0

0
0

文字

分享

0
0
0

搶在還來得及以前 張玉玲發展工具找出失智症高危險群——拜見科學界女力(三)

彭 琬馨
・2016/05/06 ・3259字 ・閱讀時間約 6 分鐘 ・SR值 508 ・六年級

-----廣告,請繼續往下閱讀-----

old-409241_640
圖/vishvanavanjana @ pixabay

「下流老人」是近幾年日本出現的最新名詞,指的是那些沒有子女(或子女沒辦法供養父母),沒錢進安養院、也請不起看護來照顧自己的獨居老人,又老又窮又孤獨。你或許無法想像自己老了之後會是這般光景,「老了」也許離現在的你還有一段距離,但在台灣即將邁入高齡社會的此刻,我們對「老化」這件事有多少認知?

根據內政部 102 年底的人口資料推估,台灣 200 多萬的老人當中,有 217,855 人罹患失智症,佔老年人口的 8.09%。這個好發率隨著年齡增加而提高的疾病,目前還沒有根治的方法。沒辦法事後補救,有沒有辦法事前預防?「大家現在的想法是,不要等到疾病發生再來處理,而是要在還沒發生之前,先找出來哪些人未來有可能發病」,她是獲得今年(2016)吳健雄傑出女科學家新秀獎的台大心理系助理教授張玉玲,國內臨床神經心理學少數從事老年臨床研究的老師,主要針對未來極有可能罹患失智症的高風險群,例如輕度知能障礙(Mild Cognitive Impairment, MCI)做研究。

「我想念心理系的想法很單純,就是對人很有興趣,但真的進到心理系後發現,心理系比我想像的廣泛很多」,原先和大家一樣,以為念心理就是在念情緒的張玉玲,在台大心理系的第三年遇見花茂棽老師,就此結下她和神經心理學的不解之緣。

「大腦本身其實是讓我更著迷的,它影響到我們整個人如何行為思考。」台灣研究臨床神經心理學的人本來就不多,像張玉玲這樣年輕的就更少,但看看主計處的統計資料上頭寫著,台灣社會將在 2018 年邁入老年人口比例超過 14% 以上的高齡社會,2025 年就達到 20% 以上的超高齡社會。在社會面臨轉型的同時,對高齡長者醫療需求的相對性研究,能否跟上民眾老化速度,前景其實值得憂慮。

-----廣告,請繼續往下閱讀-----
張玉玲
女科學家新秀獎得主張玉玲。圖/吳健雄學術基金會提供。

輕度認知障礙 罹患失智症的前哨站

老了其實不是問題,而是可能伴隨老化出現的種種疾病、照護所需要的醫療協助,社會福利有沒有能力即時銜接,才是老年人口日益增加的台灣面臨的最大隱憂。台灣目前有 18.74% 的人屬於輕微認知障礙(簡稱 MCI,約五萬多人),這個階段是介於正常老化到罹患失智症間的過渡地帶,可能會出現記憶力衰退、情緒反應遲緩等狀況,最後有 10~15% 比例的人會發展成失智症。為了能更早預防,張玉玲說:「很多時候我是在研究目前看起來還健康的人」。

這樣的研究方法,來自張玉玲在美國念書的經驗。她到社區中招募受測者,針對有可能罹患輕度智能障礙的長者進行簡單的心智功能診斷,企圖找出影響罹患失智症的關鍵因子。然而,這些資料蒐集都需要受訪者高度配合,畢竟要承認自己「失智」都不是那麼容易(看看電影《我想念我自己》女主角的故事),更何況是承認自己「有可能失智」,光想就覺得很有心理障礙。(延伸閱讀:認識早發性阿茲海默症)。「台灣老人跟國外不太一樣,大多時候還停留在『我沒生病,為什麼要看病』的思維裡」,挫折沒有讓張玉玲退縮,她反而因此明白自己研究的存在價值。

e13a3d5d5164cf814afed44402bc5106-560x234

失智症知多少?

你對失智症了解多少?其實它不是單一的疾病,而是一群病症的組合,大致可分為因為腦神經細胞退化或病變引起的原發性失智症(約佔 70~80%)、與心血管疾病導致的續發性失智症(約 10~20%),症狀也不只是記憶力衰退,還包含語言能力、判斷力、注意力等全面性的心智功能減退,它是一種不正常的老化,嚴重到影響日常生活。對於為什麼會發生這些疾病,目前學界還沒有定論。

640px-Alzheimer's_disease_brain_comparison
正常大腦(左)和失智症患者大腦(右)對照示意圖。圖/By derivative work: Garrondo (talk)SEVERESLICE_HIGH.JPG: ADEAR: “Alzheimer’s Disease Education and Referral Center, a service of the National Institute on Aging.”, Public Domain, wikipedia.

多數人對於失智症的診斷印象,大多停留在腦部影像或抽血,不過阿茲海默症的診斷是無法單用腦影像或是抽血檢查來判斷的,抽血主要是要排除因為其他生理疾病所造成的認知功能改變,例如維他命缺乏、甲狀腺功能低下等。阿茲海默症的診斷最終還是要依靠心智功能的評估來做診斷主要依據,透過一些臨床上標準化的神經心理測驗工具,來測量病人心智功能的表現,是不是明顯超過因為正常老化而造成的功能改變程度。不過其實這些只是用來排除「非」失智症的可能因素。

-----廣告,請繼續往下閱讀-----

這件事說來簡單,但試想,失智影響的是大腦心智能力(認知、記憶、語言、思考),在還沒嚴重到影響生活時,你如何能夠判定自己/他人可能有失智傾向?

找出可能罹患 MCI 的高危險群

在醫療系統中,要篩選失智症很容易,但若想在社區中篩選可能發展成失智症的高風險群,就相對困難許多,主要是受限於測量工具的敏感度、使用上的方便性或成本考量。「這是為什麼我想去發展一些新的工具,根據我們對大腦以及認知歷程的了解,這些新工具可以在社區進行檢測」。未來若是工具完成,透過簡便的認知測驗在社區中就可以初步篩檢出未來可能罹患輕度知能障礙 MCI 的高風險群。

同時張玉玲也提到,心血管疾病、年齡、ApoE4 基因變異,都是罹患失智症的風險因子,「基因變異讓你的大腦比較沒有本錢抵抗老年失智」。由於失智症是一種持續進行的疾病,臨床經驗顯示,從 MCI 發展成失智症只需要幾年時間,但 MCI 之前的病程怎麼進行,就不是很清楚,提前找出潛在的 MCI 病患或是失智症的高風險個體,變成科學家們和時間賽跑的關鍵因素。

如何界定失智與正常?

old woman
圖/kkdiookekkdio0 @ pixabay

由於正常老化過程當中也會造成功能上的改變,因此界定是失智還是正常老化的標準就變得很重要,多數時候科學家透過蒐集同年齡、性別、教育程度人的資料,找出一個標準化常模(意指一群人在測驗上的普遍水平或分布狀況),藉此判定病人的病況。張玉玲強調,常模有它的限制,對於功能已經不好的病人來說很適用,但是對於功能原本就很好的人未必是敏感的一套「標準」,因此必須建立更適合或是不同的參照標準、研發新的測量工具,讓結果的判讀上,能更敏感地反映出功能上細微且是與病理有關的改變,才能達到早期偵測的目的。

-----廣告,請繼續往下閱讀-----

即使現在離目標還有段距離,但張玉玲樂觀的說,「我知道我們已經越來越近」。

我有沒有可能罹患失智症?

有時候,最簡單卻最重要的問題,最難回答。

對於這個進行中、不可逆的疾病,當前醫學恐怕只能提供這個問題最終答案的暫時版本。回台工作五年多,張玉玲頗多感觸,她希望最終能開發出簡單低成本的失智症初步篩檢工具,讓預防能落實在家庭或社區中,而不是一定得千里迢迢跑到大醫院做檢查,最後發現已經為時已晚。

有天我們都會變老,我想起自己家中的外公,時不時會看著我卻叫出別人的名字,是不是那也是自己未來的模樣?如果有天,我們能提早預見失智症的發生風險、及早治療,這一切或許可以變得不太一樣。

-----廣告,請繼續往下閱讀-----
文章難易度
彭 琬馨
32 篇文章 ・ 1 位粉絲
一路都念一類組,沒什麼理科頭腦,但喜歡問為什麼,喜歡默默觀察人,對生活中的事物窮追不捨。相信只要努力就會變好,相信科學是為了人而存在。 在這個記者被大多數人看不起的年代,努力做個對得起自己的記者。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
0

文字

分享

0
5
0
含糖飲料讓思考能力受損,還和失智有關聯?——《大自然就是要你胖!》
天下文化_96
・2024/06/24 ・2352字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

認知與失智

阿茲海默症是現代社會面臨的一大困擾,這種可怕的疾病是俗稱老年痴呆的失智症最常見的原因,也是 2022 年全美第七大死因。阿茲海默症是一種行為失能疾病,目前尚無有效的治療方法。這項疾病的特徵是神經元會持續死亡、大腦萎縮、神經元之間形成富含 β 澱粉樣蛋白(beta-amyloid)的蛋白質斑塊,並在神經元內部出現濤蛋白(tau)累積。患者通常一開始的症狀是短期記憶喪失,並在幾年內發展為完全的失智。

阿茲海默症中,Tau蛋白異常會造成腦細胞內的微管瓦解。圖/wikimedia

大多數科學家認為,若能阻止澱粉樣蛋白在腦部沉積或濤蛋白在腦神經中累積,就可以預防失智症。然而,目前有幾種治療失智症的方法,正是採行預防或減少澱粉樣斑塊累積,只是全都失敗,導致有人質疑澱粉樣蛋白斑塊是否真的是致病原因,並開始嘗試尋找其他可能的解釋。

許多科學家指出,阿茲海默症患者在早期通常會表現出兩種顯著的特徵。首先,患者大腦中的某些區域,會減少對葡萄糖的吸收和代謝,因此有人將阿茲海默症稱為「大腦糖尿病」或「第三型糖尿病」。其次,大腦神經元內的能量工廠粒線體,不論是數量或功能都出現下滑,導致 ATP 產量減少。這兩項特徵都顯示生存開關可能涉入其中。

的確,大量攝取糖、高升糖碳水化合物和鹽,全都是阿茲海默症的危險因子,而這些食物正好都會啟動生存開關。肥胖症和糖尿病等疾病也可能提高罹患阿茲海默症的風險。若果糖是導致肥胖症和糖尿病的根本原因,而肥胖症和糖尿病又與阿茲海默症的罹患風險上升有關,那可以合理懷疑:果糖也可能是造成阿茲海默症的原因。

-----廣告,請繼續往下閱讀-----

實驗研究也支持糖與認知之間的關聯。例如,實驗室大鼠飲用含糖飲料之後,思考能力會受損。我的同事生理學家魯尼(Kieron Rooney)每天餵食大鼠兩小時的蔗糖水,濃度為 10%,大約與軟性飲料相同,為期一個月。結果這些喝糖水的大鼠,變得很難找到走出迷宮的路。更令人擔憂的是,即使大鼠停止飲用糖水,這種情況還是持續了六週。同樣的,經常飲用軟性飲料的兒童,在閱讀、寫作、文法和數學方面的學業表現,都相對較差。

經常飲用軟性飲料的兒童,在閱讀、寫作、文法和數學方面的學業表現,都相對較差。圖/envato

這些研究顯示,攝取含糖飲料可能對認知功能造成影響,而且影響所及的時間有可能持續。然而,這不一定代表蔗糖會導致失智。即使每天喝一種或多種含糖飲料,與情節記憶(episodic memory,對過去經歷或事件的回憶)受損和腦容量萎縮有關,但目前還無法做出任何定論。

不過,有愈來愈多證據將果糖與阿茲海默症聯繫起來。阿茲海默症患者大腦中的果糖濃度偏高,且含量比同年齡、同性別的非患者高出四至六倍,而果糖濃度最高的地方通常就是病變區域。也有證據顯示,大腦中的果糖大多是透過多元醇途徑生成。這些患者腦內有大量的山梨糖醇,也就是果糖的前驅物,這跟躁鬱症患者的情況類似。正如我們所知的,果糖一旦生成,會刺激生存開關啟動,造成細胞中的 ATP 含量減少。此外,阿茲海默症患者大腦中負責「清除」AMP 的酵素濃度,比同年齡對照組高出約兩倍。AMP 原本可重新轉化為 ATP,當愈多 AMP 遭到清除,腦內的能量濃度也就隨之下降。

我認為果糖導致阿茲海默症的途徑大致如下。之前提過,在缺少食物時,身體會活化生存開關以保護大腦,這時血液中的葡萄糖無法進入肌肉和肝臟,而會保留在血液中供大腦吸收與使用。這道開關的運作是透過阻斷胰島素作用來完成,因為肌肉和肝細胞需要胰島素才能吸收和使用葡萄糖,但大腦多半不需要。

-----廣告,請繼續往下閱讀-----
阿茲海默症患者大腦中的果糖濃度偏高,且含量比同年齡、同性別的非患者高出四至六倍,而果糖濃度最高的地方通常就是病變區域。圖/envato

然而有例外,大腦中與記憶和決策相關的區域,需要借助胰島素的作用才能攝取葡萄糖。加州大學洛杉磯分校的神經生理學家戈梅茲皮尼拉(Fernando Gomez-Pinilla)發現,大鼠攝取果糖後,大腦中與記憶和決策相關的區域會失去對胰島素的反應,導致葡萄糖吸收減少。實際上,果糖引起胰島素抗性的區域除了肌肉和肝臟,還有與記憶相關的大腦重要區域,這或許正是阿茲海默症的根本原因。

但限制大腦的這些特定區域攝取葡萄糖,對生存有什麼好處?之前提過,衝動和探索屬於覓食行為。記憶受壓抑的動物,可能更願意前往危險區域探索,因為牠們忘了潛在危險,而決策區受損的動物則會變得更衝動。因此可合理推測,果糖會透過在特定大腦區域引發胰島素抗性,以促進覓食行為,這是一種生存反應。

生存開關活化導致特定腦區的功能受到短期抑制,一開始的確能帶來生存優勢,但如果是反覆或慢性的刺激,反而可能導致腦部損傷。這些重要的神經元長期得不到足夠的葡萄糖,最終可能因為營養不良而功能受損。而且果糖代謝會對粒線體造成氧化壓力,使得 ATP 產量減少,更使狀況進一步惡化。一旦 ATP 濃度過低,神經元會死亡,最後的結果就是阿茲海默症。依此觀點來看,阿茲海默症患者大腦的後續變化,例如澱粉樣蛋白和濤蛋白的積累,都是次要的,而阿茲海默症的根本原因,主要是生存開關慢性活化。

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
139 篇文章 ・ 621 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

52
3

文字

分享

0
52
3
耳背腦就鈍?解密聽力受損與失智的關係
雅文兒童聽語文教基金會_96
・2024/02/17 ・4232字 ・閱讀時間約 8 分鐘

  • 文/雅文基金會聽語科學研究中心研究員 詹益智

阿明是位 65 歲的退休長者,總是積極參與各種社區活動,是熱心的志工。然而,近來他開始意識到自己在大型聚會中,必須使勁聆聽他人的話語,有時還是會錯過一些關鍵的內容,這使得他逐漸對大型活動感到焦慮,害怕因聽不清楚別人的對話而與人生分。隨著聽力問題逐漸浮現,他開始注意到自己的思緒也跟著變得混亂。比如說,他常常忘記事情發生的順序,甚至有時候不記得已經說過的話,這種記憶的衰退讓阿明感到十分困擾。最終,阿明去看了醫生並接受相關的測試,被診斷出患有中度聽損與早發性失智症。

在日常生活中,聽覺扮演了重要的角色,是我們與外界交流的管道之一。然而聽力受損不僅僅是一種單純的生理障礙,更可能與失智症之間存在著密切的關係。

關於失智症的二三事

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。有些失智症患者甚至無法控制情緒,個性也可能發生轉變。失智的症狀隨程度不同而有所改變,從最輕微的階段開始影響一個人的基本能力(如記憶),到最嚴重的階段,患者完全需要仰賴他人進行日常活動 [1]。失智症不僅對患者本身造成巨大的影響,也帶給家人和照顧者極大的負擔。

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。圖/Pixabay

2023 年世界衛生組織(WHO)的統計數據顯示,世界上目前約有 5,500 多萬的人口患有失智症,而每年全球正以 1,000 萬人的速度增加 [2],預計到 2050 年,全球失智症患者數量將達到 1.53 億人口 [3]。Livingston 等學者於 2020 年在國際著名的醫學期刊《刺胳針》(The Lancet)發表了一篇關於失智症的預防、介入與照護的研究 [4],列舉了 12 項風險因子,包括教育程度較低、聽力損失、創傷性腦傷、高血壓、酗酒、肥胖症、吸煙、憂鬱症、社交隔離、缺乏運動、空氣污染與糖尿病,將近 40% 的失智症都與這些因素有關(另 60% 為風險因子不明),其中,聽力損失佔最大宗,約有 8% 的比例。另一項研究更進一步指出,罹患失智症的風險會隨著聽損程度越重而增加,例如輕度、中度與重度聽損者罹患失智症的風險分別是聽常者的 1.27、3.00 與 4.94 倍 [5]。由此可見,聽損與失智症的關係不容小覷。

-----廣告,請繼續往下閱讀-----
失智症的風險因子,聽力損失約佔 8%。圖/引自HearingLife

聽力出包時,失智症有可能找上門!

聽損與失智症關聯的機轉究竟是什麼呢?綜合現有的研究文獻,大致可歸納出三大觀點:

一、聽損會耗費大腦的認知資源

聽損常使一個人在吵雜的環境下聽不清楚聲音,此時,大腦便會進行代償作用,將負責思維和記憶區塊所需的資源移轉用來處理這些模糊的音訊,而導致前述二項高階的認知功能受到影響,進而增加失智的風險 [6]。以上的論述主要來自 Mishra 等人的研究 [7],該研究比較輕度聽損年長者與聽常年輕人在「認知備用容量測驗(Cognitive Spare Capacity Test)」的表現:受試者聽完(無視覺提示)一串由男女穿插錄製之二位數的數字列表(如下表所示)後,要說出這串列表中由男生所錄製的奇位數數字(如 13 與 59,以圓圈標示)。要順利完成此項作業,受試者必須排除女生所錄製奇位數數字的干擾(如 77、89 與 61,以底線標示)。

數字5036774496895240612066
男/女
「認知備用容量測驗」實例(來源:Mishra 等人 [8]

結果顯示,在安靜的環境下,兩組受試者的表現無顯著差異,但在噪音環境下,聽損年長者的表現則顯著落後於聽常年輕人,研究者認為聽損年長者為了排除噪音的干擾以獲取正確的答案,其大腦會將高層次的認知資源挹注於彌補聽損所帶來的負面影響,而致使認知功能下降。長此以往,漸漸便埋下了失智症的導火線。

另一個較為直觀的證據則是透過腦造影技術觀察聽損者大腦活動的狀況。Glick 與 Sharma [9] 讓聽常與聽損老年人觀看電視螢幕的光影變化,並透過高密度的腦波圖(high-density electroencephalography;EEG)記錄其對視覺刺激反應的皮質視覺誘發電位(cortical visual evoked potentials;CVEPs),再透過電流密度源重建技術(current density source reconstruction)定位大腦皮質活動的區塊;此外,研究也評估了受試者的認知功能。結果顯示,相較於聽常者,聽損者觀看視覺刺激物時,腦部發生了視覺跨模重組(visual cross-modal reorganization)的現象:除了主司視覺的枕葉區被活化外,主司聽覺的顳葉與主司認知功能的前額葉也被活化用以輔助處理視覺訊息,這會為大腦帶來極大的負擔而增加認知負荷,並耗盡用以記憶的認知資源,最終可能引發失智症。

-----廣告,請繼續往下閱讀-----

二、聽損會使大腦組織萎縮

此外,聽損與否也可能會影響一個人大腦的結構與功能。美國約翰霍普金斯大學的研究人員 [10],利用「巴的摩爾老化長期研究(Baltimore Longitudinal Study of Aging)」的資料,針對聽損與腦容量的關係進行了一項有趣的研究,他們分析了一群受試者在逐漸老化時,其腦容量的變化。受試者在研究之初,做了聽力評估,接著接受為期長達十年、每年一次的核磁共振檢查。結果顯示,研究開始時就患有聽損的受試者,相較於聽常者,其大腦有較大幅度的萎縮,平均以每年一立方釐米以上的速度流失大腦組織,而這些大腦組織恰好與輕度認知功能退化和早期失智症所表現出的記憶衰退的行為有關 [11]

三、聽損會引發社交隔離

社交隔離(social isolation;意旨與他人很少有社交互動或是社交圈窄小的現象 [12])也可解釋為何聽損與失智症有關。一項由英國所進行的研究 [13] 追蹤了一群 50 歲以上成年人的聽損、社交隔離的程度與認知的狀況,並分析這三個因素間的關係,結果發現雖然聽損與認知功能下降有直接且顯著的關聯,但當加入了社交隔離程度的影響後,聽損與認知關聯的強度降低了近三分之一,此結果說明聽損可能會導致社交隔離,間接造成認知功能下降而引發失智症。這也顯示大腦須要透過適當的社交刺激,才能維持其活力,進而保持正常的認知功能。值得注意的是,當聽力閾值達到 25 分貝或以上(即輕度以上的聽損,亦為影響社交溝通的起始閾值)時,聽損所帶來的失智風險就會明顯地增加 [14]

如何預防聽損所帶來的失智風險

一般而言,聽力是與他人溝通互動不可或缺的元素之一;然而,聽力問題不僅僅是關乎聽覺本身,如前所述,它也可能與失智症存在直接或間接的關係,若能適時地做好聽力保健,或許就可避免老年時,讓失智找上你。那麼要如何維持良好的聽力呢?以下幾點可供參考:

  1. 定期聽力檢查是維護耳朵健康的重要關鍵。許多人並不瞭解即便是輕微的聽損也可能對認知功能造成負面的影響。在一般的情況下,聽力下降是漸進且微小的,而人類的大腦有極強的適應能力,這使得聽力衰退不易被察覺 [15]。透過定期的聽力檢查,有助於追蹤聽力狀況,即使是微小的變化也能及時掌握,並處理潛在的聽力問題,進而降低聽損所帶來的失智風險。
  2. 減少長期暴露在噪音環境中。噪音環境除了會加速聽損的惡化外,同時也會誘發海馬迴受損的記憶功能障礙,這也是失智典型的症狀 [16]。因此,避免長時間處在高分貝的環境下,或者適時地佩帶耳塞或耳罩,便是保護聽力健康進而降低失智風險的良方之一。

然而,就聽損人士而言,難道就只能坐視自身認知功能逐漸退化而毫無作為嗎?其實不然。還記得 Glick 與 Sharma 的研究 [9] 提到聽損者大腦的視覺跨模重組與其認知功能衰退息息相關嗎?但令人振奮的是,這些聽損者在穩定配戴助聽器六個月後,逆轉了視覺跨模重組的現象,其認知功能也隨之改善,這表示聽損者配戴助聽器後,失智風險也可能跟著降低。 

-----廣告,請繼續往下閱讀-----
聽損人士配戴助聽器後,失智風險可能會跟著降低。圖/iStock

雖然失智症並不全然與聽力問題相關,但就聽力而言,我們可做的就是聽力保健,如定期做聽力檢查、遠離噪音環境、適度保護耳朵,以及必要時配戴助聽輔具是維持良好聽力的重要關鍵,若能確實執行上述建議,或許就可降低那 8% 的失智風險。請記住,保護耳朵就是保護大腦,讓我們一起努力維護聽力,為未來的大腦健康奠定穩固的基礎吧!

參考資料

  1. National Institute on Aging (n.d.). What is dementia? Symptoms, types, and diagnosis. https://www.nia.nih.gov/health/alzheimers-and-dementia/what-dementia-symptoms-types-and-diagnosis
  2. Dementia (2023, March 15). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia
  3. The Institute for Health Metrics and Evaluation (2022, January 6). The Lancet Public Health: Global dementia cases set to triple by 2050 unless countries address risk factors. https://www.healthdata.org/news-events/newsroom/news-releases/lancet-public-health-global-dementia-cases-set-triple-2050
  4. Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., … & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet396(10248), 413-446.
  5. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  6. Fulton, S. E., Lister, J. J., Bush, A. L. H., Edwards, J. D., & Andel, R. (2015, August). Mechanisms of the hearing–cognition relationship. In Seminars in Hearing (Vol. 36, No. 03, pp. 140-149). Thieme Medical Publishers.
  7. Mishra, S., Stenfelt, S., Lunner, T., Rönnberg, J., & Rudner, M. (2014). Cognitive spare capacity in older adults with hearing loss. Frontiers in Aging Neuroscience6, 96.
  8. Mishra, S., Lunner, T., Stenfelt, S., Rönnberg, J., & Rudnera, M. (2013). Visual Information Can Hinder Working Memory Processing of Speech. Journal of Speech, Language, and Hearing Research56, 1120-1132.
  9. Glick, H. A., & Sharma, A. (2020). Cortical neuroplasticity and cognitive function in early-stage, mild-moderate hearing loss: evidence of neurocognitive benefit from hearing aid use. Frontiers in Neuroscience, 93.
  10. Lin, F. R., Ferrucci, L., An, Y., Goh, J. O., Doshi, J., Metter, E. J., … & Resnick, S. M. (2014). Association of hearing impairment with brain volume changes in older adults. Neuroimage90, 84-92.
  11. Liu, J., Zhang, X., Yu, C., Duan, Y., Zhuo, J., Cui, Y., … & Liu, Y. (2016). Impaired parahippocampus connectivity in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease49(4), 1051-1064.
  12. Steptoe, A., Shankar, A., Demakakos, P., & Wardle, J. (2013). Social isolation, loneliness, and all-cause mortality in older men and women. Proceedings of the National Academy of Sciences110(15), 5797-5801.
  13. Maharani, A., Pendleton, N., & Leroi, I. (2019). Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English longitudinal study on ageing. The American Journal of Geriatric Psychiatry27(12), 1348-1356.
  14. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  15. Audiology Associations of DFW. (August 31, 2023). Regular hearing tests could decrease your risk of getting dementia. Hearing Test Info. https://www.audiologyassociates.com/hearing-test-info/hearing-test-reduce-risk-dementia/
  16. Paciello, F., Pisani, A., Rinaudo, M., Cocco, S., Paludetti, G., Fetoni, A. R., & Grassi, C. (2023). Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiology of Disease178, 106024.

討論功能關閉中。

雅文兒童聽語文教基金會_96
56 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。