Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

吃素救地球?──肉食與全球暖化的關聯

Whyjay
・2013/03/21 ・1641字 ・閱讀時間約 3 分鐘 ・SR值 573 ・九年級

-----廣告,請繼續往下閱讀-----

此為過時內容,目前已有新的證據與研究,作者正在撰寫新文章補充說明最新進展。

2006年時,聯合國發表的一份報告指出家畜在溫室氣體的排放上佔有重要比例。不少媒體與組織以此證據,引申出「吃素救地球」的概念。但這引申是否合理?肉食與溫室氣體排放、甚或全球暖化的關聯是否真的存在?

在探討此關聯前,筆者必須指出一個重要前提。我們觀察到的以下兩個事實都是存在的:1)近三十年來,二氧化碳、甲烷與笑氣(N2O)在大氣中的濃度持續的上升。2)以長期的趨勢觀察,近百年的全球平均溫度也在持續的上升。不過,這並不代表這兩件事情之間有絕對的關聯,實際上這仍然是目前環境科學家亟欲解開的問題之一。而在面對事實2帶來的麻煩,目前決策者也只能「猜測」事實1跟事實2存在著因果關係。換句話說,「不控制溫室氣體的排放就會造成全球暖化」這個論述目前仍然只是信念問題。因此,本文最多只能分析到畜牧業與溫室氣體排放之間的關係,至於「降低溫室效應以救地球」這個概念,就得見仁見智。

在上述2006年的報告中,人類所飼養家畜的這個因素,佔人類活動中二氧化碳排放量的9%,甲烷排放量的35-40%,笑氣排放量的65%。雖然甲烷與笑氣的溫室效應強度要比二氧化碳高上許多,但考慮到二氧化碳近三十年在大氣中的濃度改變量遠比甲烷與笑氣高,綜合加權後的確是可以得出:如果溫室氣體會影響大氣溫度,那麼家畜排放的三種氣體中,二氧化碳一定是個主要因子。9%的排放量,似乎不是人類活動排出的二氧化碳的主要因素!

-----廣告,請繼續往下閱讀-----

此外,不少人會以此數據與其他人類活動產生的二氧化碳量相比較。很遺憾的,所有的這種比較都忽略了一件事:碳的來源與流向。下圖顯示的是在典型的碳循環模型中,碳可以儲存的位置與流向大小。簡單說來,碳在地球上有三個主要的儲存庫,一是大氣,二是地表(包含生物、土壤及表層海洋),三是地底或深洋。圖中也顯示了碳在大氣與地表這兩個儲存庫的交互流動量是非常大的,但地底或深海中的碳儲存庫卻比較無法與其他兩者互動。為了人類的肉食所產生的碳流動,粗略地說來是從地表流至大氣(先捨去化學肥料或運送燃料不提),而其他人類活動產生的碳流動,例如交通運輸,卻是從地底(碳以石油或煤的形式被人類開採)流至大氣。碳的不同來源使得輸送碳至大氣的重要性極其不同:地表碳與大氣中的碳循環由於雙向流量大,因此在流量改變時,可容忍的彈性也大;但地底的碳一旦藉由燃燒放至大氣中,短時間內就無法再回到地底。因此,畜牧業產生的二氧化碳量是無法與燃燒化石燃料產生的二氧化碳量直接類比的,亦即就算畜牧業產生許多的二氧化碳,我們還是得先解決不斷地從地底拿出碳卻「塞不回去」的問題。

(碳循環。圖中被括起來的數字代表儲存庫儲碳的單位量,箭頭與未括的數字則代表碳流向及大小。紅色的數字為受到人類影響的改變量。圖片來源)

綜合上述討論,吃肉與溫室氣體排放的關係就很明顯了:畜牧業的確佔有人類二氧化碳及其他溫室氣體排放量一部份的比例,但其重要性卻因為碳循環儲存庫(地表-大氣)的關係而可能沒有燃燒化石燃料(地底-大氣)這種方式來得高。不過,由於畜牧活動對環境的影響是全面性的,除了溫室氣體排放之外尚包括生物多樣性、土地利用與沙漠化等等,因此「吃素救地球」問題的其他面向,就得仰賴更多的討論與研究才行!

以下的連結給想知道更多的您:

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
Whyjay
17 篇文章 ・ 10 位粉絲
透過我的眼睛、鏡頭的眼睛、還有衛星的眼睛看世界的地球科學研究者。期望與你分享冰川下封存的秘密或是火山上隱藏的故事;夜晚,我們更可以遙望皎潔的明月,更遠的木星與冰衛星,甚至更遠更遠──某顆系外行星上的生命,或許也正拿望遠鏡看著我們討論人類最終的歸宿。推特:https://twitter.com/WhyjayZ (英文)

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
從「衛生紙」開始的環保行動:一起愛地球,從 i 開始
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/03 ・1592字 ・閱讀時間約 3 分鐘

你是否也曾在抽衛生紙的瞬間,心頭閃過「這會不會讓更多森林消失」的擔憂?當最後一張衛生紙用完,內心的愧疚感也油然而生……但先別急著責怪自己,事實上,使用木製品和紙張也能很永續!只要我們選對來源、支持永續木材,你的每一個購物決策,都能將對地球的影響降到最低。

二氧化碳是「植物的食物」:碳的循環旅程

樹木的主食是水與二氧化碳,它們從空氣中吸收二氧化碳,並利用這些碳元素形成枝葉與樹幹。最終這些樹木會被砍伐,切成木材或搗成紙漿,用於各種紙張與木製品的製造。

木製品在到達其使用年限後,無論是被燃燒還是自然分解,都會重新釋放出二氧化碳。不過在碳循環中,這些釋出的二氧化碳,來自於原本被樹木「吸收」的那些二氧化碳,因此並不會增加大氣中的碳總量。

只要我們持續種植新樹,碳循環就能不斷延續,二氧化碳在不同型態間流轉,而不會大量增加溫室氣體在大氣中的總量。因為具備循環再生的特性,讓木材成為相對環保的資源。

但,為了木製品而砍伐森林,真的沒問題嗎?當然會有問題!

-----廣告,請繼續往下閱讀-----
從吸碳到固碳的循環

砍對樹,很重要

實際上,有不少木材來自於樹木豐富的熱帶雨林。然而,熱帶雨林是無數動植物的棲息地,它們承載著地球豐富的生物多樣性。當這些森林被非法砍伐,不僅生態系統遭到破壞,還有一個嚴重的問題–黃碳,也就是那些大量儲存在落葉與土壤有機質中的碳,會因為上方森林的消失重新將碳釋放進大氣之中。這些原本是森林的土地,將從固碳變成排碳大戶。

不論是黃碳問題,還是要確保雨林珍貴的生物多樣性不被影響,經營得當的人工永續林,能將對環境的影響降到最低,是紙漿和木材的理想來源。永續林的經營者通常需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。木材反覆在同一片土地上生成,因此不用再砍伐更多的原始林。在這樣的循環經營下,我們才能不必冒著破壞原始林的風險,繼續享用木製品。

人工永續林的經營者需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。

如何確保你手中的紙張來自永續林?

如果你擔心自己無意中購買了對環境不友善的商品,而不敢下手,只要認明FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。並且從森林到工廠、再到產品,流程都能被追蹤,為你把關每一張紙的生產過程合乎永續。

只要認明 FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。

家樂福「從 i 開始」:環境友善購物新選擇

不僅是紙張,家樂福自有品牌的產品都已經通過了環保認證,幫助消費者在日常生活中輕鬆實踐環保。選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌,這代表商品在生產過程中已經符合多項國際認證永續發展標準。

-----廣告,請繼續往下閱讀-----

「從 i 開始」涵蓋十大環保行動,從營養飲食、無添加物、有機產品,到生態農業、動物福利、永續漁業、減少塑料與森林保育,讓你每一項購物選擇都能與環境保護密切相關。無論是買菜、買肉,還是日常生活用品,都能透過簡單的選擇,為地球盡一份力。

選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

1
2

文字

分享

1
1
2
素肉怎麼做?讓菌絲體開啟素食新境界!——《真菌大未來》
積木文化
・2024/02/23 ・2964字 ・閱讀時間約 6 分鐘

以菌絲體作為食物

意外誕生的美食?

人類應用發酵已有很長一段歷史,也產生許多令人驚訝的結果,其中一個令人愉快的意外之作就是天貝(tempeh)。天貝是 1800 年代初起源於印尼的一種素食主食 1。歷史學家經考究認為,天貝是無意間產生的食物,很可能是在試圖將大豆隔夜保存免受熱影響時被發現的。2

天貝是 1800 年代初起源於印尼的一種素食主食。圖/wikipedia

在保存大豆的過程中,少孢根黴菌(Rhizopus oligosporus)的孢子落到大豆上,引起發酵過程並形成天貝的緻密餅狀物。少孢根黴菌將大豆或其豆類基質結合在一起,形成 100 % 可食用又富含蛋白質、礦物質和維他命的網狀棉質菌絲體。

靠真菌製造的最佳素食漢堡?

諾馬餐廳(Noma)前發酵負責人大衛・齊爾伯(David Zilber)將天貝帶往新的境界。素食運動的推動,讓世界各地的廚師都在嘗試使用肉類替代品來複製漢堡中的牛肉餅。齊爾伯開發出一種由藜麥製成的天貝,作法是將藜麥穀物接種菌絲體,並在露天下發酵以降低水分含量,只留下足以在烹飪時保持多汁的水分,最後在天貝上塗抹一層諾馬餐廳以真菌發酵自製的酵母魚醬和蠶豆醬油,就大功告成了。

這款漢堡被品評專家譽為「最佳素食漢堡」。齊爾伯對此評論:「三種真菌和一種穀物,證明也許只要掌握一點技巧,好的烹飪就可以幫助拯救和養活一個需要療癒的世界」。3

-----廣告,請繼續往下閱讀-----
天貝富含蛋白質、碳水化合物、來自大豆的脂肪以及種人體無法合成的必需氨基酸、纖維、維他命和礦物質,熱量低且不含膽固醇。圖/unsplash

是什麼讓天貝富含營養?又為什麼,它會成為一種神奇的食物?天貝不僅含有飲食中的一些基本成分,也就是蛋白質、碳水化合物和來自大豆的脂肪,其中的菌絲體,更提供類似於菇類的益處:富含全部九種人體無法合成的必需氨基酸、纖維、維他命和礦物質,熱量低且不含膽固醇。天貝的例子讓我們瞭解到,不僅菇類可以吃,菌絲也是可以吃的。最棒的是,一些真菌菌絲體與肉的質地非常相似,成為素食饕客餐盤裡的熱門選擇。

菌絲體革命:植物肉的新面貌

溫斯頓・丘吉爾(Winston Churchill) 1931 年發表的文章〈五十年後〉(Fifty Years Hence)裡,他預測「將發展出新的微生物菌株,並為我們量產化學物」,並總結道「當然,未來也將會使用合成食品」。4 現在看來,丘吉爾的說法完全正確。

1985 年,馬洛食品(Marlow Foods)推出闊恩素肉(quorn),這是一種以真菌菌絲體製成的素食派餅產品系列,品牌名稱為「真菌蛋白」(Mycoprotein)。「真菌蛋白」的商業成功歸功於鑲片鐮孢菌(Fusarium venenatum),其能迅速將澱粉轉化為高含量的蛋白質。

該公司對這種生產工藝的專利已在 2010 年過期,所以其他有興趣的廠商可以進入生產真菌蛋白的領域了。然而,如今闊恩素肉在超市中仍隨處可見,且提供越來越多的無動物肉類和大豆成分所製造的禽肉、牛肉和魚肉。

-----廣告,請繼續往下閱讀-----
如今闊恩素肉在超市中仍隨處可見,且提供越來越多的無動物肉類和大豆成分所製造的禽肉、牛肉和魚肉。圖/pexels

艾本・拜耳(Eben Bayer)和蓋文・金泰爾(Gavin McIntyre)於 2007 年創立生態創新生物技術公司(Ecovative),正利用真菌製造用於包裝、紡織品和肉類替代品的菌絲體材料。他們最新的獨創觀念是「最終食品」(atlast food),也就是控制溫度、氣流、二氧化碳供應和濕度,藉以促使菌絲體的纖維組織長成各種形狀的合成肉。這個複雜過程也是一種發酵形式,使菌絲體在十天內就能形成具有不同質地、強度和纖維的成分,口感類似於動物肉。

菌絲體肉的開發,是希望能減輕畜牧業對地球造成的負擔。「最終食品」的生產設施由垂直農業基礎設施組成,與傳統肉類生產相比,土地需求少了十倍、產生的二氧化碳也降低許多。「最終食品」的第一個產品「菌絲體培根」,其用水量就比傳統豬肉生產少了一百倍。

菌絲體肉的開發,是希望能減輕畜牧業對地球造成的負擔。「最終食品」的第一個產品「菌絲體培根」,其用水量就比傳統豬肉生產少了一百倍。圖/unsplash

生物技術的進步使該工業能找到可行的解決方案,為未來創造永續的食物來源。如果可以使用更少的資源,且對自然造成更少的傷害來人工種植食物,就不必再從大自然中做擷取。當時拜耳對所有等待菌絲體肉的人們說,希望三年內就能實現全球供應。5 菌絲體革命即將到來。

如何自製維他命 D 營養補充品?

只要十五分鐘,幫你補充滿滿維他命 D?

維他命 D 對於保持骨骼、牙齒和肌肉健康來說相當重要。《澳洲醫學雜誌》(The Medical Journal of Australia)建議,如果無法曬太陽,那每天至少要補充 400 IU6 的維他命 D。對於照射陽光不足的人來說,菇類是唯一天然、非動物性的維他命 D 來源。只要將菇類暴露在陽光下就可以產生維他命 D 7,這是在家裡就可以辦到的工作。

-----廣告,請繼續往下閱讀-----
把菇類放在窗臺上讓菌褶朝向陽光,放置 15 分鐘後再烹調,這樣的簡單步驟即可將菇類變成維他命 D 的絕佳來源。圖/pexels

把菇類放在窗臺上讓菌褶朝向陽光,放置 15 分鐘後再烹調,這樣的簡單步驟即可將菇類變成維他命 D 的絕佳來源。僅 84 公克新鮮、暴露於紫外線的洋菇,就含有超過 600 IU 的維他命 D,且與維他命 D 營養補充品一樣容易被身體吸收。8

註解

  1. William Shurtleff and Akiko Aoyagi, History of Tempeh and Tempeh Products (1815– 2020): Bibliography and Sourcebook, Soyinfo Center, Lafayette, 2020, p. 351. ↩︎
  2. Marianna Cerini, ‘Tempeh, Indonesia’s wonder food’, The Economist, 23 January 2020, <economist.com/1843/2020/01/23/ tempehindonesias-wonder-food>. ↩︎
  3. @david_zilber, ‘Biomimicry is a fascinating way⋯’ [Instagram post], David Chaim Jacob Zilber, 26 May 2020,<instagram.com/p/ CAptR8qpN-T> . ↩︎
  4. Winston Churchill and Steven Spurrier, ‘Fifty years hence’, Strand Magazine, issue 82, no. 49, 1931. ↩︎
  5. 摘自作者於 2020 年對艾本・拜耳的訪談。 ↩︎
  6. IU 為國際單位,用於計算或測量維他命 效力和生物有效性的標準化單位之一。 1 IU = 0.025 微克麥角鈣化醇(維他命 D2 )。 ↩︎
  7. Mary Jo Feeney et al., ‘Mushrooms— biologically distinct and nutritionally unique’. ↩︎
  8. Victor L Fulgoni III and Sanjiv Agarwal, ‘Nutritional impact of adding a serving of mushrooms on usual intakes and nutrient adequacy using National Health and Nutrition Examination Survey 2011–2016 data’, Food Science and Nutrition, vol. 9, issue 3, 2021, <doi.org/10.1002/fsn3.2120>. ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1