0

0
0

文字

分享

0
0
0

《大英雄天團-液態金屬》

Zobot
・2015/02/02 ・1147字 ・閱讀時間約 2 分鐘 ・SR值 536 ・七年級

哈妮蕾夢
Photo by Disney

《大英雄天團》的哈妮蕾夢可以不費吹灰之力,將原本硬梆梆的金屬在幾秒鐘之內瓦解,還可以將這些非固體型態的金屬裝在透明小球中,現實生活中是否也能做到這些事情呢?

來自北卡羅萊納州大學的研究團隊已經知道有一種液態金屬,其性質使這群化學家可以把它像電影「魔鬼終結者2」裡面的T-1000一樣把玩,甚至做出這個暴力機器人的小型翻版。

這群化學家先是發現,只需要將極小的電流通到置於水中的鎵合金(原本在室溫下就是液態),就可以改變它的形狀。再經過三年的研究,他們終於知道這個特別的反應是怎麼回事:通電時,在鎵合金表面會形成一層氧化物,它會改變金屬與水之間的表面張力;一旦電壓移開,張力又會不著痕跡地消失,從大約每平方公尺50萬焦耳降到近乎零,這麼戲劇性的變化會造成許多電液動(electrohydrodinamic, EHD)現象。

參與這個題目的研究員之一,麥克爾迪奇(Michael Dickey)博士說,「這是我做過最有趣的科學工作,因為還沒有任何文獻解釋過這個現象」;「對一滴液體而言,有兩個主要的因素支配它的形狀和行為,重力和表面張力。如果我們可以控制表面張力,那麼就可以控制液體的形狀。」博士說,控制液態金屬的形狀,能夠有很廣的應用,例如可以控制在特定時間將電路變形,去執行不同的任務、相機和望遠鏡中的鏡片可以變形以調整焦距,甚至更久之後在其他材料上會發現類似的技術。

-----廣告,請繼續往下閱讀-----

鎵合金的氧化表層在空氣中太堅硬,若不放在水中沒辦法有相同效果,不過研究人員相信,可以找到其他材料,在不同環境中也能產生類似效果。

請不要期待馬上就能看到T-1000大軍從你家門前經過(或滑過或飛馳過)。在鎵合金中,這個現象目前只可能發生在很小的尺度中,因為一旦包含太多質量,重力的影響就會取代張力,使整個系統崩塌。

液態金屬(liquid metal)原本泛稱在特定條件下,型態如液體(非結晶結構)的金屬,不過有一家利用此技術開發產品的公司正以此為名 — 「液態金屬科技公司(Liquidmental Technology Inc.)」使用鋯、鈦、銅、鎳、鈹做出的「液態金屬 LM001B 型合金(Liquidmental LM001B alloy)」,加熱後會形成非結晶結構很容易塑形,冷卻後又會自然結晶而定型。利用 LM001B 製造的產品具有強度高、不易磨損、不易腐蝕等特性,已經被應用於製造例如飛機的副翼、外科手術用具、刀刃、手錶等,很快地還會用來製造更輕薄又堅固的手機和平板(或阿廣的微型機器人?)。

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
Zobot
10 篇文章 ・ 0 位粉絲
PanSci 實習編輯 | 主修大氣科學。喜歡弄文字、玩音樂。傾向自然,不管是拿來讀的那種,渾身散發出來的那種,還是可以去野餐的那種。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
3

文字

分享

0
2
3
第三類寬能隙半導體到底在紅什麼?
宜特科技_96
・2023/10/30 ・4510字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

寬能隙半導體晶片
圖/宜特科技

半導體產業崛起,我們常聽到「能隙」這個名詞,到底能隙是什麼?能隙越寬的材料又代表什麼意義呢?
近幾年 5G、電動車、AI 蓬勃發展,新聞常說要靠第三類的「寬能隙半導體」發展,到底寬能隙半導體在紅什麼?我們一起來了解吧!

本文轉載自宜特小學堂〈第三類寬能隙半導體到底在紅什麼?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

宜特科技 第三類寬能隙半導體到底在閎什麼 影片連結
點擊圖片收看影片版

什麼是能隙(Band Gap)?寬能隙又是「寬」在哪裡?

身為理組學生或是工程師,甚至是關心科技產業的一般人,對於「能隙」兩字一定不陌生,但你了解什麼是能隙嗎?

半導體能帶與能隙示意圖
半導體能帶與能隙示意圖。圖/宜特科技

能隙基本上要用量子物理的理論來跟大家說明,「能帶(Band)」的劃分主要為低能帶區的「價電能帶」(Valence Band,簡稱 VB),與高能帶區「導電能帶」(Conduction Band,簡稱 CB)的兩種,在 VB 與 CB 之間即是一個所謂的能帶間隙(Band Gap,簡稱 BG),簡稱「能隙」

能帶因電子流動產生導電特性
能帶因電子流動產生導電特性。圖/宜特科技

金屬材料能夠導電,主要是因為電子都位於高能的(CB)區域內,電子可自由流動;而半導體材料在常溫下,主要電子是位於低能的(VB)區域內而無法流動,當受熱或是獲得足夠大於能隙(BG)的能量時,價電能帶內電子就可克服此能障躍遷至導電能帶,就形成了導電特性。

-----廣告,請繼續往下閱讀-----

我們都知道功率等於電流與電壓加乘的正比關係,在高功率元件(Power device)的使用上如果半導體材料的能隙越寬,元件能承受的電壓、電流和溫度都會大幅提升。大眾所熟知的第一類半導體材料——矽(Si)能隙為 1.12 eV,具有成熟的技術與低成本優勢,廣泛應用於消費性電子產品;第二類半導體材料——砷化鎵(GaAs) 能隙為 1.43eV,相比第一類擁有高頻、抗輻射的特性,因此被廣泛應於在通訊領域。

為什麼需要用到第三類寬能隙半導體(Wide Band Gap,WBG)?

由於近年地球暖化與碳排放衍生的環保問題日益嚴重,世界各國都以節能減碳、綠色經濟為共同的首要發展方向,石化能源必須逐步減少並快速導入綠能節電的應用,因此不論是日常用品、交通運輸或軍事太空都逐步以高能效、低能耗為目標。

歐洲議會在 2023 年通過新法提高減碳目標,為 2030 年減碳 55% 的目標鋪路。國際能源署(IEA)也強建議各國企業在 2050 年前達到「淨零排放」,甚至有傳聞歐盟將通過燃油車禁售令,不論是考量環保或經濟,全球企業的綠色轉型勢在必行。因此在科技發展日新月異的同時,要兼顧大幅提升與改善現有的能源,已是大勢所趨。

目前半導體原料最大宗,是以第一類的矽(Si)晶圓的生產製造為主,但是以低能隙的半導體材料為基礎的產品,物理特性已到達極限,在溫度、頻率、功率皆無法突破,所以具備耐高溫高壓、高能效、低能耗的第三類寬能隙半導體(Wide Band Gap,WBG)就在此背景之下因應而生。

-----廣告,請繼續往下閱讀-----

現在有哪些的寬能隙(WBG)材料?

那麼有哪些更佳的寬能隙材料呢?目前市場所談的第三類半導體是指碳化矽(SiC)和氮化鎵(GaN),第三類寬能隙半導體可以提升更高的操作電壓,產生更大的功率並降低能損,相較矽元件的體積也能大幅縮小。
Si 與 C 的化合物碳化矽(SiC)材料能隙可大於 3.0eV;Ga 與 N 或 O 的化合物氮化鎵(GaN)或氧化鎵(Ga2O3)能隙也分別高達 3.4eV 與 4.9eV,大家可能沒想到的是鑽石的能隙更高達 5.4eV。

特性Si 矽SiC(4H)
碳化矽
GaN
氮化鎵
Ga2O3(β)
氧化鎵
Diamond
鑽石
能隙(eV)1.13.33.44.95.4
遷移率
(cm2/Vs)
1400100012003002000
擊穿電場強度
(MV/cm)
0.32.53.3810
導熱率
(W/cmK)
1.54.91.30.1420
半導體材料的物性比較。圖/宜特科技

氮化鎵(GaN)或氧化鎵(Ga2O3),雖然分別在 LED 照明或是紫外光的濾光光源,已經應用一段時間,但受限於這類半導體材料的特性,其實生產過程充滿了挑戰。例如:要製作 SiC 的單晶晶棒,相較 Si 晶棒的生產困難且時間緩慢很多,以及 GaN 與 Si 晶圓的晶格不匹配時,容易生成差排缺陷(Dislocation Defect)等問題必須克服,導致長久以來相關的製程開發困難及花費高昂,但第三類半導體市場潛力無窮,對於各國大廠來說仍是兵家必爭之地。

寬能隙半導體運用在那些產品上?

現在知名大廠如意法半導體、英飛凌、羅姆等,對寬能隙材料的實際運用均有相當大的突破,如氮化鎵(GaN)在以 Si 或 SiC 為基板的產品已陸續發表,而我們最常接觸到的產品,就是市售的快速充電器,採用的就是 GaN on Si 材料製作的高功率產品。

除了功率提升,因為溫度與熱效應可大幅降低,元件就可以大幅縮小,充電器體積也更加玲瓏小巧,除了已商品化的快充電源領域,第三類半導體在 AI、高效能運算、電動車等等領域的應用也是未來可期。

-----廣告,請繼續往下閱讀-----

(延伸閱讀:泛科學—快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限)

現行以矽基材料為主的高功率產品,多以絕緣閘雙極電晶體(IGBT)或金氧半場效電晶體(MOSFET)為主,下圖可以看到各種功率元件、模組與相關材料應用的範圍,傳統 IGBT 高功率模組大約能應用至一百千瓦(100Kw)以上,但速度卻無法提升至一百萬赫茲(1MHz)。而 GaN 材料雖然速度跟得上,但功率卻無法達到更高的一千瓦(1kW)以上,必須改用 SiC 的材料。

功率元件與相關材料的應用範圍
功率元件與相關材料的應用範圍。圖/英飛凌

SiC 具有比 Si 更好的三倍導熱率,使得元件體積又可以更小,這些特性使它更適合應用在電動車領域。特斯拉的 model3 也從原先的 IGBT ,改成使用意法半導體生產的 SiC 功率元件,應用在其牽引逆變器(Traction inverter)、直流電交互轉換器與充電器(DC-to-DC converter & on-board charger),能夠提高電能使用效率與降低能損。

特斯拉充電樁
多家車廠加入特斯拉充電網路。圖/特斯拉

在未來更高的電力能源需求下,車載裝置除了基本要具備高功率,還需要極高速的充電能力來因應電力補充,車用充電樁、5G 通訊基地台、交通運輸工具、甚至衛星太空站等更大的電力能源需求,相關的電流傳輸轉換,電傳速度的要求以及降低能損,就必須邁向更有效率的寬能隙材料著重進行開發,超高功率的 SiC 元件模組需求亦會水漲船高。

-----廣告,請繼續往下閱讀-----

寬能隙半導體在開發生產階段,需進行那些驗證分析?

根據宜特的觀察,晶圓代工廠與功率 IDM 廠商正持續努力研究與開發。不過,新半導體材料在開發初期,會有許多需要進行研發驗證的狀況,近年我們已協助多家寬能隙半導體(WBG)產業的開發與生產驗證。

比如磊晶製程相關的結構或缺陷分析,就可以藉由雙束聚焦離子束(Dual beam FIB)製備剖面樣品並進行尺寸量測或成分分析(EDS),亦可搭配穿透式電子顯微鏡(TEM)進行奈米級的缺陷觀察;擴散區域的分析可經由樣品研磨製備剖面後,進行掃描式電子顯微鏡(SEM)觀察以及掛載在原子力顯微鏡 (AFM) 上的偵測模組-掃描式電容顯微鏡(SCM)判別摻雜區域的型態與尺寸量測。

下圖為 SiC 的元件分析擴散區摻雜的型態,我們可以先用 SEM 觀察井區(Well)的分布位置,再經由 SCM 判斷上層分別有 N 與 P 型 Well 以及磊晶層(EPI) 為 N 型。

SEM及SCM分析的量測圖
使用 SEM 剖面觀察 SiC 元件的結構,搭配 SCM 分析 N/P 型與擴散區的量測。圖/宜特科技

另外在摻雜元素及濃度的分析,則可透過二次離子質譜分析儀(SIMS)的技術,下圖 GaN on Si 的元件,先用雙束聚焦離子束(Dual beam FIB)進行剖面成份分析(EDS)判斷磊晶區域的主要成份之後,提供 SIMS 參考再進行摻雜元素 Mg 定量分析濃度的結果,作為電性調整的依據。

-----廣告,請繼續往下閱讀-----
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度。圖/宜特科技

除了上述介紹 WBG 元件結構的解析之外,其它產品也都可以透過宜特實驗室專業材料分析及電性、物性故障分析來尋求解答,包括因應安全要求更高的產品可靠度測試與評估,藉由宜特可以提供更完整與全方位的驗證服務。

希望透過本文介紹,讓大家對第三類半導體有更進一步的了解,近期被稱為第四類半導體的氧化鎵(Ga2O3)也逐漸躍上檯面,它相較於第三類半導體碳化矽(SiC)與氮化鎵(GaN),基板製作更加容易,材料也能承受更高電壓的崩潰電壓與臨界電場,半導體材料的發展絕對是日新月異,也代表未來會有更多令人期待的新發現。

本文出自 www.istgroup.com。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

4
2

文字

分享

0
4
2
快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限
PanSci_96
・2023/03/11 ・2703字 ・閱讀時間約 5 分鐘

除了線材,市場上也到處可看到標榜使用氮化鎵、可支援大電流快充的充電頭。但為什麼之前充電速度一直快不起來呢?為什麼現在要改用氮化鎵呢?快充能變得更快更快更快嗎?

快充加速了充電速度

在快充出來以前,我們的智慧型手機充電器,功率大約是 5 瓦特(W)或是 2.5 瓦特,現在最夯的的氮化鎵快充頭功率則高達 65 瓦特,相差了 13 倍,理想上充電時間也會縮短為十三分之一。

實際上,這幾年快充的發展速度可能比想像的還要快上許多。

還記得在 21 世紀的 Nokia 3310 嗎?其功率僅 4.56 瓦特,而蘋果一直到 2014 年的 iPhone6 才支援更快的 10 瓦特快充。然而,現在不僅已經出現不少支援 50 瓦特以上快充的手機,今年二月中國手機品牌 realme 推出的 GT Neo5,甚至出現 240 瓦特的超快充技術,是目前充電最快的智慧型手機。

提升充電器功率的關鍵

從過去到現在,充電器不僅功率大幅提升,充電器的大小同時也縮小了許多。過去的線性充電器,除了有條細細長長的尾巴外,最大的特徵就是不僅大、充電時還會發熱的變壓器;為了將市電的 110V 交流電轉為手機可以使用的 5V 直流電,就需要變壓器協助降壓。

-----廣告,請繼續往下閱讀-----

變壓器的發熱來源來自內部占了絕大部分體積的線圈,在電路學中被稱為「電感器」。輸入與輸出的線路會以線圈的形式綑在一組鐵芯上,兩端的線圈數量十分關鍵,線圈數量的比值就是兩側電壓的放大大小;若想從 110V 變成 5V,則為輸入的線圈圈數是輸出的 22 倍,那麼輸出的電壓就會減少 22 倍。

在變壓的過程中,輸入端的線圈與鐵芯就像一顆大電磁鐵,讓磁通量通過鐵芯,將能量傳到輸出線圈,輸出線圈則會因為電磁感應,產生相同頻率但電壓不同的交流電,完成降壓。只要再把 5V 交流電轉成 5V 的直流電,就可以幫手機充電啦。

過去的線性充電器最大的特徵就是體積大、充電時還會發熱。圖/Envato Elements

聰明的你應該已經想到,提升充電功率的關鍵就在於——線圈數量

如果希望變壓器的輸出提升,必須在維持線圈比值的情況下,等比例增加輸入與輸出端的線圈數量;更多的線圈就意味更多的磁通量能透過鐵芯傳到另一端,更多的能量也隨之傳遞。但如此一來,早已被塞滿的變壓器,為了塞進更多的線圈就只能繼續增加充電器的體積,還會因能量耗損放出大量的熱。

-----廣告,請繼續往下閱讀-----

若想提升功率,又能減少電感器大小,最好的方法就是——增加工作頻率

透過「高頻變壓器」的幫忙,將原先市電 60 赫茲的頻率提升到 50K 赫茲,被轉為高頻的交流電再進行變壓,如此一來就能降低能量損耗,所需的電感器大小也會大幅降低。

然而,要注意的是,要想改變交流電的頻率,是無法直接轉換的。要先將交流電轉為直流電,再經由特殊的「開關」電路將直流電轉為特定頻率的交流電;這類型的充電器就被稱為「開關充電器」,現在的智慧型手機就是使用開關充電器。

救世主材料

但隨著手機電池容量不斷增加,手機充電效率的需求永無止盡,充電器又開始一個比一個大。

-----廣告,請繼續往下閱讀-----
智慧型手機所使用得充電器為開關充電器。圖/Envato Elements

不是繼續提升工作頻率就好了嗎?那是因為,我們遇到了「矽的極限」。

開關電路中將直流轉為交流的關鍵,就是我們熟知的半導體元件電晶體。裡頭的原料過去都以我們熟知的矽為主,然而以矽為材料的半導體工作頻率極限僅在 100k 以下,如果超過 100k,轉換效率會大幅下降,更有嚴重的能量浪費問題。

解決的方法就是:尋找下一個材料。沒錯,就是最近最夯半導體的——氮化鎵(GaN);其能隙是矽的 3 倍,電子遷移率為 1.1 倍,崩潰電壓極限則有 10 倍。

顯然,氮化鎵擁有更良好的電特性,還能在高頻、高電壓的環境下工作,使用氮化鎵為材料的快充頭因此誕生!氮化鎵最高的工作頻率是 1000K,是矽的 10 倍,除了讓變壓器的電感線圈能再次縮小,連帶縮小充電頭的體積;亦能降低能耗並減少電容與散熱器的大小,成為好攜帶的快充豆腐頭。

-----廣告,請繼續往下閱讀-----

到這裡,或許你會想問,提高充電效率應該不只有換材料一條路吧?還會有更快的充電技術出現嗎?

當然會的;和矽相比,氮化鎵仍有很大的研究性。

而且不僅手機,就以現在市面上正夯的電動車來說,也需要快充技術支援,來減少充電時所需要的時間;為應對龐大的充電市場需求,綜觀整個半導體材料的發展歷史,已經有許多材料問世。除了氮化鎵,還包括矽、鍺、三五族半導體「砷化鎵」(GaAs)、「磷化銦」(InP),以及化合物半導體「碳化矽」(SiC);在能源產業中,又以氮化鎵和碳化矽的發展最令人期待。

電動車也需快充技術的支援,來縮短充電所需時間。圖/Envato Elements

氮化鎵與碳化矽的未來與挑戰

不論以技術發展還是成本考量,這兩位成員還不會那麼快取代矽的地位。

-----廣告,請繼續往下閱讀-----

兩者應用的範圍也不完全相同。氮化鎵擁有極高的工作頻率,在高頻的表現佳,並且耐輻射、耐高溫,除了運用在充電技術內外,在高功率 5G 基地台、航空通訊、衛星通訊也都將大展身手。碳化矽則在高溫及高電壓下擁有良好的穩定性,尤其在未來電動車快充的需求增加,1000 伏特以上的充電需求,將使得僅能承受 600 伏特的矽半導體無法負荷,預期將接手電動車中的關鍵元件。

兩者看來潛力無窮,但目前在製程上仍需克服許多問題;如:材料介面的晶格缺陷及成本考量;在它們能像矽材料應用在各方領域之前,還需要投入更多研發能量。

但令人興奮的是,駛向下個半導體世代的鳴笛聲已經響起,不論是台積電、晶圓大廠環球晶,國內外各家半導體大廠,都早以搭上這班列車。不同的材料也意味著,從磊晶、製程、元件設計、晶圓製造都將迎來改變,陸續也有廠商開始使用 AI 輔助設計氮化鎵半導體元件。

未來半導體與科技產業將迎來何種轉變,就讓我們拭目以待吧!

-----廣告,請繼續往下閱讀-----
半導體未來的發展令人興奮!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1217 篇文章 ・ 2147 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。