0

0
0

文字

分享

0
0
0

環境污染怎麼影響乳品質?來自大地的恩賜與陰影

活躍星系核_96
・2016/09/17 ・3814字 ・閱讀時間約 7 分鐘 ・SR值 603 ・九年級

文/金山豆|中興大學動物科學系學士,英國諾丁漢大學動物科學博士

人類文明的起始,與學會馴養家畜以得到穩定蛋白質供應有著密切的關係。來自草食動物如山羊、牛、馬等乳品生產,只需簡單的草料與粗糙的照應,就能供應優良蛋白質與熱量,因此成為早期糧食生產尚不穩定的人類社會十分重要的營養支柱。在近代產業文明興起後,科學化集約飼養技術的建立,更讓乳製品成為人類社會日益普及的營養來源之一,特別在各國經濟發展的歷程中,協助解決營養不良及相關公衛健康問題,具有不可磨滅的貢獻。

feld
飼養牛隻的牧場。圖/By Martin Abegglen – Flickr: cow, CC BY-SA 2.0, wikimedia commons.

飼料進步了,但環境卻大退步

在乳用動物飼養生產過程中,牠們的營養與生理健康狀態,深受當地自然環境影響,包括飲用水、空氣條件、以及攝取的飼料作物品質

近代乳用動物飼養管理技術的發達,也反應在飼料營養條件的改善上,牧場透過不同粗料 (草料) 與精料 (穀物) 及營養補充劑 (維生素、礦物質等)的組合 ,調配出適合動物的最佳化飼料配方。除了讓動物吃得更營養之外,搭配育種與輔助生殖技術 (冷凍精液、人工受精、早期懷孕診斷等),大幅增加了乳用動物的產乳性能,促使現代化的酪農產業的建立,讓各種乳製品的價格更加低廉而普及化。

-----廣告,請繼續往下閱讀-----

然而,人類文明現代化對自然環境也帶來了深遠而全面的影響。

傳統產業的進步、新興產業的誕生與成熟,不只替人類社會創造巨大的資產,卻也在開發的過程中,於自然環境中留下了龐大的產業副產品。這些副產物往往對自然生態系統帶來不同程度的破壞,特別是其中具有生物危害性的污染物,在進入自然環境之後,透過水與土壤的曝露,進一步移行到環境動植物體內,持續存在並發揮其影響力;而根植於自然水土環境運作的農業,也因此難以避免曝露的風險。

環境污染怎麼影響乳品質?

在畜牧業,特別是在養週期相對較長的乳用動物 (肉用動物飼養週期如肉雞的五週至十二週,到肉豬的六月齡,乳用動物如山羊與乳牛則可達三到七年甚至更長),其飼養環境與飼料、飲用水是否受到環境污染、污染物是否移行至體內蓄積、甚至隨乳汁分泌而進入人類食物供應鍊,將明顯影響人類的食品安全。

a-drink-cow
飲用水是否受到環境污染也是乳牛等乳用生物是否能生產好生乳的影響因素之一。圖/PublicDomainPictures

在目前已知的環境污染物中,傳統產業如礦業及現代輕重工業所帶來的各種重金屬,或新興化學污染物如聯苯類化合物(多氯聯苯、多溴聯苯等,包括俗稱戴奧辛的二氧雜環己二烯),便可能透過不同方式進入土壤、水、空氣、以及各種農作物之中。雖然其中重金屬類的污染有可能也與各地自然礦脈露出、地質組成特性有關,不盡然與人類活動有關,但新興化學污染物則與人類產業污染有密切關聯性。

-----廣告,請繼續往下閱讀-----

開發中國家的重金屬汙染

重金屬及聯苯類化合物因生物通透性、蓄積性佳、易經由乳用動物代謝進入乳汁中而形成殘留,因此歐盟主要酪農產業國家,在 2002 年即已針對這些污染物進行監控,並視各國情況訂立生乳殘留標準。目前歐盟食物安全局 (European Food Safety Authority) 明列砷、汞、鉛、鎘、錫等重金屬為檢測目標,其它重金屬曝露風險如銅、鉻、鋅等,亦在持續研究與評估之中。

在開發中國家因產業生產規範尚未成熟,因此輕重工業、傳統產業的重金屬污染被認為可能對當地畜牧產業與產品造成程度未明的污染。

工汙
工業汙染進入鄰近地區/來源:Jorge Franganillo@Flickr

伊朗

2015 年伊朗大不里士醫科大學 (University of Tabriz Medical Science) 曾對該國工業城市區域與傳統農牧區的三十二處酪農農場生乳樣本做汞、砷、鎳、錫四種重金屬做檢驗[1],其中部份生乳樣品中鎳與錫的濃度超過聯合國食品法典委員會(Codex Alimentarius Commission, CAC)的可容許規範,高達 310.55 μg/L 與 314.64 μg/L(Codex 規範分別為 200 與 300 μg/L)。令人意外的是,鎳的濃度分布趨勢固然與工業區高度相關,可解釋為源自工業污染,然而同樣被視為常見工業污染物的錫,卻在傳統農牧區生乳樣本中呈現出高過工業區域四倍濃度的現象。這個檢測結果引導出兩個可能性:工業區的污染可能經由未確認的方式進入傳統農牧區造成二次污染;又或者傳統農牧區基於地理特性具有原生污染源存在。

義大利

類似的研究結果也出現在早前 2003 年時,義大利梅西納大學(University of Messina) 的藥理研究團隊,針對義大利南部的卡拉布里亞 (Calabria) 地區四十家酪農牧場出產的生乳做的多種金屬檢測中,其中以砷污染的歧異度最大。有十家牧場的生乳樣本砷濃度超過 Codex 規範的140 μg/L,最高甚至來到 684 μg/L 的水準 [2]。然而,卡拉布里亞一地是傳統農牧區,鮮少工礦產業存在,因此工礦污染似乎可能性不高。研究團隊認為這可能是當地興盛的果蔬農場所常用的含砷殺蟲劑與除草劑,經由水與土壤污染再進入當地乳牛食物鍊,代謝移行至生乳後的結果。

-----廣告,請繼續往下閱讀-----

印度

另一方面,印度斯溫卡泰斯瓦拉大學 (University of Sri Venkateswara) 研究團隊以乳用水牛進行高鉛飼料曝露實驗時,發現大部份鉛隨著血液循環進入生乳中。同時,提高的生乳含鉛量排擠了生乳中的營養成份,特別是鐵與鋅的含量下降到原來的一半不到。而乳用水牛的肝臟也呈現輕到中度發炎現象,代表著飼料中鉛的曝露,不但增加生乳有毒重金屬的含量、削減部份生乳營養成份、也對乳用水牛本身的健康造成負面影響 [3]

整體來說,這些研究結果代表酪農產業有必要持續對生乳進行毒性重金屬的監控,以避免潛在污染在生產者與消費者皆不知情的情況下,悄悄進入食物供應鍊,同時對本地酪農產業及乳製品消費者帶來不同程度的傷害。

台灣乳製品的重金屬檢測

許多主要酪農產業國家,在過去二十年間便陸續開始持續追蹤與監控飼養環境裡水、飼料、以及生乳中各種重金屬的含量,並據以檢討污染來源與管控方式。而相關的殘留規範也在與時並進,以求在目前知識範圍內盡可能保障乳製品品質在人體可接受的安全限度內。

台灣過去在 2001 年前後也曾有研究單位進行本土各縣超過百家乳山羊及乳牛牧場的飲用水、飼料、糞便、以及生乳的重金屬曝露量調查,當時的資料即指出,少數飼料檢體出現鎘含量過高的問題(>10 μg/g);鮮乳重金屬指標基本上在安全範圍內,但生乳鉛含量卻較預期為高(0.1-0.12 μg/g)。這意味著動物本身可能累積了飲用水或飼料中所含的鉛,並移行至生乳之中 [4]。

-----廣告,請繼續往下閱讀-----

近年來,小粒徑空氣懸浮顆粒(直徑 2.5-10 μm,即 PM2.5/10) 中所含的重金屬也被認為是重金屬污染源之一,特別是台灣西部從北到南,空污程度日益趨於嚴重;當針對台灣 PM2.5/10 分析其成份時,可以明確發現其中具有多種重金屬分布,其含量隨地域、污染源 (交通、產業類別、燃電等)而有差別 [5]。除了人體曝露造成直接的健康威脅外,這些懸浮顆粒還能透過進入水源、土壤、飼料儲存區造成本地環境二次污染。換句話說,台灣自然環境依然存在許多潛在重金屬曝露源,可能威脅到農牧業產品的安全品質。

cow
牛隻的飼料可能在未知的狀況下受到環境金屬汙染。圖/United Soybean Board @Flickr

台灣的先天氣候環境與傳統飲食習慣原本並不適合建立酪農產業,但在過去五十餘年產官學界的共同努力之下,目前已讓酪農產業紮根台灣社會並趨於成熟。

2014 年國家衛生研究院與澳洲蒙納許大學 (University of Monash) 針對台灣飲用乳品習慣進行統計分析,發現每日適當飲用乳品顯著降低國人疾病死亡率,特別是心血管疾病的致命風險 [6]。乳製品得以走入台灣人日常生活並對國民營養與健康水準做出貢獻,本土酪農業的發展功不可沒。

在酪農產業的持續發展過程中,必然不斷面臨新的經營管理以及產品品質管控問題,例如因人類活動而日益趨於複雜的各種環境污染物(各種重金屬、毒性有機分子如戴奧辛等)就是一個例子,它們可能以各種方式進入酪農產業的生產模式,同時損害了乳用動物的健康、生產乳品的品質與安全性,也威脅到了消費者的營養供應與健康;而酪農業者本身缺乏鑑别並評估環境污染物曝露風險的能力,在面臨環境污染物曝露時也同時成為受害者。針對此一議題的對策,實需依賴中央政府能有效地整合行政資源,協調環衛與畜牧研究單位評估各種新興污染物及曝露途徑,進行持續而完整追蹤研究,接下來才有可能釐清符合台灣本地酪農生產環境特性的污染模式,並據以制定相關法令規範,以及生產技術轉型與輔導,確保酪農產品的安全性甚至本土酪農產業的存續。

-----廣告,請繼續往下閱讀-----

 

參考文獻

  1. Arianejad, M., et al., Levels of Some Heavy Metals in Raw Cow’s Milk from Selected Milk Production Sites in Iran: Is There any Health Concern? Health Promot Perspect, 2015. 5(3): p. 176-82.
  2. Licata, P., et al., Levels of “toxic” and “essential” metals in samples of bovine milk from various dairy farms in Calabria, Italy. Environ Int, 2004. 30(1): p. 1-6.
  3. Shailaja, M., et al., Lead and trace element levels in milk and blood of buffaloes (Bubalus bubalis) from Hyderabad, India. Bull Environ Contam Toxicol, 2014. 92(6): p. 698-702.
  4. Fan., W.-Y.T.a.Y.-K., Survey of Copper, Zinc, Cadmium and Lead contents in drinking water, ration, feces and raw milk of Dairy Cow and Goat in Taiwan. 2001.
  5. Yu-Cheng Chen, C.-Y.H., Sheng-Lun Lin, Guo-Ping Chang-Chien, Mu-Jean Chen, Guor-Cheng Fang, Hung-Che Chiang, Characteristics of Concentrations and Metal Compositions for PM2.5 and PM2.5–10
    in Yunlin County, Taiwan during Air Quality Deterioration. Aerosol and Air Quality Research, 2015. 15: p. 2571-2583.
  6. Huang, L.Y., et al., Optimal dairy intake is predicated on total, cardiovascular, and stroke mortalities in a Taiwanese cohort. J Am Coll Nutr, 2014. 33(6): p. 426-36.
文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
翻越性別高牆 打破生乳營養迷思 埃凡斯促成牛奶滅菌(1)
顯微觀點_96
・2024/07/24 ・1683字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

顯微鏡後的女性科學家系列

顯微鏡學的蓬勃發展,不僅促進了醫學﹑公共衛生的發展,而在這背後也有許多偉大的女性科學家參與其中。

屏東縣九如鄉一處養羊場有 3 頭羊確診「布氏桿菌病」,為台灣約 30 年來首例,動防所已撲殺感染羊隻並進行消毒。由於「布氏桿菌」為人畜共通傳染病,衛福部疾病管制署匡列 4 名牧場員工…。2023 年 12 月 9 日報導

由於乳製品滅菌的觀念普及,現在已很少聽聞布氏桿菌感染。這都得歸功於首先發現經由飲用感染布氏桿菌的生牛乳而導致人類得馬爾他熱,進而促成乳品全面巴氏消毒的細菌學家艾莉絲.埃凡斯(Alice Catherine Evans)。

Alice C Evans。圖片來源:PICRYL public domain

從偏鄉教師到微生物學家

埃凡斯的祖父 1831 年從英國威爾斯移民至美國,她於 1881 年 1 月 29 日出生在美國賓州尼斯威爾斯社區的一戶農家。

-----廣告,請繼續往下閱讀-----

埃凡斯在出生地念中小學,因當地沒有高中,她到了賓州托旺達(Towanda)的薩斯奎漢納學院(Susquehenna)就讀。1901 年畢業後,進入大學就讀的夢想因家裡無法負擔而破碎,且當時小學教職幾乎是唯一對女性開放的非基層勞力職業,因此她沒有多想就進入一所小學擔任 1 至 4 年級的教師。

她在家鄉和外地的小學共教了 4 年書後,得知有康乃爾大學農學院提供偏鄉教師免學費的自然科學課程。當時康乃爾大學的農學院院長貝利(Liberty Hyde Bailey)希望藉由受過訓練的教師,培養學生對大自然的熱愛、對植物和動物以及無生命世界的興趣。

埃凡斯申請了這項計畫,並用她四年教書的積蓄來到康乃爾大學,並選擇細菌學作為研究領域,指導教授是研究乳製品的微生物學家史托金(William A. Stocking)。

1908 年她獲得康乃爾大學農學院的學士學位,經指導教授推薦,獲得威斯康辛大學的獎學金;這是專門提供給專攻農化或細菌學研究的獎學金,且在此之前未曾頒給女性。於是埃凡斯前往威斯康辛大學繼續碩士學業。

-----廣告,請繼續往下閱讀-----

但她雖然是拿細菌學獎學金,但在農業細菌學指導教授黑斯廷斯(Edwin George Hastings)的要求下,埃凡斯花了三分之二的時間研讀化學,並於 1910 年獲得碩士學位。 碩士學業最後一年,教授希望埃凡斯留下來繼續攻讀博士學位。雖然意識到這是不錯的機會,但大學和碩士學業已帶給她不小的經濟和精神負擔,加上博士學位在當時對科學家並非必要,因此她選擇不再繼續攻讀。

與布氏桿菌相遇

每個人都有自己的天職,天賦就是呼喚,有一個方向,所有的空間都向他敞開。他擁有靜靜地吸引不斷往前努力的能力。

——愛默生

幸運的是,埃凡斯獲得了農業部動物產業局(Bureau of Animal Industry)的研究職位。由於乳酪是威斯康辛州的重要產業,當時威斯康辛大學化學系和細菌學系與乳製品部門合作,研究更好的乳酪製作方法。

埃凡斯是該單位首位女性員工。當時的動物產業局官員沒有想到可能會選擇女性。據傳聞,官員們在一次會議中聽到一名女科學家將加入他們的工作行列的「壞消息」時,他們充滿了驚愕,甚至「差點從椅子上跌下來」。

埃凡斯的回憶錄寫到:「就我而言,進入動物產業局純屬意外,因為長官在女性就業屏障上留下了一個漏洞,我不知不覺地就鑽了進去。」但這在女性就業可說是一個重要的里程碑,因為除非對美國公務員提出嚴重的投訴,否則埃凡斯不會被任意解僱。

-----廣告,請繼續往下閱讀-----

所幸埃凡斯的頂頭上司,乳製品部長羅爾(B. H. Rawl)與研究主任羅傑斯(Lore A. Rogers),都不認同其他高級官員對女性的敵意。她在此研究主題是牛乳中各式各樣的細菌,並了解這些類型細菌的來源。同時,她也每年在大學選修一門課,以充實知識。

研究過程中,她的目光漸漸集中到一個特定的對象,一種致流產的傳染性微生物。

查看原始文章

討論功能關閉中。

顯微觀點_96
10 篇文章 ・ 3 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

2
2

文字

分享

0
2
2
澳洲乳牛吃巧克力?!
胡中行_96
・2023/06/08 ・1939字 ・閱讀時間約 4 分鐘

成立於 1824 年的英國品牌吉百利(Cadbury),以製造糖果和巧克力聞名全球。1881 年他們首次接到來自澳大利亞的訂單,從此當地人也能嚐到其產品甜美的滋味。多年後,吉百利先是看上那裏優質豐沛的牛乳,而在塔斯馬尼亞設廠;後來又併購位於墨爾本的公司,擴大營運。[1]2023 年某些南澳的乳牛,也開始吃吉百利的零食。[2]

2022 年吉百利慶祝於澳洲建廠一世紀的特別報導。影/Sky News Australia on YouTube

乳牛的飲食

畜養乳牛是一門講究營養調配的科學,需要充足的碳水化合物、胺基酸、脂肪酸、礦物質、維生素和水份等,來確保牛乳的品質與產量。碳水化合物是乳牛能量的主要來源,佔泌乳期 70% 的飲食,可以從草、糖、飼料與穀物等食物中攝取。[3]以天然食材來說,碳水化合物大致分為纖維素半纖維素等,組成植物細胞壁的結構性碳水化合物;以及澱粉等,存在植物細胞質裡的非結構性碳水化合物。牛瘤胃(rumen)內的微生物,會將碳水化合物發酵。其中非結構性的比較容易進行,而且以糖最為快速。[4]

牛的消化系統,③ 是瘤胃(rumen)。圖/‘Ruminant digestive system’ by Australian Good Meat(CC BY-SA 4.0)

乳牛吃糖

具 30 多年畜牧經驗,擔任全國性產業公會澳洲乳品(Dairy Australia)理事長的 James Mann,在南澳有超過 4,000 頭乳牛。[2, 5]以往除了放牛吃草,Mann 理事長就像許多同業,也會給牛嚐點甜頭。[2]基於發酵難易度的差別,多種碳水化合物混著吃,能讓瘤胃裡的微生物,隨時都有得忙,一直幫乳牛補充能量。拿適量的糖,取代乳牛飲食中的澱粉,既可以促進泌乳;又不太會影響瘤胃內的 pH 值,而害牛乳的脂肪比例下降。[4]

唯一的問題是,2023 年全球糖價上漲。[2, 6]

全球糖價飆升

2 年前全球糖價疲軟時,每噸曾經連澳幣 400 元都不到。然而北半球糖業出口國,例如:印度、泰國和中國等,2023 年的產量都不如預期。地處南半球的巴西,則遭逢大量降雨,擾亂物流。於是就在澳洲的甘蔗進入採收季前,4 月的全球糖價竟衝破每噸 800 元。當地蔗農遇上幾十年未見的榮景,喜孜孜地打算大賺一波;[6][註]同時卻也苦了需要用糖的產業。

-----廣告,請繼續往下閱讀-----

眼見成本飆升,腦筋動得快的 Mann 理事長,決定調整自家乳牛的菜單。他跨州從墨爾本運來一般巧克力、櫻桃巧克力、蜂巢巧克力、蛇軟糖和牛軋糖等。反正吉百利不要的,他家的牛全包。巧克力含有糖和油。[1]脂肪類食物提供的能量,是碳水化合物或蛋白質的 2.25 倍,而且跟糖一樣,也能增加牛乳的產量。[2, 3]總之,一箭雙鵰。Mann 理事長在 6 月初,因為這個大膽嘗試,接受媒體專訪,分享創意飼育的心得。[2]

食品加工與環保

他家乳牛所吃的糖果和巧克力,不如市售的吉百利產品,裹著包裝,還印上原料與營養成份。儘管部份造型跟人類吃的還算接近,更多是輾得粉碎或不可名狀。有時甚至整塊沒剁,以半成品的形式出現。幸好乳牛並不挑嘴,來者不拒,又似乎沒有偏好特定口味。[2]

理事長表示,若不是乳牛幫忙消耗,這些廢料原本大概會被工廠丟掉,所以他的作法對畜牧和環保都好。的確,避免食物浪費雖然最好從源頭做起,但是當製造商無法減少廢料時,再利用也是不錯的補救辦法。[2]

至於生產出來的鮮乳如何?Mann 理事長開玩笑道:「既然巧克力牛奶由我們生產了;我希望草莓牛奶有別人負責。」不過,他家鮮乳的味道其實沒有特別不同,最終還是得與其他牧場的混和,經過工廠加工才能製成調味乳。[2]

-----廣告,請繼續往下閱讀-----
圖/The Simpsons on Giphy

  

備註

多數澳洲蔗農早在 2022 年談好 2023 年 4 月的大盤售價,所以不會馬上受惠於全球糖價飆漲。然而,他們還是可以喊價 2023 年後續每噸澳幣 756 元,以及 2024 年 651 元。[6]

參考資料

  1. Cadbury and Mondelez Australia Pty Ltd. ‘Our History’. Cadbury. (Accessed on 01 JUN 2023)
  2. Boisvert E, Adamo E. (01 JUN 2023) ‘Dairy cows munch on reject chocolate and lollies that would have gone to landfill’. ABC News, Australia.
  3. Erickson PS, Kalscheur KF. (2020) ‘Nutrition and feeding of dairy cattle’. Animal Agriculture, 157–180.
  4. Ravelo AD, Vyas D, Ferraretto LF. (2022) ‘Effects of sucrose and lactose as partial replacement to corn in lactating dairy cow diets: a review’. Translational Animal Science, 6(2):txac044.
  5. James Mann appointed Chair of Dairy Australia’. (31 JUL 2020) Dairy Australia.
  6. Brann M, Cooper L. (20 APR 2023) ‘Sugar prices skyrocket after lower-than-expected output overseas in good news for Australian growers’. ABC News, Australia.