0

0
0

文字

分享

0
0
0

吃高脂食物會債留子孫

鄭國威 Portnoy_96
・2011/12/20 ・399字 ・閱讀時間少於 1 分鐘 ・SR值 559 ・八年級

國小高年級科普文,素養閱讀就從今天就開始!!

根據New Scientist報導,澳洲阿德萊德大學的Maria Ohlsson Teague 與 Michelle Lane 兩位研究者藉由在老鼠身上的實驗,發現被餵食高脂肪食物長大的老鼠,其子代容易發生胰島素抵抗(Insulin resistance)的情況,也就是說,在表觀遺傳上的改變會在精子細胞的某些區域上延續。研究團隊篩選精子,找出具有能關閉蛋白質製造的遺傳物質,發現在被餵食高脂肪飲食的老鼠精子中,有21個microRNA的表現與正常餵食老鼠的不同。研究者使用已經microRNA的資料庫來預測這些被更改的標記會有什麼影響,而最可能受到影響的生物網絡與胚胎跟精子發育,還有代謝紊亂有關。Teague表示圍繞在睪丸附近的大量脂肪可能改變了周圍的環境,從而鼓勵表觀遺傳上的改變。這份研究結果在本月於墨爾本舉辦的第14屆世界人類生育會議上發表。

文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 657 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

1

5
0

文字

分享

1
5
0
睪丸,左邊大還是右邊大?請選擇!——2002 年搞笑諾貝爾醫學獎
miss9_96
・2021/12/02 ・1608字 ・閱讀時間約 3 分鐘

「猜猜看,睪丸是左邊 or 右邊的比較大顆呢?」—— 2002 年搞笑諾貝爾醫學獎,是您和伴侶在床第之間、帶著科學、藝術和情趣的最佳話題~

中世紀的歐洲藝術史學家——溫克爾曼(Johann Joachim Winckelmann, 1717-1768)曾在 1764 年說:「生殖器也有獨特的美,左側的睪丸總是比較大顆」 [1]。

左邊的,比較大⋯⋯?圖/envato elements

嗯哼,真的嗎?

雕像的睪丸,哪一邊比較大顆?

為了驗證「藝術家眼中的睪丸」,任職於英國伊麗莎白女王醫院、神經外科的麥克馬納斯(I. C. McMANUS)造訪了 107 件文藝復興時期的男人雕像,並仔細地評估了它們的睪丸高低、大小,並發表其觀察於 1976 年的「自然《Nature》」 [1]。

他們發現,文藝復興時期的雕像,兩顆睪丸的大小、高低,多半都不同。雕像「左側的睪丸」通常較大、位置也較低。統計數據如下:

  • 何側的睪丸較大?左:41/右:22/均等:44
  • 何側的睪丸較高?左:27/右:53/均等:27

嗯~雕像睪丸的「左大右小」、「左低右高」,符合真實男性的睪丸嗎?

(不知道麥克馬納斯有沒有去看一下大衛的睪丸)圖/Jörg Bittner Unna, CC BY 3.0

猜猜看,哪一邊?真人左、右睪丸的結果

猜猜看,真人哪側的睪丸比較大顆?

1960 年的「解剖學期刊《Journal of Anatomy》」,刊出了一篇由香港大學團隊的研究。透過對活人的體檢、大體的解剖,分析了「那邊比較大顆?」和「那邊比較高?」的難題 [2]。

右邊!是右邊!

香港團隊解剖了 100 名大體後發現,右側睪丸通常更大顆也更重 [註1]。

所以說,文藝復興時期的古人們,把雕像的左睪丸雕刻的比較大顆是錯的!但玄幻的是,左邊比較低不一定是錯的:因為,在真實世界裡,睪丸是不是「左高右低」的答案並沒有哪~麽簡單。

解剖大體後,量測睪丸之重量、體積。

睪丸的高低和偏側性有關

睪丸的位置,本來就會不對稱。

男性生殖器夾在大腿內的狹小空間,兩顆睾丸相互重疊、碰撞;合理推測,在發育過程中,會調整高低位置,以達到空間的最佳利用。如果沒有其他影響,理論上左側、或右側較高的人數比例應為 1:1。那⋯⋯結果是 1:1 嗎?

團隊透過 486 人(左撇子 35 人)的體檢,發現「和慣用手同側的睪丸,位置比較高」。經統計,64.7% 的右撇子,其右側睪丸較高;而 68.5% 的左撇子,其左側睪丸較高。

所以雕像的睪丸,位置和真實世界相同——通常是「左高右低」。或更精準的說:「和慣用手同側的睪丸,位置比較高」。

調查發現,慣用手那一側的睪丸通常比較高。圖/envato elements

2002 年搞笑諾貝爾醫學獎

擁有卓越藝術力的麥克馬納斯,在 1976 年發表「古代雕塑睪丸/陰囊的不對稱性」論文,並在 2002 年榮獲搞笑諾貝爾醫學獎,以表彰他「平衡」的研究。感謝他獨特的觀察力,讓我們未來在觀賞睪丸(不論雕像或真人)之際,也能感恩、讚嘆科學和人體的美麗~

走筆文末,我曾聽女性說:女性左側的乳房通常較大。各位有聽過這樣的說法嗎?

註1:依表格,似乎隨著年紀增長,在 30 歲以後,睪丸的重量/體積都隨時間減輕、縮小(不常用,所以乾脆小一些?)。

參考文獻

  1. I. C. McMANUS (1976) Scrotal asymmetry in man and in ancient sculpture. Nature. DOI: https://doi.org/10.1038/259426b0
  2. K. S. F. Chang, F. K. Hsu, S. T. Chan, and Y. B. Chan (1960) Scrotal asymmetry and handedness. Journal of Anatomy
所有討論 1
miss9_96
170 篇文章 ・ 643 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

9
0

文字

分享

0
9
0
我的棕色脂肪會發熱!——認識脂肪的 3 種顏色與產熱機制
slekmed_96
・2021/08/13 ・4441字 ・閱讀時間約 9 分鐘

難度:★★☆☆☆

應備知識:細胞內的訊號傳遞

連結大學:分子生物學、生物化學

哦〜不!看著體重計上逐漸上升的數值,再看看肚子周圍、手臂下方在你不知不覺間,偷偷長大的肥肉,忍不住驚聲尖叫起來!默默懊悔著因為學測將近而荒廢了運動,責備因社團、課業或工作太繁重而懶得從座椅上移開的身軀。抓著肚子上的累贅,你愁眉苦臉地看著它。但,脂肪真的如此萬惡嗎?除了常常聽到一些關於脂肪的益處,像是脂肪可以作為內臟的緩衝、可以保暖等,其實它的好處不只有被動的保暖,還可以產生熱能!

今天就讓我們從各種「顏色」的脂肪談起,再來看看身體中的好脂肪——棕色脂肪究竟如何產生熱能,不會形成腹部周圍一圈圈增厚的「游泳圈」,還能在冷冷的寒冬中製造溫暖!

fat big hero 6 GIF
圖/GIPHY

脂肪還有分顏色?談談脂肪分類

脂肪細胞的型態並不是只有一種,依照功能、特性的差異,可以將它們分為白色脂肪、棕色脂肪和米色脂肪(圖一)。白色脂肪(White adipose tissue)就是我們最熟悉的脂肪,在餐桌上的肥豬肉中常常可以看到它的身影,白白嫩嫩的讓人口水直流!如果把它放在顯微鏡底下觀察,會發現整顆細胞幾乎被肥滋滋的大油滴佔據,可憐的細胞核都委屈的被擠到細胞角落,可知這個大油滴對白色脂肪多麼重要!它的功能就是用脂質的形式儲存能量,也能保護內臟與隔熱保溫。而棕色脂肪又是什麼呢?難道是「黑化」的白色脂肪嗎?沒那麼可怕!棕色脂肪(Brown adipose tissue)的任務和白色脂肪不同,長相當然也有所不同。白色脂肪細胞中只有一顆大油滴,但棕色脂肪細胞中卻有多個小油滴分散,且細胞尺寸也較小;除此之外,他們最重要的差別在於棕色脂肪有許多粒線體,且粒線體內還存在一種特殊蛋白——UCP1,它就是棕色脂肪產熱的關鍵(El et al., 1954)。

咦,那米色脂肪(Beige/Brite adipose tissue)又和上面兩種脂肪有什麼關係呢?用色彩的思維推測,介於白色和棕色之間的米色……沒錯!米色脂肪功能的確就介於白色與棕色脂肪之間!在平常狀況下,米色脂肪比較像白色脂肪,但當處在長期寒冷的環境中,米色脂肪就會開始變身,產生許多粒線體和 UCP1 蛋白,加入棕色脂肪的產熱行列(Giralt & Villarroya, 2013)。理解了這三種「大地色系」脂肪的差別,我們也漸漸聚焦出今日主角:棕色脂肪的產熱!究竟這些脂肪細胞是怎麼運用上面提到的粒線體和 UCP1 蛋白來產生熱量,溫暖寒冬中瑟瑟發抖的我們呢?

圖/SLEK提供

棕色脂肪產熱機制——傳訊與脂質分解

為了產生熱能,棕色脂肪細胞需要經過三個步驟:訊息傳遞、脂質分解和熱能生成。不瞞你說,其實這背後有段離奇的故事,一段關於一群想看電影,卻不乖乖買票入場,反而利用後門鑰匙偷偷進入電影院的故事。

故事是這樣開始的……「鬼滅之刃」終於上映了!自從發布這個好消息後,好評就像訊息傳遞一樣一傳十、十傳百的擴散開來,大家都興奮的想趕快到電影院跟風一波。你的身體裡也有同樣的效應!像發布電影上映消息一樣,交感神經分泌了作為產熱訊號的神經傳導物質——去甲基腎上腺素(Norepinephrine, NE),開啟一連串的訊息傳導。棕色脂肪細胞利用細胞膜上的β型腎上腺素受體,接收到了產熱訊號NE,引發細胞內第二傳訊分子 cAMP 產生,接著 cAMP 活化 PKA (protein kinase A),在細胞質中繼續將訊息傳遞下去(Nedergaard & Cannon, 2018)。

再回到故事中,雖然好想在電影院裡觀賞鬼滅之刃,但電影票好貴!因此,大家想出了一個辦法,如果能從電影院的後門進去,就可以逃過售票人員法眼,享受大螢幕帶來的快感了!前提是:我們需要一把電影院後門的鑰匙。由於不知道鑰匙究竟藏在哪裡,所以就只能自己製造一把啦!剛剛我們已經介紹了一連串的訊息傳遞,最後這些訊號傳到了棕色脂肪細胞質中的三種脂肪酶:三酸甘油酯脂肪酶(Adipose triglyceride lipase, ATGL)、荷爾蒙敏感型脂肪酶(Hormone sensitive lipase, HSL)和單酸甘油酯脂肪酶(Monoglyceride lipase, MGL),這三種脂肪酶就像鑰匙工匠,一步步把金屬塊打造成能開啟電影院後門門鎖的鑰匙。

在生物體內,脂肪酶的功用是水解脂肪,產生小分子的游離脂肪酸(Free fatty acid, FFA),它在棕色脂肪產熱過程中正是扮演「鑰匙」這項重要角色。首先,ATGL 先將三酸甘油酯水解成二酸甘油酯,接著由 HSL 將二酸甘油酯水解成單酸甘油酯[註1],最後再由MGL將單酸甘油酯水解成 FFA (Nedergaard & Cannon, 2018)。經過一連串 NE、cAMP、PKA 的訊息傳遞、脂質分解,細胞終於產生 FFA 這把開啟產熱之門的鑰匙!(圖二)接下來就讓我們慢慢從細胞質看向粒線體,並繼續說電影院的故事。

圖/SLEK提供
圖/SLEK提供

棕色脂肪產熱機制——熱能生成

現在我們擁有後門鑰匙,可以偷偷的、偷偷的,從後門溜進電影院,好好享受高級的音響設備和舒適空間!知道有這樣的好康,大家理所當然都不願意買票從正門入口進場,大批民眾從後門鬼鬼祟祟進入,電影院賺不到這筆錢,卻還得付出清潔費和播映電影的成本,損失慘重呀!

在棕色脂肪細胞中,也發生了和電影院一樣的離奇故事。棕色脂肪細胞中的粒線體就像電影院,在它的粒線體內膜上,存在許多特殊的蛋白 UCP1(Uncoupling protein 1),它是一種載體蛋白,可以將氫離子從膜間腔(Intermembrane space)運輸到粒線體基質(Mitochondrial matrix)中。一般來說,粒線體是細胞的發電廠,可以透過呼吸作用來產生能量 ATP,而這中間經歷了重重關卡。首先,葡萄糖經過糖解作用形成丙酮酸;丙酮酸轉變成乙醯輔酶 A 後進入檸檬酸循環,產生高能分子;最後由這些高能分子提供電子,進入電子傳遞鏈(Urry et al., 2017)。棕色脂肪產熱就是和最後一個步驟:電子傳遞鏈有關。

傳遞電子的過程發生在粒線體內膜上。過程中,粒線體內膜上的蛋白會將電子傳給能階較低的蛋白,逐步釋放高能電子中的能量,作為將氫離子從基質主動運輸至膜間腔的動力,膜間腔氫離子濃度因此升高,建立起氫離子的電化學梯度(Electrochemical gradient)。在一般狀況下,高濃度的氫離子就會從粒線體內膜上的 ATP 合成酶流入,產生 ATP。此時,ATP 合成酶就好像粒線體這間電影院的正門,顧客從正門進入,為電影院帶來收益,也就是 ATP。

但在棕色脂肪中就不是這樣了!上一段提到,我們已獲得了電影院的後門鑰匙,這把鑰匙就是 FFA,而電影院的後門就相當於粒線體內膜上的 UCP1。FFA 可以結合並活化 UCP1,當 UCP1 被啟動後,氫離子就從 UCP1 流入基質,而不是從 ATP 合成酶了。因此,原本膜兩側的氫離子濃度差所建立的「位能」可以用來產生 ATP,如今卻無法合成,這些位能最終只能轉換成熱能散逸(Nedergaard & Cannon, 2018)(圖三)。就像電影院的故事一樣,有了後門鑰匙的顧客不再買票從正門光顧,反而從後門進入,電影院不能獲得利益(ATP),顧客還會製造髒亂,造成電影院負擔(形成熱量散失)。

即便故事中的電影院不能獲益,人體還是靠著棕色脂肪獲得暖暖的熱量~現在你懂了棕色脂肪會藉由粒線體內膜上 UCP1 蛋白來破壞氫離子電化學梯度,使 ATP 無法合成,位能於是轉成熱能。了解產熱機制後,我們來看看究竟棕色脂肪分布在身體哪些區域吧!

圖/SLEK提供
圖/SLEK提供

我也想要棕色脂肪!棕色脂肪在哪裡

當你現在有能力專注閱讀這篇電子報,我就必須告訴你:很遺憾的,你的棕色脂肪已經退化許多啦!一生中棕色脂肪最旺盛的時候是嬰幼兒時期,因為剛出生時,進入比媽媽身體的 37℃ 還要冷的世界中,需要產生大量熱量來維持體溫;再加上嬰兒的肌肉不發達,無法藉由顫抖來產生熱量,身體的表面積/體積比又遠高於成人,熱量易散失(Lidell et al., 2018)。因此,豐富的棕色脂肪是支持寶寶活下去的重要組織!成年人也有棕色脂肪,但比小時候還要少許多,分布在頸部、鎖骨上方、肩胛骨、脊椎旁和腎臟周圍(Zoico et al., 2019) (圖四)。

雖然我們的棕色脂肪漸漸退化了,但還是有些因素能刺激棕色脂肪產生,或是藉由提高粒線體與 UCP1 含量來增進棕色脂肪效能!像是長時間處在寒冷環境下,就能提升棕色脂肪效率、誘導米色脂肪產生!也有研究指出,食用特定食物也能提升棕色脂肪效能,例如辣椒中的辣椒素、茶葉中的兒茶素(Yoneshiro et al., 2017)都有類似效果!

圖/SLEK提供

今天我們成功破除了脂肪油油肥肥的既定印象,不但學到脂肪原來還分成三種顏色,還深入了解棕色脂肪的產熱模式。從接收訊號開始,經過一連串的訊息傳遞後,將脂肪細胞中庫存的三酸甘油酯分解成 FFA,刺激 UCP1 啟動運輸氫離子,將電化學梯度的位能轉換成溫暖~雖然棕色脂肪部分退化了,但它曾經幫助你度過幼年時期,現在也默默地在脖子、肩胛骨附近溫暖著你!希望閱讀完這篇電子報後,能讓你對脂肪有新的見解!

看完文章後,你應該會知道:

  1. 脂肪細胞分成三種,白色、米色、棕色脂肪,其中米色和棕色脂肪都和身體熱能產生有關。
  2. 棕色脂肪產熱的訊息傳遞是透過 NE、cAMP、PKA 的傳訊途徑完成,導致脂肪酶分解脂質,產生 FFA。
  3. UCP1 蛋白受 FFA 活化後開始運輸氫離子,破壞電化學梯度使能量逸散。
  4. 棕色脂肪在人體的分布位置。

註解

  • 事實上,在 ATGL 先將三酸甘油酯水解成二酸甘油酯、HSL 將二酸甘油酯水解成單酸甘油酯的過程中,也都會產生 FFA。

參考資料:

  1. El Hadi, H., Di Vincenzo, A., Vettor, R., & Rossato, M. (2019). Food ingredients involved in white-to-brown adipose tissue conversion and in calorie burning. Frontiers in Physiology, 9, 1954.
  2. Giralt, M., & Villarroya, F. (2013). White, brown, beige/brite: different adipose cells for different functions?. Endocrinology, 154(9), 2992-3000.
  3. Nedergaard, J., & Cannon, B. (2018). Brown adipose tissue as a heat-producing thermoeffector. In Handbook of clinical neurology (Vol. 156, pp. 137-152). Elsevier.
  4. Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Reece, J. B. (2017). Campbell biology. Pearson Education, Incorporated.
  5. Lidell, M. E. (2018). Brown adipose tissue in human infants. In Brown Adipose Tissue (pp. 107-123). Springer, Cham.
  6. Zoico, E., Rubele, S., De Caro, A., Nicole, N., Mazzali, G., Fantin, F., … & Zamboni, M. (2019). Brown and beige adipose tissue and aging. Frontiers in Endocrinology, 10, 368.
  7. Yoneshiro, T., Matsushita, M., Hibi, M., Tone, H., Takeshita, M., Yasunaga, K., … & Saito, M. (2017). Tea catechin and caffeine activate brown adipose tissue and increase cold-induced thermogenic capacity in humans. The American journal of clinical nutrition, 105(4), 873-881.

slekmed_96
2 篇文章 ・ 1 位粉絲
SLEK的使命是成為莘莘學子對選擇醫藥學群感到迷茫時的一盞明燈。 藉由定期推出「電子報報」、「微微生物」、「懶懶人包」等醫學類文章,以及不定期舉辦醫學相關的講座、營隊、直播活動等等,使學員們親身體驗醫學學習,進而對於醫學相關科系有具體想像,追尋心之所向。

0

7
1

文字

分享

0
7
1
真有吃不胖的天選之人?科學家揪出造成肥胖的關鍵基因
羅夏_96
・2021/08/10 ・2742字 ・閱讀時間約 5 分鐘

你是那種喝水都會胖的人嗎?看著那些不需飲食控制和運動,就能享受美食並且保持好身材的人,是否感到羨慕忌妒恨?近期發表在 Science 上的研究顯示,如果擁有某些基因的變異,就有潛力成為吃不胖的天選之人( Akbari et al., 2021)。

肥胖對健康的隱患

肥胖是一個在全球範圍內不斷增長的巨大健康隱患,根據世界衛生組織的統計,2016 年全球肥胖人數已是 1975 年的近 3 倍;2016 年,18 歲及以上的成年人中,過重者超過 19 億,其中肥胖者超過 6.5 億人。

肥胖的定義為可損害健康的異常或過量脂肪累積,而常用於定義肥胖的指標為身體質量指數 (Body Mass Index, BMI)。根據世界衛生組織的定義,BMI ≧ 25 時為超重、BMI ≧ 30 為肥胖。不過由於 BMI 未必表示不同的個體有相同的肥胖程度,因此常會合併其他標準如腰臀比或其他心血管症風險因子一起評估。

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Obesity_%26_BMI.png/1024px-Obesity_%26_BMI.png
BMI 作為肥胖的指標。圖/維基百科

研究指出,肥胖者罹患心血管疾病、第二型糖尿病、退化性關節炎以及部分癌症的風險較高,也因此肥胖者的預期壽命較短。而全球因肥胖所造成的醫療支出逐年攀升,因此各國政府近年都積極推動減重的相關指引,期望能降低肥胖對醫療與經濟所造成的負擔。

想對抗肥胖,得先知道是怎麼胖的

肥胖的根本原因,是能量攝取與消耗間的不平衡所導致。簡單來說,就是熱量攝取太多而身體活動太少,這就導致脂肪的過量累積。在高熱量食物取得容易、工作形式轉為久坐與交通便捷的生活形態下,現代人想變胖並不難。雖然大部分人在飲食控制與運動的幫助下,都能有效地控制體重,但一個人是否容易發胖,還有很多因素必須考慮,從環境、生活型態、工作壓力到基因遺傳等都是會影響人發胖的因素。這些因素中,科學家對的基因遺傳更感興趣,因為了解造成肥胖背後的分子機制,就能為治療肥胖提供合適的藥物標靶。

事實上,先前已有不少研究找出與肥胖相關的基因。例如科學家透過研究早發性肥胖症[註1]患者的基因組,就找出有 20 多個基因對 BMI 有影響。另外通過全基因組關聯研究 (Genome-Wide Association Study, GWAS ) [註2] ,也發現了數百個常見的基因變異對 BMI 有一定程度的影響。不過在先前的研究中,其樣本數通常不大,因此找到的基因是否有代表性,或者是否能成為藥物開發的標靶,仍有待商榷。

為了能更好的找出肥胖相關基因,並在其中找到好的藥物標靶,雷傑納榮製藥公司 ( Regeneron Pharmaceuticals ) 與紐約醫學院、杜克大學和賓夕法尼亞大學組成聯合研究團隊,進行了迄今針對肥胖研究規模最大的 GWAS 分析,希望能找到造成肥胖的關鍵基因。

GWAS 揪出肥胖關鍵基因 —— GPR75

研究團隊收集來自墨西哥、美國和英國共 645,626 名受試者的資料,並對其基因組進行定序。通過比較 BMI 的高低與受試者的定序結果,研究人員找出 16 個基因的變異,與 BMI 的影響有著高度關聯。

研究團隊進行的大規模 GWAS 分析。圖 / 參考資料 1

這 16 個基因中,有 5 個引起研究團隊的興趣。這 5 個基因分別是 CALCRMC4RGIPRGPR151GPR75,因這 5 個基因不僅都是 G 蛋白偶聯受體 (G protein-coupled receptors, GPCRs)[註3],也都在調節食慾和新陳代謝的下視丘中表現,這讓它們非常適合做為治療肥胖的標靶。

研究團隊分析出影響 BMI 的相關基因。圖 / 參考資料 1

在進一步分析後,研究人員將目光放在 GPR75 這個基因上,原因是該基因的功能喪失型變異 ( loss-of-function variant)[註4]與較低的 BMI 之間有著最大的關聯。分析結果顯示,每 3000 人中就有 1 人帶有 GPR75 的變異,而擁有這個變異的「天選之人」似乎天生就不容易發胖,他們的 BMI 比普通人低 1.8、體重比普通人要輕 5.3 公斤、肥胖的機率也比普通人低 54%。

但上面的結果是根據定序分析所得出的,那麼 GPR75 在生理上是否真的對體重有重要影響呢?為此研究團隊用小鼠實驗來驗證。

研究人員將小鼠的 GPR75 基因剔除,模擬出 GPR75 的功能喪失型變異,並以高脂肪飲食餵養基因剔除小鼠與正常小鼠 14 周後,觀察兩者的體重是否會產生差異,而結果令他們相當驚奇。他們發現基因剔除小鼠的體重要比正常小鼠輕 44%,並且擁有更好的血糖控制能力、對胰島素的敏感也更高。基於這些結果,研究團隊認為 GPR75 確實是極具潛力的肥胖治療標靶。

GPR75 剔除小鼠在經歷 14 周的高脂肪餵食後,體重明顯比正常小鼠輕。圖 / 參考資料 1

雖然研究團隊找出 GPR75 這個基因有治療肥胖的潛力,現在的研究也指出人體內會活化 GPR75 的潛在分子。但遺憾的是,活化 GPR75 並不能達到減肥的目的,抑制 GPR75 才能達到。因此研究團隊的下一步,便是找到能關閉 GPR75 的方法,藉此來觀察是否能有效對抗肥胖。

而在這篇研究發表後,Science 也發表對這篇研究有著高度評價的專文( Yeo & O’Rahilly, 2021),認為這項研究不僅找出造成肥胖背後的新基因,也為治療肥胖的藥物開發以及分子機制提供了新的思路。不過在專文中也指出該研究的不足,例如只用 BMI 做為衡量身體胖瘦以及健康程度的指標並不精確,還需要更多其他因素進行分析。

雖然擁有 GPR75 變異的天選之人並不多,但隨著研究對肥胖有更多的認識,未來或許吃不胖將不再是讓人羨慕忌妒恨的能力,只需一顆小藥丸,人人都能輕鬆達成!不過在那天來臨前,多注意自己的飲食組成,然後規律運動,這才是保持身材和健康的不二法門〜

註釋

  1. 早發性肥胖症:其定義為在十歲前就發生肥胖,且 BMI 較平均高出 3 個標準差以上的患者。能造成這種症狀的疾病有很多,如小胖威利症候群、科恩症候群等。
  2. 全基因組關聯研究:是指在人類全基因組範圍內找出存在的序列變異,並從中篩選出與疾病相關的變異。
  3. G 蛋白偶聯受體:是人體中最大的蛋白質家族,其基因數占了人類基因的 2~3%,擁有 826 個成員。因 GPCRs 在細胞內的訊息傳遞扮演著十分重要的角色,也參與了人體許多的生理活動,因此也成為許多藥物作用的目標。
  4. 功能喪失型變異:是指該基因產生的變異,會讓基因表現不明顯,或者使基因的產物蛋白質失去功能。

參考資料

  1. Akbari P et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science. 2021 Jul 2;373(6550):eabf8683.
  2. 肥胖和超重
  3. 肥胖症
  4. Yeo GSH, O’Rahilly S. Finding genes that control body weight. Science. 2021 Jul 2;373(6550):30-31.
羅夏_96
52 篇文章 ・ 438 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟