計畫,期望用最新科技探索腦內的小宇宙。這個計畫的短期目標是對小鼠視覺皮層的編碼功能做一個徹底的繪測,採用的便是以鈣離子螢光探針進行大規模神經紀錄的方法。

螢光探針的發展讓我們輕易的記錄腦中上千顆神經細胞的訊號,可是全腦的神經細胞還是遠大於這個數量──我們有辦法觀察腦中每一個神經細胞的訊號嗎?

2013 年, 美國阿倫斯(Misha Ahrens)與凱勒(Philipp Keller)的團隊運用鈣離子螢光探針及光片照明顯微術(Light sheet microscopy),在斑馬魚幼魚中成功地達成了這個歷史性的目標。斑馬魚幼魚的皮膚與大腦都接近透明,整個大腦的長寬不到 0.8 mm,厚度不到 0.3 mm,總共約只有 10 萬顆神經細胞。利用轉基因的方式,他們在幼魚腦中每一顆細胞中都植入了鈣離子敏感的螢光蛋白。結合超高速影像系統,他們幾乎可同時觀察腦中所有神經細胞的活性。

-----廣告,請繼續往下閱讀-----
  • 左側是使用鈣離子螢光探針及光片照明顯微術所觀測到的腦神經細胞

在實驗當中,幼魚被包埋在透明凝膠中無法自由移動。可是透過紀錄控制肌肉的運動神經,實驗者可以推知小魚「希望」往前游,往右轉或是往左轉。運用這種方法,這兩人的團隊解析了幼魚腦中將外界刺激轉換成行為控制訊號的完整迴路。在達成記錄斑馬魚全腦神經細胞的里程碑之後,科學家們正致力發展更新的技術,希望能在哺乳類動物(如小鼠)的腦中上也能夠記錄所有神經細胞。

相較於斑馬魚,小鼠大腦與人腦更為接近。而且許多神經退化與精神方面的異常,都可以在小鼠上進行模擬。如果能在清醒的小鼠腦中全面記錄分析每個細胞的功能,或許我們能夠更進一步找出失憶症、自閉症、憂鬱症或知覺失調症的大腦中,究竟出了什麼樣的問題。

突破活體觀察的障礙

然而,即便是小鼠,同時觀察腦中所有的神經細胞仍是目前無法達到的目標。小鼠的腦比斑馬幼魚的腦大了上千倍,共有約 7000 萬顆細胞。目前用光學技術能夠觀察到的細胞,仍侷限於最表面的大腦皮質。較深的腦區,如掌管記憶的海馬迴與掌管情緒的杏仁核等,仍需透過安裝較為侵入式的內視鏡才可觀察。主要原因是光線通過大腦組織時會產生散射,無法在腦中深處聚焦成清晰的影像。最近雖然有許多實驗室發展出讓腦組織變成透明的方法,如史丹福大學戴瑟若斯(Karl Deisseroth)的 Clarity,與清大江安世院士的 Focus clear 等,可是這些技術都只能用在死去的組織,而無法用在活體的觀察。

CLARITY_Brain_Imaging
史丹福大學戴瑟若斯教授所研發的CLARITY技術,可觀察腦部組織切片,神經透過不同螢光染色的3D影像。圖/By Source (WP:NFCC#4), Fair use, wikimedia commons.

目前有許多正在進行中的研究正嘗試著提高活體螢光影像的觀察深度。這包括從天文物理學借來的「適應性光學(adaptive optics)」技術。天文學家在使用地表望遠鏡觀察遠處的星體時,也同樣面臨了光線通過大氣層散射造影像模糊的問題。適應性光學於是利用可任意變形的鏡子,補償不同路徑光線的相位,重新達成聚焦。透過這樣的方式,神經工程學家希望能透視到更深的腦區。

-----廣告,請繼續往下閱讀-----

除此之外,還有透過三光子激發、光聲造影等方式來提高影像深度。但這些方法都需要同時發展能配合的分子探針。或許不久的將來,活體光學影像的觀察深度又將有巨大的突破。不論這些技術最終如何發展,可以確定的是,在物理、生物、工程、分子、認知等領域的通力合作之下,腦科學的研究與發現將不斷帶給我們更多驚奇與讚嘆。

本文原刊載於《科學月刊》2016 年 7 月號,由作者授權刊出。

延伸閱讀

  1.  Chen, T-W et al., Ultrasensitive fluorescent proteins for imagingneuronal activity, Nature, Vol. 499(7458): 295-300, 2013.
  2.  Ahrens, M. B. et al., Whole-brain functional imaging at cellularresolution using light-sheet microscopy, Nature Methods, Vol.10: 413-420, 2013.
-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1255 篇文章 ・ 2382 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
1

文字

分享

0
7
1
「痛、很痛、超級痛!」你有多痛?疼痛有客觀標準嗎?哪些因素會影響疼痛感受?——《痛:牛津非常短講》
左岸文化_96
・2024/03/25 ・6573字 ・閱讀時間約 13 分鐘

測量疼痛

疼痛程度能被客觀測量嗎?

在二十世紀的前半,設計來檢測人類痛覺的機制主要是呼應從純粹身體觀點量測痛覺組成的需求。痛的主觀特質(或更直接地稱為由受測者本人提供的證據)若是遭到忽視還算最好的情況,在最糟的情況下甚至會遭到貶抑。疼痛程度應該要可以客觀量測出來,或說這就是大家進行相關研究的基本依據;一個人感受自己疼痛的方式與個性、道德觀,或甚至性別及種族有關。

再加上醫學的主要功能就是要檢測出傷病並尋求醫治的這種想法持久不衰,疼痛便成為次要的關注重點,只被視為反映出「眞正」問題的指標。疼痛的測量及客觀性因此被刻意保持著疏離、冷淡的狀態,與其說是缺乏同情的立論基礎,還不如說是完全置身於同情的範疇之外。

醫學的主要功能就是要檢測出傷病並尋求醫治的這種想法持久不衰,疼痛便成為次要的關注重點。
圖|pixabay

研究者主要想建立的是痛覺敏感度指數。他們希望知道人體的疼痛要到什麼程度才可以被偵測出來。一般而言,在受控的條件下,不同的疼痛程度顯然可以反映出受試者的文明程度、犯罪傾向,又或者相對「野蠻」的狀態。大家一直都知道,每個人的疼痛閾値——痛無法再被忍受下去的臨界點——差異甚大,不過痛在每個人身上可以被感受出來的最低程度是否具有根本性差異仍是重要議題。

痛的現代史是建立在主張特定「種類」的人不是對痛的刺激更為敏感、就是更難以忍受疼痛的研究之上。這對尋求專業醫療協助的疼痛患者造成了實質上嚴重的後果。他們獲得治療的程度——包括施加的麻醉劑劑量和醫護人員提供的同情心——可能都會跟種族、年紀和性別直接相關。

-----廣告,請繼續往下閱讀-----

疼痛敏感度能成為犯罪證據?忽視痛覺主觀性,能幫助醫生更精準診斷嗎?

相當令人感到奇怪的是,生產可以測量疼痛敏感度的設備——痛覺計(algometer)或測痛儀(dolorimeter)——是心理學家和生理學家範疇內的工作。龍勃羅梭(一八三五─一九○九)因為在著作《犯罪人》(一八七六)中提出了犯罪類型分類而聞名,他採用了德國生理學家杜布瓦-雷蒙(一八一八-一八九六)開發的設備,透過電流刺激測量個體的疼痛敏感度及疼痛閾値。根據他的結論,成為罪犯的人對痛覺的「感受度較不敏銳,有時甚至完全感受不到」。而疼痛測量儀的數據就可以提供證據。

龍勃羅梭認為成為罪犯的人對痛覺的「感受度較不敏銳,有時甚至完全感受不到」。
圖|stocksnap

龍勃羅梭的研究是基於犯罪特質可以透過遺傳而來的理論,而且強調相關跡象都可以在人體上發現。他決心要透過比較(無論死活的)罪犯以及非罪犯之間的特質來證明這項理論,而獲得的結果非常驚人、具有高度影響力,但卻又毫無根據可言。不過他的例子可以反映出當時更為廣泛的趨勢。痛覺測量在機械領域的推進讓心理學家不再推敲心靈方面的非物質性運作,而改為追求物質性且具體可測的皮膚敏感度,並藉此探討大腦處理痛覺的各種相關能力(跟心靈完全不同的領域)。

另外在一九四○年的紐約醫院進行了一個計畫,他們將一盞燈的熱度聚焦在患者皮膚的一塊區域,然後記錄患者會開始感到疼痛的溫度,以及此疼痛到什麼程度會變得無法忍受。這是想將痛覺變成客觀可測量性質的一項新嘗試,其中帶有兩層意涵。

首先,痛覺若是可以被精準地測量出來,或許就能更有效地治療疼痛。其次,如果痛覺可以被測量,醫療體系就能更精準地評估患者對痛覺的反應(或可以無視哪些反應)。擁有機械測量的痛覺數據可以幫助臨床醫生超越(或甚至消滅)痛覺帶有各種隱喻且不甚精確的主觀性質。有些人就是會喜歡高報或低報自己受苦的程度,而這類傾向可以不再對醫療體系處理疼痛的藥物造成影響。

-----廣告,請繼續往下閱讀-----
痛覺若是可以被精準地測量出來,或許就能更有效地治療疼痛。其次,如果痛覺可以被測量,醫療體系就能更精準地評估患者對痛覺的反應(或可以無視哪些反應)。
圖|stocksnap

可是問題在於這個痛覺量測系統不管用,至少任何一個實驗室的結果都無法在其他實驗室複製出來,因為受測對象可以在受過訓練後忍受不同程度的疼痛。外界刺激在受控條件下首先被人感知到的數値至少算是有找到共同的範圍,但疼痛閾値卻因為各種理由而出現各式各樣的差異,更何況個體實在很少(甚至不知道是否可能有)處於不受任何外在條件影響的「中性」狀態。

各種機械理論

人類的所有特質、體驗都能被測量及量化?

如果說與疼痛相關的機械性研究大多得算是笛卡兒的功勞,那是因為他被認定說過一些話,而那些話又顯然能讓後人從中發現一種透過「疼痛路徑」運作的特定機制。若是遵循這樣的笛卡兒觀點,人類這架機器被認定內建一個特定的痛覺系統,此系統將皮膚的神經末梢連結到脊椎,再連結到大腦中的「痛覺中心」。十九世紀以降的生理學家在勤奮不懈的努力下開始尋找特定的痛覺接收神經,或說所謂的「傷害感受器」(nociceptor)。

人類這架機器被認定內建一個特定的痛覺系統,此系統將皮膚的神經末梢連結到脊椎,再連結到大腦中的「痛覺中心」。
圖|pexels

他們認定所有形式的人類特質及體驗都可以被測量及量化,於是透過大腦秤重的數據建立起以種族、性別為指標的智商系統、透過頭骨的測量顯示文明化的程度,甚至利用各種精良的技巧拍攝臉部後描繪出「犯罪可能性等級」。另外還有一些「疼痛纖維」(pain fibres)被描述成跟特定種類的疼痛有關、又或者跟不同規模的疼痛有關。根據這種方式,大腦只是用來接受特定疼痛輸入訊號的接收器。於是自一九六○年代以來,疼痛量表等級可能跟傷勢程度呈正相關的基本前提已被確信是明顯錯誤的想法。

將疼痛以機械性解釋有哪些侷限?

沒有被這種機械性簡化手段抹消並在當代神經科學中獲得進一步探究的部分,是科學家依據刺激的種類及程度,將受激發的不同神經末梢做出分類。我們現在知道,人的體驗和神經刺激之間沒有絕對的相關性。雖然我們還是會用「傷害感受器」這個詞,但它們發出的訊號在成為痛覺前必須先通過大腦的解讀。機械性簡化看法的另一個問題在於,儘管這種說法用來描述一個人將腳放進火堆的情況看似合適,卻無法解釋那些無視特定神經損傷或直接刺激程度而出現的疼痛。於是又有更進一步的機械性解釋來試圖解決這個謎團。

-----廣告,請繼續往下閱讀-----

為了解釋跟初始神經刺激不成比例的巨大疼痛反應,一八八○到一九五○年代出現了各種「(痛覺刺激及反應)模式」理論。有人假設一定是在脊髓中發生了某種反應,而且這個由原本末梢神經接收刺激所啟動的反應可以自我維持或甚至自我加強。隨著神經系統機制愈來愈常使用電機工程學的語言來比喻(而且使用的程度驚人),人們開始可以想像神經元在脊髓的「線路」中產生「反饋迴路」,因而「引起共振」並激發鄰近的其他神經元。正如原本那幅插圖所暗示,這種神經啟動的模式可以永無休止地延續下去,就算接受過治療或甚至原初起因已消失也沒關係(例如幻肢痛)。

機械性簡化看法的另一個問題在於,儘管這種說法用來描述一個人將腳放進火堆的情況看似合適,卻無法解釋那些無視特定神經損傷或直接刺激程度而出現的疼痛。於是又有更進一步的機械性解釋來試圖解決這個謎團。
圖|pexels

這個觀點的問題在於,這種帶有反饋迴路的電路板比喻想像起來容易,眞正要在實驗中發現卻有其難度。同樣地,疼痛方面的病變一直以來都被想像成一個「正常」的疼痛「電路系統」出現問題的結果,若要類比,就像是有訊號在特定種類的疼痛纖維中受到增強。在當代神經科學及疼痛管理領域中,這些理論的許多元素後來都證明在建構更全面性的疼痛體驗理論時很有幫助,但同時也必須超越「刺激帶來體驗」這種純然的機械性關係。

機械性關係以外的其他觀點?

直到一九六○年代,科學機構內外才開始出現批評的聲音——最有名的批評者是孔恩(一九二二-一九九六)和之後的拉圖(一九四七-)——這些人指出社會脈絡在科學工作中所扮演的重要角色,以及埋藏在社會脈絡中的各種想法及預設。到了更近期,達斯頓和蓋里森在他們的著作《客觀性》(二○○七)中重建了「客觀性」的概念。現在,所謂的「事實」已會被許多人視為透過特定框架後建構而來的偏頗資訊。這種不確定性為相關研究開展了全新的寬敞大道,但眞正的改變卻很慢才出現。

早在一八九四年,美國心理學家馬歇爾(一八五二-一九二七)曾有力地指出,快樂和痛苦都是心理狀態的不同特質;兩者是與情緒、感官、心靈和身體相連的「意識元素」,不過就在目睹摩根生產出行為主義式「定律」的這一年,這種全面性的思考觀點卻幾乎沒產生什麼漣漪。當痛的研究在一九七○年代確實開啟了痛覺的情緒及社會組成的相關探討之際,在醫療實務上對於能夠確切測量、判斷並診斷的既存需求,卻讓痛覺和傷害之間的機械關係得以續命。

-----廣告,請繼續往下閱讀-----
馬歇爾曾有力地指出,快樂和痛苦都是心理狀態的不同特質;兩者是與情緒、感官、心靈和身體相連的「意識元素」。
圖|pexels

傷害的意象

第一份讓患者掌握自身疼痛體驗內涵的醫療評估問卷?

臨床醫生數十年來都帶著對痛的多面向理解在實務現場工作。梅爾扎克(一九二九-)和托格森(一九二四-一九九九)在一九七一年開發出了麥吉爾疼痛問卷。那是為了讓患者足以掌握自身疼痛體驗內涵的第一個精密醫療評估工具。疼痛問卷將痛的形容詞及比喻根據痛的強度進行分組,然後依照「感覺」、「情感」、「評價」和「其他相關」四種項目進行分類,再搭配圖表指出身體上的疼痛位置,另外還會針對其他症狀及一般生活方式進行整體評估。

此問卷的前提在許多案例中獲得證實,也就是受疼痛所苦之人會用類似的詞彙來描述特定的疼痛症候群。因此,疼痛問卷帶來的質化觀點對臨床醫療人員很有幫助,能讓他們在一開始更有機會根據患者對自身疼痛狀況的評估做出正確診斷。

梅爾扎克和托格森在一九七一年開發出了麥吉爾疼痛問卷。那是為了讓患者足以掌握自身疼痛體驗內涵的第一個精密醫療評估工具。
圖|stocksnap

當言語無法精準描述,我們如何形容疼痛感受?

乍看之下,這是將疼痛體驗的情感特質重新導入醫療體系的成功應對方式,並因此讓臨床評估朝新的方向前進,但這種做法還是有其限制。疼痛問卷被翻譯成許多其他語言時使用了同樣的武器修辭,或說同樣有關受傷、割傷、刺傷、射傷、揍傷或壓傷的各種比喻。許多學者都指出,這些用來描述人類疼痛體驗的比喻被使用的時間久得驚人,彷彿我們沒有足以訴說疼痛的直接用詞,所以非得求助於這些傷害意象。

不過,這種顯而易見的限制掩蓋了存在於人們陳述中的驚人豐富性及深度。隨著時間過去,武器的種類當然改變了,描述武器對人類造成的傷害種類也出現了更多具有想像力的比喻性說法。此外,隨著語言的改變,人們會發現無論是問卷中的表達方式、代表意義及所處脈絡,都具有難以將其中分類普遍化的細微差異。翻譯的政治(更別說是做法)總是會引發誰的用語足以建立起基本分類架構的疑慮:我們應該要採用患者、醫生,還是譯者的用語?

-----廣告,請繼續往下閱讀-----
為了聽見疼痛的主觀陳述而定下語言框架的嘗試,反而造成了將痛客觀化的效應。
圖|pexels

一旦語言被認定為一個人描述主觀體驗的重要資訊載體,我們就很難將其限制在事先規範好的定義及分類中。疼痛問卷成功地將許多當時在英文中常用的疼痛描述整理在一起,不過也可能限縮了人們在未來描述疼痛的用詞。當醫療人員把一連串描述性用詞交給患者並要求他們找出「符合」自身痛感的詞彙時,這種做法很可能會被視為一種具有高度暗示性及影響力的策略,因為這份用詞淸單暗示了這些詞彙已捕捉到了疼痛的本質。

這種做法對某些人來說可能有用,但有些人即便感覺不太對勁,仍得努力將這些用詞硬套到自身的感受上。另外還有些人在覺得這些用詞完全無法用來描述自己的狀況時,甚至會開始質疑自己的疼痛是否眞實存在。為了聽見疼痛的主觀陳述而定下語言框架的嘗試,反而造成了將痛客觀化的效應。

說到底,一九七○和八○年代在尋求痛的情感特質時,是放入由固定價値觀所掌控的基模(schema)中,就像身體的疼痛値也是由機械主導的客觀數値來決定。患者的聲音並不是沒被聽見,但也受到既有的量測方式取代。

受教育程度會影響疼痛體驗嗎?疼痛分類因文化不同有所差異?

根據一份由哈里森所進行的研究指出,當麥吉爾疼痛問卷在科威特被翻譯成阿拉伯文時,編纂者非常淸楚意識到,即便是在當地社群內部也出現了溝通上的語言偏差。受過教育的科威特人因為懂英文而擁有較多字彙量,因此可用「對一般患者而言過於深奧」的詞彙來描述他們的痛覺。難道這代表他們的疼痛體驗也就因此有所不同嗎?我們很可能永遠不會知道,因為這類描述被有意識地迴避掉了。

-----廣告,請繼續往下閱讀-----

有意思的是,阿拉伯文譯者也迴避了對慢性疼痛患者伸出援手,因為「他們的痛覺評分標準跟那些……經歷急性疼痛的人相比有系統性的不同」。如果有人記得的話,麥吉爾疼痛問卷一開始的設計是要嘗試深入理解疼痛症候群的疼痛體驗——也就是完全以受到慢性疼痛所苦的人為目標——因此我們可以認定這個翻譯策略反而阻礙了這項量測工具原本的概念性目標。

受過教育的科威特人因為懂英文而擁有較多字彙量,因此可用「對一般患者而言過於深奧」的詞彙來描述他們的痛覺。難道這代表他們的疼痛體驗也就因此有所不同嗎?
圖|unsplash

二十世紀醫學對於調查對象必須在各項數値方面完全中立的需求,阻礙了我們去探索疼痛體驗中的一項核心元素,因為那個核心元素本身就是作為一種情感的主觀値。疼痛情感的語言表述——人們針對自身感受說出的話——本身抗拒任何精確的製表及分類作為。科威特的那些譯者對此擁有第一手體驗,他們發現原本在英文中被歸類為「感覺」的詞彙,在翻譯後更接近「情感」或「評價」的類別。

這些作者後來做出結論,「我們有很充足的理由認定,疼痛分類會因為不同文化而有所差異。」比如他們就找不出翻譯「射傷」(shooting)這種痛覺的詞彙。在此同時,義大利文把「射傷」這種痛覺翻譯成「像是床墊彈簧反彈」的痛。

整體而言,根據二○○九年由雪梨的喬治國際健康研究所做的研究,麥吉爾疼痛問卷被翻譯成了二十六種語言,研究發現這些翻譯後的問卷效力普遍不佳,並建議必須謹愼使用這些「非英語版本」的問卷。這些不同版本的問卷中描述疼痛的詞彙從四十二到一百七十六個不等,反映出了人類口中疼痛體驗的豐富程度。這些疼痛反抗或拒絕被分類列表的特質只顯示了人們不是(或說至少不完全是)機器。

-----廣告,請繼續往下閱讀-----

——本文摘自《:牛津非常短講 012》,2024 年 02 月,左岸文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
左岸文化_96
39 篇文章 ・ 11 位粉絲
左岸的出版旨趣側重歷史(文明史、政治史、戰爭史、人物史、物質史、醫療史、科學史)、政治時事(中國因素及其周邊,以及左岸專長的獨裁者)、社會學與人類學田野(大賣場、國會、工廠、清潔隊、農漁村、部落、精神病院,哪裡都可以去)、科學普通讀物(數學和演化生物學在這裡,心理諮商和精神分析也在這裡)。

2

3
8

文字

分享

2
3
8
「意識」是什麼?人們已經找到答案了嗎?
PanSci_96
・2023/11/26 ・6000字 ・閱讀時間約 12 分鐘

「意識」是什麼?

直到現在,仍是宗教、哲學、心理學、神經科學都還無法解答的難題。

但是今年, 2023 年,一場來自神經學家與哲學家對於「意識」解釋的賭注,在經過長達 25 年的研究後,終於要畫下句點了嗎?到底是誰贏了?對自己頭上頂著的大腦,我們又了解多少了?

25 年前,一場圍繞「意識」之謎的賭局

1998 年,神經科學家克里斯托夫・科赫(Christof Koch)和哲學家戴維・查爾莫斯(David John Chalmers)打賭一箱葡萄酒,如果 25 年後,人們已經能清楚地解釋意識背後的神經機制,那麼就是科赫贏了。反之,如果還是未能解答意識之謎,就是查爾莫斯贏了。

-----廣告,請繼續往下閱讀-----

但在揭曉勝者之前,我們要先來談談一個最基本的問題,「意識」到底是什麼?首先我們要先定義清楚,因為在中文中,意識指的可能是一個人的清醒狀態、也可以是對內在自我的一種感知、又或是包含感知、情緒、思考等等的一種總和、又甚至可以是指在精神分析理論中與前意識和潛意識的比較。

若要深入探討意識定義的發展以及不同的哲學論點,那真的不做個三十集做不完,在這集的時間內,就讓我們把重點放在感質(Qualia)的相關概念。感質,指的是個人直接體驗的主觀感受,被認為無法通過客觀描述或第三人稱觀察來完全理解或解釋。我們感知世界的方式、感受事物的質感、觸覺、視覺、聽覺、嗅覺等等都是屬於感質。

感質,指的是個人直接體驗的主觀感受,被認為無法通過客觀描述或第三人稱觀察來完全理解或解釋。圖/wikipedia

舉一個例子。若是把一顆紅蘋果放在大家面前,詢問蘋果這是什麼顏色,相信大家應該都會說這是紅色。然而,雖然科學能解釋紅色是因為有波長約 620 到 750 奈米的光,刺激到視網膜的錐細胞,產生一連串的神經反應,最後形成大腦的表徵,但卻無法解釋我們對紅色的主觀感受是怎麼形成的。

哲學家們也常思考,你看到的紅色,和我看到的紅色究竟是否一樣,是否有可能我眼中的紅其實是你眼中的綠。

-----廣告,請繼續往下閱讀-----

舉另一個例子,這件數年前爆紅的衣服,你覺得是藍色與黑色相間,還是白色與金色相間呢?

另外,像是這張圖究竟是兔子還是鴨子?

圖/wikipedia

這張圖究竟是狗還是小女孩?

明明有張客觀的圖片存在,每個人的主觀感受卻有不同的答案。

-----廣告,請繼續往下閱讀-----

「困難問題」(Hard problem of consciousness)是找不到答案的問題?

在意識賭局中的哲學家戴維・查爾莫斯,就提出感質以及主觀經驗為什麼(why)存在以及如何(how)產生是所謂的困難問題(Hard problem of consciousness),相較於簡單的問題是討論意識相關的功能和行為,困難問題涉及意識的經驗(現象、主觀),是沒辦法客觀觀察測量。也就是這個問題,是沒有答案的。

舉一個屬於困難問題的例子,明明都只是大腦的神經在放電,為何某些神經放電後會導致飢餓感而不是其他感覺,譬如口渴?他認為即使沒有飢餓這種「感覺」,飢餓衍伸出的行為,例如進食,也可以發生。因此這些產生的感覺,無法單純簡化由大腦等物理系統解釋。

圖/giphy

然而,困難問題的說法其實也存在爭論。根據 2020 年哲學期刊文章的互動式學術資料庫 PhilPapers 的調查, 29.72% 的受訪哲學家認為難題不存在,而 62.42% 的受訪哲學家認為難題是一個真正的問題。

也有一群神經科學家們雖然接受困難問題的存在,卻也認為困難問題未來可以被解決,又或是被證明這不是一個真正的問題。並開啟了他們對於意識相關神經區(neural correlates of consciousness)簡稱 NCC 的研究發展,試圖找到足以產生意識的最小神經集合。

-----廣告,請繼續往下閱讀-----
精神科學家開啟對於意識相關神經區(neural correlates of consciousness)簡稱 NCC 的研究發展,試圖找到足以產生意識的最小神經集合。圖/PanSci YouTube

但 NCC 的研究被認為最多只能找到神經反應與意識的相關性,解決的仍然只是簡單問題而非困難問題。為了突破 NCC 本身的限制,人們又開始轉往重視意識理論(theories of consciousness (ToCs))的發展。希望透過意識理論來超越以 NCC 為基礎的方法論,轉向提供更具解釋性見解的意識模型。

在意識模型這邊還在爭論不休,讓我們先把鏡頭換到神經學家這一邊。

研究科技進步,為意識研究帶來哪些幫助?

面對意識這個艱難的大哉問,克里斯托夫・科赫當初怎麼那麼有自信,敢發起這個看起來勝算就不大的挑戰呢?有那麼愛喝嗎?

1998 年,年輕有為的克里斯托夫・科赫已經是加州理工學院的助理教授,並和生命科學領域大咖中的大咖弗朗西斯・克里克,合作研究意識這個主題。沒錯,就是和華生一同發現 DNA 是雙股螺旋結構的克里克。除此之外,克里斯托夫還擁有物理的碩士學位,擁有跨領域的知識,讓他更加相信透過實證的方式,能找到意識的神經機制。

-----廣告,請繼續往下閱讀-----
克里斯托夫・科赫合作研究意識的對象便是與華生一同發現 DNA 是雙股螺旋結構的弗朗西斯・克里克。圖/PanSci YouTube

當時有許多大腦研究的技術蓬勃發展,像是功能性磁振造影(fMRI)已經獲得廣泛使用,使得科學家們能在對象進行活動或是受外界刺激時,同步從大腦血氧濃度的變化來推斷神經反應。

此外,光學遺傳學(optogenetics)技術也在那個時期開始萌芽,這讓研究者能用極佳的時間解析度來調控特定的大腦神經元,並藉此解碼大腦的秘密。舉例來說,現在的光學遺傳學能讓科學家們鎖定小鼠的特定神經細胞,並在小鼠頭上裝上 LED 光纖,只要開啟 LED 的光刺激,那些特定神經細胞就會興奮或抑制。藉由觀察小鼠行為的變化,就能了解不同行為表現是由哪些神經元所調控。

現在的光學遺傳學能讓科學家們鎖定小鼠的特定神經細胞。圖/PanSci YouTube

厲害的是,在 1979 年光學遺傳學的技術還未誕生前,克里克就認為如果想要了解大腦的運作,精準控制大腦中一種類型的所有細胞是非常重要的,而若想要有極佳的時間和空間精細度,必須使用光的技術,這與後來光學遺傳學的發明不謀而合。

有了這些科技加持,長達 25 年對於意識的賭注也即將來到結局。

-----廣告,請繼續往下閱讀-----

所以,誰贏了賭注?

2023 年 6 月 23 日,在科學意識研究協會的年會上,揭曉了這長達 25 年的賭局。神經科學家克里斯托夫・科赫(Christof Koch)最終承認,目前還不能解釋大腦的神經元是如何產生意識,並買了一箱好葡萄酒(1978 Madeira)給哲學家戴維・查爾莫斯(David John Chalmers)實現諾言。

克里斯托夫・科赫最終承認,目前還不能解釋大腦的神經元是如何產生意識,並買了一箱好葡萄酒給戴維・查爾莫斯。圖/PanSci YouTube

當然,這不是說意識的來源永遠沒有解答,只是當初賭局設下的 25 年時限到了。實際上到了 2018 年,他們兩位根本都忘了這場賭局,直到一位科學記者佩爾・斯納普魯德重新提及這個話題,才讓大家重新想起。

恰巧那個時間點,克里斯托夫・科赫和戴維・查爾莫斯都參與了鄧普頓世界慈善基金會支持加速意識研究的大型項目。該計畫建立一系列意識理論的「對抗性」實驗,希望透過讓兩個或多個持相反觀點的競爭對手共同合作研究,來挑戰各種意識假設。

意識理論的百家爭鳴

而其中包含兩個著名的意識理論,全局工作空間理論(Global Workspace Theory (GWT))和整合資訊理論(Integrated Information Theory (IIT))。

-----廣告,請繼續往下閱讀-----
全局工作空間理論(Global Workspace Theory (GWT))。圖/PanSci YouTube

全局工作空間理論(Global Workspace Theory (GWT))的概念,最早是由認知科學家伯納德・巴爾斯和斯坦・富蘭克林在 1980 年代晚期提出。他們認為意識的產生就像是劇場聚光燈一樣,當這個意識劇場透過名為選擇性注意的聚光燈在舞台上照出內容,我們就會產生意識情境。這聚光燈的投射也代表著全局工作空間,只有當感官輸入、記憶或內在表徵受到注意時,它們才有機會整合成為全局工作空間的一部分,被我們主觀意識到。而我們的行為決策,也是透過這個全局工作空間整合訊息,並分配到其他系統所產生。目前認為全局工作是發生於大腦前方的前額葉區域。

整合資訊理論(Integrated Information Theory (IIT))。圖/PanSci YouTube

與全局工作空間理論打對臺的,是整合資訊理論(Integrated Information Theory (IIT)),最早由朱利奧・托諾尼(Giulio Tononi)在 2004 年提出。這理論認為,意識背後是有數學以及物理為基礎的因果關係。應該先肯定意識的存在,再回推尋找其背後的物質基礎,並認為主觀意識是由客觀的感覺經驗產生的。克里斯托夫・科赫就是此理論的擁護者,他進一步認為,意識背後的那個神經機制,就存在於大腦後方後皮質熱區(Posterior cortical hot zone),包括頂葉、顳葉和枕葉的感覺皮質區域。

讓我們稍微總結一下兩者差異:

全局工作空間理論——

  • 意識只能透過訊息投射到一個稱做「全局工作空間」之後才能呈現
  • 訊息本身不會形成意識
  • 訊息要被注意到才會產生意識

整合資訊理論——

  • 意識存在
  • 產生的關鍵是需要將大腦處理感覺的皮質區域訊息整合

然而,經過六個獨立實驗室的研究,雖然有較多的證據支持整合資訊理論,但兩個理論都存在缺陷和質疑,直到目前都尚未有明確解答能解釋意識的神經機制,這也讓克里斯托夫・科赫大方承認自己輸掉了這 25 年的賭局。

隨著科學測量技術的演進以及越來越多的研究進展,有一些神經科學家認為意識理論即將崛起,目前的狀態只不過是一種研究過渡期。科學哲學家托馬斯・庫恩(Thomas Kuhn)將這種過渡期以「前典範式」(preparadigmatic science)來形容,認為一門不成熟的科學在成熟前,會面臨相互競爭的思想流派並各說各話。就像是當初達爾文提出演化論的物競天擇前有拉馬克主義、災變論與均變論來試圖解釋物種起源一樣。

下一場賭約?

雖然這次的打賭由戴維・查爾莫斯獲得一勝,但克里斯托夫・科赫在今年加倍賭注,認為下一個 25 年他一定會贏。到時候克里斯托夫已經 91 歲,戴維 82 歲了。

大家別擔心,這一集是會員共同選出來的題目, 25 年之後,我們也會再為各位泛糰做一集討論賭局的結果。

最後也想問問大家, 25 年之後,你賭這場對決會是誰贏呢?

  1. 我壓在克里斯托夫・科赫身上,我們一定能解開意識之謎
  2. 我賭戴維・查爾莫斯,意識這個問題,可能很難用科學來解釋
  3. 在那之前, AI 可能都已經有意識了,直接問 AI 還比較快

趕快來留言吧,記得 25 年後要回來看啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 2
PanSci_96
1255 篇文章 ・ 2382 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。