0

0
1

文字

分享

0
0
1

《工作細胞》:血管裡的微科學故事

miss9_96
・2016/07/13 ・2593字 ・閱讀時間約 5 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

《工作細胞》是部難得的微科學漫畫,敘述帥氣的白血球先生,與呆萌紅血球小姐的冒險故事。儘管裡頭充滿了努力、友情、正義必勝的故事,白血球們總是能夠一次又一次殺爆入侵的微生物(其實我比較想看微生物贏 XD)。但,真實的世界又是如何呢?

工作細胞第一集封面。source:東立出版社
工作細胞第一集封面,左為白血球先生,右邊是紅血球小姐。source:東立出版社

紅血球其實像顆貝果麵包,至於白血球咩,比較像是顆煎壞的荷包蛋……

《工作細胞》裡的角色多是可愛的紅血球小姐、帥氣的白血球先生,和萌萌的血小板蘿莉。但在真實的世界裡,它們的長相可就不是如此了,紅血球通常直徑為6~8 μm,長的很像一顆扎實的貝果麵包;而白血球稍大,直徑為9~12 μm,長的很像……一顆沒煎好的荷包蛋(我實在想不到其他的形容詞啊啊啊!)。

1
A:紅血球;B:嗜酸性白血球,主要對抗寄生蟲;C~ E:嗜中性白血球,主要對抗細菌、病毒 [2],佔所有白血球的比例最高;F:血小板。From: 張昱維

2
異常型態紅血球。A:鐮刀型細胞(Sickle cell);B:畸形細胞(Poikilocytosis);C:靶狀細胞(Target cell)。From: 張昱維

對細菌、病毒和寄生蟲而言,人體是個溫暖又不乏食物的地方,所以倘若有機會,這些求生存的浪浪微生物就會進入我們溫暖的肉體裡,與免疫細胞們共同上演一場又一場的生存之戰。大型的入侵者,如阿米巴原蟲,會吞食紅血球作為食物;小的如瘧原蟲會鑽入紅血球體內,不但能直接吸取營養,更可躲避白血球的攻擊 [1];而更高招的是那群反轉錄病毒(如:肝炎病毒Hepatitis Virus,和引起愛滋病的人體免疫缺陷病毒Human Immunodeficiency Virus/HIV),把自己的遺傳密碼直接寫入宿主細胞的DNA裡,不僅無需擔心白血球的攻擊,更潛藏於身體裡的細胞,幾乎無法根除,成了人體的一部份 [註1]!

3
上圖:吞食紅血球的阿米巴原蟲(你也吃太多顆了吧……);下圖:寄生於紅血球體內的瘧原蟲,正處於指環體(Ring form)。from: wikimedia & wikimedia

對細菌來說,白血球才是可怕的惡魔!

在這裡我要先替細菌說說話,其實以一隻小細菌的觀點來說,白血球超可怕的啦!彷彿就是《進擊的巨人》裡的食人巨獸般 [註2],利用靈敏的受器「聞」到發炎物質後,會成群結隊的奔襲而來(化學趨向性/Chemotaxis)。

-----廣告,請繼續往下閱讀-----
進擊的巨人第12集封面。source:東立出版社
進擊的巨人第12集封面。source:東立出版社

更可怕的是,一旦發現無助的細菌們,白血球會伸出巨大的偽足(pseudopodia)加以捕捉、吞噬。可憐的細菌被巨大的白血球吞食之後,還會被白血球體內的過氧化物、酵素等分解成碎片,一命嗚呼~而且被撕成碎片的屍體還會被巨噬細胞剪成胜肽(peptide)片段,送給免疫系統的老大-T細胞(T-helping cell)進一步刺激免疫反應,以召喚更多的白血球來襲擊細菌村莊 [3]!想想,以細菌的角度來看,白血球完全不是帥氣的型男衛兵,根本就是《沉默的羔羊》裡的變態食人魔吧 [註3]!

4
上圖:化學趨向性/Chemotaxis。細胞表面的受器感受到特定物質的濃度梯度後,會朝向該處前進,或反向該處離開;下圖:伸出兩隻偽足的巨噬細胞。from: wikimedia & wikimedia

圖片1
上圖:正在吞噬炭疽桿菌的白血球,比例尺為5 μm;下圖:被白血球吞噬後的細菌、病毒或細胞,會和富含過氧化物、酵素的胞器融合為一,最終分解成碎片。from: wikimedia

漫畫太善良了!真實的世界充滿陰謀詭計!

在《工作細胞》的前幾話中,出現的敵人都是少量的細菌,白血球們經過一番苦戰之後,總是會獲得最後的勝利。就算是腫瘤細胞也是僅用兩話的時間就清除得乾乾淨淨!但免疫系統遠比科學家們想像的還要複雜、神奇許多,真實的細胞世界裡充滿了計謀、背叛和策反之計!

比方說在人類歷史上佔有一席之地的結核桿菌(就是那隻能讓人得到肺結核、咳到吐血的原兇),是少數能夠潛藏在巨噬細胞的細菌,最近更被發現會利用巨噬細胞的訊息傳遞來提高自己的致病力 [4]!而近年來科學家更發現,腫瘤組織會吸引巨噬細胞聚集,讓它們釋放生長因子,進一步地刺激腫瘤細胞生長、茁壯 [5]!如此神奇、工於心計的免疫世界,未來是否也會在《工作細胞》裡出現呢?這是多麼的令人期待啊!(台灣的教育部快把《工作細胞》列為必讀書刊吧!)

-----廣告,請繼續往下閱讀-----
  • 註1:有一種理論是,遠古的反轉錄病毒將它們的基因寫入人體細胞後,經過很久很久的時間後,兩方達成了和平共存的狀態,也就逐漸變成了我們基因的一部份。
  • 註2:《進擊的巨人》是近期風靡日本、台灣的漫畫,設定是類似於中世紀文明的世界裡,出現了喜食人類的巨人,引起了人類社會中難以想像的恐慌。
  • 註3:《沉默的羔羊》為1991年上映的驚悚電影,男主角為冷酷的食人魔罪犯-漢尼拔醫師,其冷靜、工於心計又殘忍血腥的形象讓人不寒而慄。儘管只有21分鐘的戲份,其精湛的演技讓演員安東尼·霍普金斯成為奧斯卡獎史上,演出時間最短的男主角的獲獎演員。

本文感謝衛生福利部台東醫院檢驗科張昱維(Yu-Wei Chang)協助。

參考文獻

  1. 瘧疾(Malaria)。中華民國衛生福利部疾病管制署
  2. Galani IE, Andreakos E. Neutrophils in viral infections: Current concepts and caveats. Journal of Leukocyte Biology, 2015, 98, 557-564
  3. 林建中、陳光偉、陳證文、王世輝。免疫樹突狀細胞之簡介。中華民國醫師公會全國聯合會
  4. 結核桿菌的一個新發現的致病機制Nature期刊
  5. Elaine Y. Lin, Jiu-Feng Li, Leoid Gnatovskiy, Yan Deng, Liyin Zhu, Dustin A. Grzesik, Hong Qian, Xiao-nan Xue, Jeffrey W. Pollard. Macrophages Regulate the Angiogenic Switch in a Mouse Model of Breast Cancer. Cancer Research. 2006. DOI: 10.1158/0008-5472.CAN-06-1278

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

文章難易度
miss9_96
170 篇文章 ・ 1019 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

0
0

文字

分享

0
0
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

52
3

文字

分享

0
52
3
耳背腦就鈍?解密聽力受損與失智的關係
雅文兒童聽語文教基金會_96
・2024/02/17 ・4232字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/雅文基金會聽語科學研究中心研究員 詹益智

阿明是位 65 歲的退休長者,總是積極參與各種社區活動,是熱心的志工。然而,近來他開始意識到自己在大型聚會中,必須使勁聆聽他人的話語,有時還是會錯過一些關鍵的內容,這使得他逐漸對大型活動感到焦慮,害怕因聽不清楚別人的對話而與人生分。隨著聽力問題逐漸浮現,他開始注意到自己的思緒也跟著變得混亂。比如說,他常常忘記事情發生的順序,甚至有時候不記得已經說過的話,這種記憶的衰退讓阿明感到十分困擾。最終,阿明去看了醫生並接受相關的測試,被診斷出患有中度聽損與早發性失智症。

在日常生活中,聽覺扮演了重要的角色,是我們與外界交流的管道之一。然而聽力受損不僅僅是一種單純的生理障礙,更可能與失智症之間存在著密切的關係。

關於失智症的二三事

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。有些失智症患者甚至無法控制情緒,個性也可能發生轉變。失智的症狀隨程度不同而有所改變,從最輕微的階段開始影響一個人的基本能力(如記憶),到最嚴重的階段,患者完全需要仰賴他人進行日常活動 [1]。失智症不僅對患者本身造成巨大的影響,也帶給家人和照顧者極大的負擔。

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。圖/Pixabay

2023 年世界衛生組織(WHO)的統計數據顯示,世界上目前約有 5,500 多萬的人口患有失智症,而每年全球正以 1,000 萬人的速度增加 [2],預計到 2050 年,全球失智症患者數量將達到 1.53 億人口 [3]。Livingston 等學者於 2020 年在國際著名的醫學期刊《刺胳針》(The Lancet)發表了一篇關於失智症的預防、介入與照護的研究 [4],列舉了 12 項風險因子,包括教育程度較低、聽力損失、創傷性腦傷、高血壓、酗酒、肥胖症、吸煙、憂鬱症、社交隔離、缺乏運動、空氣污染與糖尿病,將近 40% 的失智症都與這些因素有關(另 60% 為風險因子不明),其中,聽力損失佔最大宗,約有 8% 的比例。另一項研究更進一步指出,罹患失智症的風險會隨著聽損程度越重而增加,例如輕度、中度與重度聽損者罹患失智症的風險分別是聽常者的 1.27、3.00 與 4.94 倍 [5]。由此可見,聽損與失智症的關係不容小覷。

-----廣告,請繼續往下閱讀-----
失智症的風險因子,聽力損失約佔 8%。圖/引自HearingLife

聽力出包時,失智症有可能找上門!

聽損與失智症關聯的機轉究竟是什麼呢?綜合現有的研究文獻,大致可歸納出三大觀點:

一、聽損會耗費大腦的認知資源

聽損常使一個人在吵雜的環境下聽不清楚聲音,此時,大腦便會進行代償作用,將負責思維和記憶區塊所需的資源移轉用來處理這些模糊的音訊,而導致前述二項高階的認知功能受到影響,進而增加失智的風險 [6]。以上的論述主要來自 Mishra 等人的研究 [7],該研究比較輕度聽損年長者與聽常年輕人在「認知備用容量測驗(Cognitive Spare Capacity Test)」的表現:受試者聽完(無視覺提示)一串由男女穿插錄製之二位數的數字列表(如下表所示)後,要說出這串列表中由男生所錄製的奇位數數字(如 13 與 59,以圓圈標示)。要順利完成此項作業,受試者必須排除女生所錄製奇位數數字的干擾(如 77、89 與 61,以底線標示)。

數字5036774496895240612066
男/女
「認知備用容量測驗」實例(來源:Mishra 等人 [8]

結果顯示,在安靜的環境下,兩組受試者的表現無顯著差異,但在噪音環境下,聽損年長者的表現則顯著落後於聽常年輕人,研究者認為聽損年長者為了排除噪音的干擾以獲取正確的答案,其大腦會將高層次的認知資源挹注於彌補聽損所帶來的負面影響,而致使認知功能下降。長此以往,漸漸便埋下了失智症的導火線。

另一個較為直觀的證據則是透過腦造影技術觀察聽損者大腦活動的狀況。Glick 與 Sharma [9] 讓聽常與聽損老年人觀看電視螢幕的光影變化,並透過高密度的腦波圖(high-density electroencephalography;EEG)記錄其對視覺刺激反應的皮質視覺誘發電位(cortical visual evoked potentials;CVEPs),再透過電流密度源重建技術(current density source reconstruction)定位大腦皮質活動的區塊;此外,研究也評估了受試者的認知功能。結果顯示,相較於聽常者,聽損者觀看視覺刺激物時,腦部發生了視覺跨模重組(visual cross-modal reorganization)的現象:除了主司視覺的枕葉區被活化外,主司聽覺的顳葉與主司認知功能的前額葉也被活化用以輔助處理視覺訊息,這會為大腦帶來極大的負擔而增加認知負荷,並耗盡用以記憶的認知資源,最終可能引發失智症。

-----廣告,請繼續往下閱讀-----

二、聽損會使大腦組織萎縮

此外,聽損與否也可能會影響一個人大腦的結構與功能。美國約翰霍普金斯大學的研究人員 [10],利用「巴的摩爾老化長期研究(Baltimore Longitudinal Study of Aging)」的資料,針對聽損與腦容量的關係進行了一項有趣的研究,他們分析了一群受試者在逐漸老化時,其腦容量的變化。受試者在研究之初,做了聽力評估,接著接受為期長達十年、每年一次的核磁共振檢查。結果顯示,研究開始時就患有聽損的受試者,相較於聽常者,其大腦有較大幅度的萎縮,平均以每年一立方釐米以上的速度流失大腦組織,而這些大腦組織恰好與輕度認知功能退化和早期失智症所表現出的記憶衰退的行為有關 [11]

三、聽損會引發社交隔離

社交隔離(social isolation;意旨與他人很少有社交互動或是社交圈窄小的現象 [12])也可解釋為何聽損與失智症有關。一項由英國所進行的研究 [13] 追蹤了一群 50 歲以上成年人的聽損、社交隔離的程度與認知的狀況,並分析這三個因素間的關係,結果發現雖然聽損與認知功能下降有直接且顯著的關聯,但當加入了社交隔離程度的影響後,聽損與認知關聯的強度降低了近三分之一,此結果說明聽損可能會導致社交隔離,間接造成認知功能下降而引發失智症。這也顯示大腦須要透過適當的社交刺激,才能維持其活力,進而保持正常的認知功能。值得注意的是,當聽力閾值達到 25 分貝或以上(即輕度以上的聽損,亦為影響社交溝通的起始閾值)時,聽損所帶來的失智風險就會明顯地增加 [14]

如何預防聽損所帶來的失智風險

一般而言,聽力是與他人溝通互動不可或缺的元素之一;然而,聽力問題不僅僅是關乎聽覺本身,如前所述,它也可能與失智症存在直接或間接的關係,若能適時地做好聽力保健,或許就可避免老年時,讓失智找上你。那麼要如何維持良好的聽力呢?以下幾點可供參考:

  1. 定期聽力檢查是維護耳朵健康的重要關鍵。許多人並不瞭解即便是輕微的聽損也可能對認知功能造成負面的影響。在一般的情況下,聽力下降是漸進且微小的,而人類的大腦有極強的適應能力,這使得聽力衰退不易被察覺 [15]。透過定期的聽力檢查,有助於追蹤聽力狀況,即使是微小的變化也能及時掌握,並處理潛在的聽力問題,進而降低聽損所帶來的失智風險。
  2. 減少長期暴露在噪音環境中。噪音環境除了會加速聽損的惡化外,同時也會誘發海馬迴受損的記憶功能障礙,這也是失智典型的症狀 [16]。因此,避免長時間處在高分貝的環境下,或者適時地佩帶耳塞或耳罩,便是保護聽力健康進而降低失智風險的良方之一。

然而,就聽損人士而言,難道就只能坐視自身認知功能逐漸退化而毫無作為嗎?其實不然。還記得 Glick 與 Sharma 的研究 [9] 提到聽損者大腦的視覺跨模重組與其認知功能衰退息息相關嗎?但令人振奮的是,這些聽損者在穩定配戴助聽器六個月後,逆轉了視覺跨模重組的現象,其認知功能也隨之改善,這表示聽損者配戴助聽器後,失智風險也可能跟著降低。 

-----廣告,請繼續往下閱讀-----
聽損人士配戴助聽器後,失智風險可能會跟著降低。圖/iStock

雖然失智症並不全然與聽力問題相關,但就聽力而言,我們可做的就是聽力保健,如定期做聽力檢查、遠離噪音環境、適度保護耳朵,以及必要時配戴助聽輔具是維持良好聽力的重要關鍵,若能確實執行上述建議,或許就可降低那 8% 的失智風險。請記住,保護耳朵就是保護大腦,讓我們一起努力維護聽力,為未來的大腦健康奠定穩固的基礎吧!

參考資料

  1. National Institute on Aging (n.d.). What is dementia? Symptoms, types, and diagnosis. https://www.nia.nih.gov/health/alzheimers-and-dementia/what-dementia-symptoms-types-and-diagnosis
  2. Dementia (2023, March 15). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia
  3. The Institute for Health Metrics and Evaluation (2022, January 6). The Lancet Public Health: Global dementia cases set to triple by 2050 unless countries address risk factors. https://www.healthdata.org/news-events/newsroom/news-releases/lancet-public-health-global-dementia-cases-set-triple-2050
  4. Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., … & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet396(10248), 413-446.
  5. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  6. Fulton, S. E., Lister, J. J., Bush, A. L. H., Edwards, J. D., & Andel, R. (2015, August). Mechanisms of the hearing–cognition relationship. In Seminars in Hearing (Vol. 36, No. 03, pp. 140-149). Thieme Medical Publishers.
  7. Mishra, S., Stenfelt, S., Lunner, T., Rönnberg, J., & Rudner, M. (2014). Cognitive spare capacity in older adults with hearing loss. Frontiers in Aging Neuroscience6, 96.
  8. Mishra, S., Lunner, T., Stenfelt, S., Rönnberg, J., & Rudnera, M. (2013). Visual Information Can Hinder Working Memory Processing of Speech. Journal of Speech, Language, and Hearing Research56, 1120-1132.
  9. Glick, H. A., & Sharma, A. (2020). Cortical neuroplasticity and cognitive function in early-stage, mild-moderate hearing loss: evidence of neurocognitive benefit from hearing aid use. Frontiers in Neuroscience, 93.
  10. Lin, F. R., Ferrucci, L., An, Y., Goh, J. O., Doshi, J., Metter, E. J., … & Resnick, S. M. (2014). Association of hearing impairment with brain volume changes in older adults. Neuroimage90, 84-92.
  11. Liu, J., Zhang, X., Yu, C., Duan, Y., Zhuo, J., Cui, Y., … & Liu, Y. (2016). Impaired parahippocampus connectivity in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease49(4), 1051-1064.
  12. Steptoe, A., Shankar, A., Demakakos, P., & Wardle, J. (2013). Social isolation, loneliness, and all-cause mortality in older men and women. Proceedings of the National Academy of Sciences110(15), 5797-5801.
  13. Maharani, A., Pendleton, N., & Leroi, I. (2019). Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English longitudinal study on ageing. The American Journal of Geriatric Psychiatry27(12), 1348-1356.
  14. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  15. Audiology Associations of DFW. (August 31, 2023). Regular hearing tests could decrease your risk of getting dementia. Hearing Test Info. https://www.audiologyassociates.com/hearing-test-info/hearing-test-reduce-risk-dementia/
  16. Paciello, F., Pisani, A., Rinaudo, M., Cocco, S., Paludetti, G., Fetoni, A. R., & Grassi, C. (2023). Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiology of Disease178, 106024.

討論功能關閉中。

雅文兒童聽語文教基金會_96
55 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

1

5
2

文字

分享

1
5
2
馬斯克不屑一顧;比爾蓋茲卻視若珍寶!氫能源會成為永續發展的救世主嗎?
PanSci_96
・2024/02/04 ・5542字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

馬斯克的「氫能愚蠢說」被打臉了嗎?

馬斯克曾多次斷言發展氫能是個愚蠢的決定,更說氫氣不會自然出現在地球上。

然而今年 7 月,美國新創公司 Koloma 從比爾蓋茲與其他投資者手中,獲得了總計 9100 萬美元的融資,準備開採地下氫氣。今年 9 月,地質學家更是直接在法國的地底下發現大量氫氣,總量估計有 4,600 萬噸。
而且比起需要搭配綠能或是熱裂解設備才能製造的綠氫與灰氫,這些氫氣價格將會十分低廉,難道,氫氣的時代要到來了嗎?為了環保,我們得挖呀挖呀挖?

地球上真的還有氫氣嗎?

這張照片就能證明地底中含有氫氣?

這拍攝於澳洲的珀斯盆地,大大小小的圓圈被稱為仙女圈,在仙女圈內沒有植物生長,甚至向內凹陷形成鹽湖。當科學家調查這些仙女圈,他們意外發現土壤中竟然含有氫氣。氫氣與仙女圈之間的確切關係還未知,有人推測可能氫氣抑制了植物或是微生物菌落的生長,使得該區光禿甚至土壤流失。

我們知道氫氣是世界上最輕的氣體,一旦進入大氣,就會向上飄散,直至被拋至太空,離開大氣層。然而地球的大氣層中還是有少量的氫氣被束縛住,大氣濃度約為 0.55 ppm ,是臭氧的 13 倍。

-----廣告,請繼續往下閱讀-----
圖/pexels

但只要沒有進入大氣,還是被封在地底的氫氣因為不容易溢散,至今存量還很豐富。不只在澳洲,世界各地都觀察到了氫氣從地底向地表洩漏的情形。

第一炬奧運聖火至今還在燃燒?

位於土耳其奧林匹斯山山谷,就在希臘火神赫菲斯托斯的神廟廢墟上方,大大小小的火焰從土石間冒出,就好像赫菲斯托斯至今都還存在在該處一樣。該地的冒火處有十幾個,總燃燒面積高達 5000 平方公尺。

根據地質學家推估,這片火焰已經燃燒了 2500 年,根據史料比對,很有可能就是最早奧林匹克聖火的發源地。

圖/wikipedia

地質學家調查了這股火焰的形成原因,發現從岩石中噴出的氣體,除了含有 87 % 的甲烷以外,還含有百分之 7.5 到 11 是氫氣。這股持續 2500 年間不斷冒出的氣體,根據地質學家推估,與石油、天然氣成因不同,並不是因為遺骸或微生物等生物原因才產生的。而是大地之母地球源源不斷提供給我們的,這又是怎麼一回事?

-----廣告,請繼續往下閱讀-----

氫氣知多少:哪來這麼多地底氫氣?

地底的氫氣怎麼來?

這與岩石的變質作用息息相關,我們知道火成岩、沉積岩會在高溫高壓下產生變質作用,轉為性質截然不同的變質岩。而富含鎂與鐵的矽酸鹽類礦物,例如橄欖石、輝石,當他們在高溫環境下與水作用,會轉為蛇紋石、水鎂石、磁鐵礦等礦物,這個過程稱為蛇紋石化作用。

圖/wikipedia

這種作用是一種化學反應,會將大量的水吸入岩石,讓岩石的密度下降。在反應結束後,除了礦物特性產生變化以外,還會生成副產物,也就是氫氣。如果地層中又剛好有二氧化碳存在,就會在高溫的環境下進一步甲烷化,將氫氣與二氧化碳轉成甲烷。

目前科學家認為,大部分地層中非生物性原因產生的的氫氣與甲烷,多是由這樣的過程產生的。奧林匹斯山的聖火,推測也是這樣產生的。

而對於地質學家來說,也代表尋找天然氫氣這一目標,也可以從盲目搜尋,轉為限縮在尋找有經歷過蛇紋石化作用的地層上。

-----廣告,請繼續往下閱讀-----
圖/usgs

但除了蛇紋石化作用以外,大自然還有兩種生產氫氣的主要方式:深層蘊藏與水的輻解。

地球內的氫氣

在地底深處,推測蘊藏著大量氫氣。它們深達地底,甚至可能存在於地函與地核之中。

我們現在的技術當然無法直接來個地心探險開採這些氣體,但科學家陸續從美國、俄羅斯、東歐等地的岩石鑽探結果可以觀察到,在越深的地方氫氣濃度越高。因此地質學家推測這些氫氣可能來自更深的地方,並正從橄欖岩緩緩地擴散,進入靠近地表的岩層之中。

然而,因為我們還無法進入地底,因此即便我們知道它們存在,但對於這些氫的形成原因目前還未有結論。有些科學家放眼整個太陽系的形成過程,推測在原始地球形成時,整顆行星包含地核之中就有氫的存在。而也有人認為,地核中的鐵元素與水反應,形成氧化鐵與一氫化鐵兩種物質型態,將氫存在地核之中。

-----廣告,請繼續往下閱讀-----

這個問題的解答,就等待地球科學家為我們帶來解答吧。而且了解這些元素存在於地核、地函的形式,也可以解開許多未知謎團,例如地核的詳細組成分、地函存在異常低電阻區的原因、改善地函動力學模型,以及找出哥吉拉到底在哪裡等等。

圖/giphy

輻射也能產生氫氣?

地殼中的釷、鈾等放射性元素,在漫長的衰變過程中,會緩慢地將地層中的水分子鍵結破壞,形成氧氣與氫氣。例如一顆 1 MeV 的 α 粒子,平均足以讓 10 個水分子解離。而當岩石擁有更高的孔隙率, α 粒子會更有機會與水分子產生作用,會有更高的氫氣產量。

但其實,考慮到衰變的速度以及放射性元素存在於地底的超低含量,這個方式的效率並不高,而且實際上 α 粒子用來解離水分子的能量只消耗了 1 % ,剩餘的能量都還是被附近的岩層吸收,以熱的形式消耗掉。

除了產量不高以外,理論來說在輻射發生的地方,應該要能看到氫氣與氧氣同時存在,但目前實地調查的結果,都只有發現氫氣。氧氣是否進一步參與了其他反應,或是已經逸散,或甚至這個理論需要再做調整,還需要更多的研究。

-----廣告,請繼續往下閱讀-----

好的,我們知道氫氣是怎麼產生的,那麼重點是,我們到底有多少氫氣能用呢?

地底有多少氫氣?

世界各地都有發現自然氫氣的存在。對了,雖然這張地圖看起來氫氣的發現地點都集中在北亞與東歐,但這只是因為目前的探勘都聚集在這邊,並不代表真實的氫氣分布。

這些來自地底的氫氣,我們稱為地質氫,如果用顏色來分類,則稱為白氫或是金氫。如果氫氣的開採規模能像天然氣一樣龐大,白氫的價格,預計會落在每公斤 1 美元。

相比之下其他的氫氣生產方式,例如我們上次提到,由蒸汽重組產生的灰氫,售價約為 0.9~3.2 美元。由綠能生成的綠氫則是 3~7.5 美元。因此,如果白氫正式被大量使用,將大幅降低現在的氫氣價格,甚至帶動氫氣運輸、儲存、發電機組等產業鏈的發展,連帶降低其他顏色氫氣的隱含成本。

-----廣告,請繼續往下閱讀-----

比爾蓋茲與氫能產業

與馬斯克看衰氫能不同,比爾蓋茲不僅投資白氫的開發,也投資了不少氫能產業。

例如他就投資了西班牙公司 H2SITE ,一間致力於氫能運輸與氫氣製造的公司。因為現在運輸氫氣的成本是製造氫氣的三倍,如果能降低運輸成本,將有助於整個氫氣產業的發展。在開採方面,各國也都開始投入地質氫的調查與開採技術研發。

美國地質調查局初步估計,全球地底下可能藏有百億噸的氫氣等著被開發,能滿足全人類數千年的能源需求。當然,這個數字並沒有考慮到開發的困難度,只是單純地以全球存量作分析。

但也有人正打算轉個念頭,何不將熱水注入富含鐵的岩層中,促使更多的氫氣產生?類似於地熱發電會使用的增強型地熱系統,只是我們獲得的不是直接的熱能,而是氫氣。

-----廣告,請繼續往下閱讀-----

什麼?氫氣也是溫室氣體?

話說回來,氫氣真的會成為救世主嗎?先等等,事情可能沒那麼簡單。

氫氣作為最輕的氣體,存在於大氣的壽命大約只有兩年。但氫氣在存在的這段時間中,會與大氣中的羥自由基和其他氣體作用,產生一系列的反應。造成的結果包含增加甲烷停留在大氣的時間、臭氧的增加、與平流層中水氣的增加。

圖/wikipedia

因此,氫氣屬於一種「間接」溫室氣體,氫氣的一百年全球暖化潛勢 GWP 100 ,被評估為 11.6 ,也就是以 100 為區間進行評估,氫氣的溫室效應是二氧化碳的 11.6 倍。

此外,我們對氫氣的研究還太少,所以才到現在才發現它就在我們的身邊。而就跟我們上次提到的一樣,大量使用天然氣,就意味會有許多天然氣洩漏。而伴隨著氫氣被大量開採,一定會有更多的氫氣被釋放到大氣之中。這對我們的大氣是否會產生負面效應,甚至於弊大於利,都還需要更多研究。

最後想問問大家,馬斯克與比爾蓋茲,對氫能的看法十分兩極。你呢?你認為氫能會改變未來的能源形式嗎?

  1. 會,不論是什麼顏色的氫,大家都很認真的在進行研究,一定很快就有好結果。
  2. 不會,氫能運輸、儲存成本怎麼看都還太高
  3. 不論有沒有氫能,人類懂不懂得節制,才是關鍵中的關鍵

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1220 篇文章 ・ 2225 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。