Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

讓數學說說看:什麼是裝維他命的最佳策略?

黃誠熙(Sky Huang)
・2016/03/09 ・2572字 ・閱讀時間約 5 分鐘 ・SR值 509 ・六年級

source:Colin Dunn
source:Colin Dunn

我們知道維生素(也稱維他命)在環境中容易被破壞,所以當我們使用維生素藥劑時,可以進行以下策略:把大罐子中一部分的藥劑放入一個小罐子內,先使用小罐子裡的維生素藥劑,等到小罐子吃完後打開大罐子再次把藥劑倒入小罐子內,如此循環。由於大部分的藥劑都存於大罐子內,並且在大部分的時間都處於封閉的情況,因此可以減少氧化的程度。然而,我們可以想像,如果一次倒入小罐的維生素藥劑太少,我們必須不斷地打開大罐子,這時封閉的大罐子的策略就失效了;另一方面,要是倒入小罐的維生素藥劑太多,那大量的維生素在小罐內每天被打開食用,我們想要減少氧化的策略也會施小。因此,今天想研究的就是:要在小罐子裡裝多少藥劑才會有最少的氧化程度?

(% 對於不想看推導公式的朋友們請直接往下跳結論囉! %)

首先,我們把上述問題化成數學問題:想像一個人購買了一大罐,裝了 N 顆的維生素藥劑,每天吃一顆,N 天會吃完。為了減少氧化程度,我們把維生素分成了 p 次裝入小罐中,也就是說,第一步,打開大罐子,把 N/p 的藥劑放入一個小罐子,之後 N/p 天都使用小罐子中的藥劑,等小罐子中藥劑使用完畢再度打開大罐子倒入 N/p 顆維生素,如此循環。為了研究這個問題,我們定義單顆維生素的品質為 q(t),他的值在一開始剛買到的時候是 1,在氧化的過程中慢慢往 0 的方向減少;除此之外再定義一個品質下降速率 R(t),可用於計算此單顆藥劑被食用時的品質了。我們可以寫下此單顆維生素被食用時的品質:

eq1

其中 r1、r2 為大、小罐子氧化速率隨時間的變化 ;T1 是此藥劑從大罐子轉移至小罐子的時刻,T2 則是此藥劑被服下的時刻。

-----廣告,請繼續往下閱讀-----

我們也可以計算所有維生素藥劑被食用時的品質總和 Q。當我們剛買來整罐的維生素時,維生素藥劑的品質總和為 N (normalized 之後的值,單顆藥劑品質一開始為 1),而我們想知道的問題是,要使用什麼樣的 p 值才可以最大化 Q 函數。很顯然這個問題的答案是決定於品質下降速率函數 R(t),當 R(t) 決定之後,Q 可以藉由許多的積分和總和來決定,而最佳的 p 值則可由 Q 對 p 微分來得到。這個函數和研究也可用在一些相似的衰減(decay)系統。下面讓我們來猜猜品質下降速率 R(t) 並且試著研究最佳化的裝罐策略吧!

1. 近似方法

1-1 近似一

想像開罐的時候,空氣會進入罐中,那些會氧化維生素藥劑的東西會補充,達到常溫常壓下的一般環境濃度;蓋子關上後,這些東西的數量會慢慢下降。因此,R(t) 函數應該和距離上一次開罐之間的時間有關,因此,假設 R(t) 函數是通用(universal)函數,在所有的罐子中都是一樣的函數,也和罐中狀況無關聯,只和距離上一次開罐之間的時間 t 有關。

1-2 近似二

氧化速率 R(t) 隨時間t的變化可以從化學反應速率以及瓶中氧化物質減少速率,瓶外空氣滲入瓶中的量等等因素決定。然而,在此假設 R(t) 是 exponential decay 函數,並且令 R(t) 在 t = 0 時有最大值,接著快速衰減;由於罐子不是密封的,因此會有少量空氣緩慢地滲入補充罐子內部氧化物質,因此可以推論此decay函數最終最小值為一大於零的數:

eq2

r_demo

其中 t 是距離開罐之間的時間(請見近似一說明),A、B、C 為決定此 decay 函數的參數 (皆 > 0)。其中,B 為 decay 速度的參數,單位為時間的倒數 (1/t)。C 則為 R(t) 的最小值,A 為 exponential 函數的震幅。有了 decay 函數 R(t),我們就可以推導這一罐維生素藥劑在不同 p 值的策略下,使用的品質總和:

-----廣告,請繼續往下閱讀-----

eq3

最終的形式顯然看起來非常複雜。下面就來討論 R(t) 函數的參數如何改變最終的結果。

2. 討論

2-1 B 參數的設定

因為 B 參數是和時間有關,而不是和品質,數量有關的參數,因此相對好處理。下圖顯示不同 B 參數下 R(t) 的變化:

r_B

(藍: B = 2; 紅: B = 0.2; 黃: B = 0.1; 綠: B = 0.02)

 

可以發現當 B 的值較大時 R(t) 函數下降速度較快。或許我們可以合理的猜測,在實際的狀況中,當 t = 20 天的時候,R(t) 函數會趨近於最終值:R(20) ~= C;因此,在這次的計算中 B = 0.2。

-----廣告,請繼續往下閱讀-----

2-2 A、C 參數的設定

A、C 參數的設定就比較困難了。一個可能合理的猜測是,維生素廠商並不能假設維生素藥劑使用者會把藥劑裝到小罐子中避免氧化,因此在使用期限內維生素的品質必須要維持在一個看似合理的數值,因此,我們可以推測,在沒有使用 “裝到小罐子中儲存” 策略的情況下 (p = 1),最終服下維生素藥劑的品質 Q 應該要是一個看似合理的數值,譬如說 Q (p = 1) = 0.5 N。這個假設當然很有可能和事實有出入,譬如說,合理的數值可能更多可能更少;然而,A、C 的絕對值對於最佳化p的值並不會有很大的影響,而是 A 和 C 的比值影響比較大。我們試著帶入 N = 365 (一年的維生素藥劑),並且引入剛剛所說的條件 Q (p = 1) = 0.5*N ~= 182,可以得到 A + C 約等於 0.003。下圖畫出不同的 A、C 比值得到的 Q 隨 p 變化曲線。

q_AC

(藍: A = 0.003, C = 0; 紅: A = 0.002, C = 0.001; 黃: A = 0.0015, C = 0.0015; 綠: A = 0.001, C = 0.002; 橘: A = 0, C = 0.003)

 

首先發現所有曲線都通過一接近 p = 1 的點 (此交點 p != 1),當不使用分罐策略時會有相似的品質。接著,我們也可以發現當 C 遠大於 A 時 (exponential term 消失,速率函數變成線性,此時和開關罐子無關,因此分裝行為變得沒有幫助),Q 變成一條直線,顯示 Q 並不隨 p 的值變化。當 A 的值越來越大 C 的值越來越小,會發現曲線變得越來越圓滑,最終當 C= 0 時達到最圓滑的曲線。

3. 結論

從上面的討論可以得知:

-----廣告,請繼續往下閱讀-----

(1) 若是氧化的速率不會隨開瓶關瓶變化,那分裝策略沒有幫助。

(2) 大致上來說,最佳的分裝策略的 p 值分布在 5 ~ 10 之間,也就是假如買了一罐一年份 365 顆維生素,一次裝入小罐子的量大約是在 40 ~ 80 顆之間。不過大部分曲線在 p > 10 之後仍然有不錯的值,因此更少的顆數 (< 40) 是可以接受的。

(3) 分裝策略能夠增加 20% ~ 70% 的維生素藥劑新鮮度,不過由於 A、C 的絕對值不是非常精確,因此實際增加的量還需要更詳細的研究。

致謝

感謝室友楊智軒 (Louis Yang) 在討論中提出的許多有用的建議。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
黃誠熙(Sky Huang)
5 篇文章 ・ 0 位粉絲
黃誠熙(Sky Huang), 目前為UCLA博士候選人。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
3

文字

分享

0
3
3
減碳新招:二氧化碳再利用!光觸媒材料可以把二氧化碳還原成工業化學原料?——專訪中研院原分所陳貴賢特聘研究員
研之有物│中央研究院_96
・2023/11/03 ・5793字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|簡克志
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

降低碳排還不夠,奈米材料幫你直接減少二氧化碳!

氣候變遷問題日益嚴重,2023 年 9 月成為全球有史以來最熱的月份,臺灣夏天飆破 38 ℃ 的頻率逐漸增加。為了避免地表升溫超過工業化前水準的 +1.5 ℃,世界各國訂出 2050 年淨零排放的目標,設法減少大氣中的溫室氣體。減碳解方除了低碳電力之外,直接減少二氧化碳也是一條路徑。中央研究院「研之有物」專訪院內原子與分子科學研究所陳貴賢特聘研究員,他的研究專長是奈米能源材料,我們將介紹一種複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),在太陽光照射下,此材料表面發生的氧化還原反應,會將二氧化碳還原成有用的工業化學原料!

為了避免全球升溫超過工業化前水準的 +1.5 ℃,我們需要減少碳排放與開發負碳技術,並盡量在 2050 年左右達到全球溫室氣體淨零排放量的目標。所謂的「工業化前水準」是指 1850-1900 年的平均溫度。
圖|iStock

地球「保冷」計畫——減碳是關鍵

我們每天排放多少二氧化碳?根據 Our World in Data 的人均二氧化碳排放數據,2021 年全球每人排放的二氧化碳為 4.69 噸,而燃燒 1 公升的汽油大概會產生 2.3 公斤的二氧化碳。換算一下,每人每天排放二氧化碳約為 12.8 公斤,相當於每人每天消耗 5.6 公升的汽油!

根據聯合國政府間氣候變化專門委員會(IPCC)的特別報告「全球暖化 1.5 ℃」,人類活動排放的溫室氣體,已經讓地球表面平均溫度上升了 1 ℃。若以人類目前經濟模式發展下去,碳排放量可預期將不斷上升,大量溫室氣體將讓暖化現象與極端天氣事件更加劇。

氣候科學家警示,地球表面平均溫度需控制在 +1.5 ℃ 以內 註 1,否則將有不可逆的後果,例如生物多樣性大幅度降低的風險。因此,世界各國有了 2050 年淨零排放的共同目標,並不是說都不排碳了,而是要設法讓溫室氣體的碳排放量和碳減少量相互抵消,達到「淨零」的目標。

-----廣告,請繼續往下閱讀-----

要達到淨零的目標,除了尋找與開發減碳電力之外,直接減少二氧化碳也是一個方法。想像一下,如果可以像植物一樣,只要照太陽光,就把二氧化碳變成有價值的碳氫化合物,聽起來不錯吧?但是二氧化碳做為燃燒後的產物已相當穩定,要如何以人工方式讓二氧化碳再次參與反應?

我們可運用「陽光」與「光催化材料」(又稱光觸媒,photocatalyst),不僅可以減碳,還能產生有價值的碳氫化合物,是一種「一舉兩得」的方法!

光觸媒(光催化)材料是什麼?

在談到光催化材料之前,先複習一下「催化劑」這個概念,催化劑不參與化學反應,但是它讓原先不可能的化學反應變得可行!陳貴賢分享,這就像過去從臺北到宜蘭需要翻過雪山,經過九彎十八拐的北宜公路;但如今有了「雪山隧道」之後,就大大降低臺北到宜蘭的時間與難度。「雪山隧道」就是臺北通往宜蘭的催化劑。

除此之外,催化劑也可以說是推進人類歷史發展的重要角色!在過去,農作物施肥只有天然氮肥可以使用,產量有限。而肥料意味著糧食增加與生產力增加,《巫師與先知》這本書就提到位於秘魯的鳥糞島嶼成為各家跨國公司必爭之地。另一方面,波斯人也在各地建造供鳥類休息的高塔,用來收集當肥料用的鳥糞。

-----廣告,請繼續往下閱讀-----

到了近代,陳貴賢提到在 20 世紀初,德國科學家哈伯(Fritz Haber)透過催化劑,在高溫高壓的條件下,以鐵粉做為催化劑,讓氮氣和氫氣轉換成氨。這讓人工固氮成為可能,人類不用再依賴緩慢的生物固氮反應就可以合成化學氮肥,農作物產量也大幅提昇。

本文主角「光催化材料」,顧名思義就是協助光化學反應的催化劑,但光催化材料與一般催化劑不同的地方在於,其化學反應通常發生在固態的表面環境,目標反應物、光子和電子都有參與反應。

比起光催化材料,你可能更常聽到它的同義詞「光觸媒」,例如某某產品宣稱具有「奈米光觸媒消毒」的功能,其實就是照射足夠的光,讓材料表面的氧化還原反應把細菌分解。而之所以光觸媒需要做到奈米尺寸,這是因為奈米小顆粒可以改變物質的電子能量結構,且大幅增加反應的表面積,讓光催化反應更有效率。

陳貴賢:「一個高表面積的奈米粉末,它的表面積可能是薄膜的一萬倍,甚至於十萬倍。」

給你電子,還你原形!光催化材料上的氧化還原反應是怎麼發生的?

光催化材料之所以能夠減少二氧化碳,是因為照光後材料表面發生「氧化還原反應」,氧化反應會失去電子,還原反應會得到電子。陳貴賢與團隊開發的複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),可以讓二氧化碳還原成甲醇(CH3OH)和乙醛(CH3CHO),這兩種產物都是工業常用的化學原料。反應式如下:

-----廣告,請繼續往下閱讀-----

要持續減少二氧化碳,就要持續發生上述還原反應,持續供給電子。不過,我們要怎麼讓電子快速又順利的補充到材料表面?這裡就開始涉及到半導體的核心問題:電子與電洞的產生、分離和傳輸

陳貴賢與團隊開發的複合光催化材料:ZnS/ZIS,是結合兩種奈米半導體材料,透過水熱法合成,將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,形成 0D-2D 結構的 ZnS/ZIS 複合物,就像製作巧克力豆餅乾,不過要複雜得多。

陳貴賢團隊將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,就好像做巧克力豆餅乾一樣,形成複合的異質半導體,做為光催化材料用途。左圖是示意圖,右圖是電子顯微鏡下的照片,Zn:In 比例為 1:0.46。
圖|研之有物(資料來源|Nano Energy

既然 ZnS/ZIS 是半導體,當受到光照之後,原來的價帶(valence band)電子會被光激發成導帶(conduction band)電子,原本價帶電子佔據的位置則留下一個空位,就是電洞。電子和電洞的遷移,就是半導體形成電流的原因,因此電子和電洞都稱為「載子」(charge carrier)

還記得上面的還原反應嗎?

-----廣告,請繼續往下閱讀-----

對光催化材料來說,為了在光照環境下把二氧化碳還原成乙醛和甲醇,必須獲得穩定的電子來源,材料內部要迅速補充電子到表面,因此:

照光產生的電荷載子數量越多越好;產生的電子和電洞要傾向分離,分得越遠越好;電子和電洞越快移動到表面參與反應越好。

載子輸送要快速穩定,首先照光產生的載子要多,就有更多電子和電洞參與反應。分離載子是為了避免復合,照光產生的電子和電洞很容易復合,一旦復合,等同於減少載子。再來是載子越快移動到表面越好,可以讓每次的氧化還原反應都是最佳效率。

尋找最有效的光催化材料

陳貴賢團隊總共做了 4 種不同比例的 ZnS/ZIS 光催化材料,依照 Zn:In 比例 1:0.12、1:0.26、1:0.46 和 1:0.99,分別標記為 ZnS/ZIS-1、ZnS/ZIS-2、ZnS/ZIS-3 和 ZnS/ZIS-4。其中,ZnS/ZIS-3 的光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇(如下圖)。

水熱法製備的 ZnS/ZIS-3 光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇。最右邊是將 ZnS 和 ZIS 簡單物理混合的對照組,沒有介面效應的輔助,催化效果不佳。
圖|研之有物(資料來源|Nano Energy

為了驗證光催化材料產生有效載子的效率,陳貴賢團隊計算了 ZnS/ZIS-3 的總 AEQ 值(apparent quantum efficiency),用來評估「照到光催化材料上的每顆光子數量,產生了多少實際參與催化反應的電子數」。測量之後,ZnS/ZIS-3 的 AEQ 值為 0.8%,量子效率比單獨的 ZnS 材料提高了將近 200 倍!

-----廣告,請繼續往下閱讀-----

這也是為什麼陳貴賢團隊要使用兩種不同的材料結合,因為單一半導體材料照光產生的電子和電洞有很高的復合機率,選擇兩種不同的半導體材料組合,讓兩種材料形成特殊的「能量階梯」就可以有效分離電子和電洞,並且把電子送到它該去的材料表面。

此外,使用兩種半導體材料的好處還有「二次激發電子到更高能階」,以符合光催化反應的能量門檻,自由電子掙脫 ZnS 的束縛之後,繼續往 ZIS 跑,光的能量會繼續把電子往上送到更高能級的材料表面,還原二氧化碳的反應在此發生。

Z 字形跑比較快!控制材料之間的微應變提升氧化還原效率

關於光催化材料的二次激發,陳貴賢提到:「材料低能階,然後光子進來後,把電子激發到高能階去做反應,太陽能電池也是這樣。但是呢,有時候沒那麼剛好,例如激發後的能階不夠高,雖然激發上去了,但電子沒有辦法跟二氧化碳做反應。那我把兩個材料拼在一起,電子上去以後又下來,然後再吸收第二個光子上去,那就變得很高了,高了以後它的反應效率就提升很多。」

如果我們把光催化材料的二次激發過程畫成示意圖,如下圖所示,電子在 ZnS 束縛區受到第一次光子的激發,變成自由電子,接著經過設計完善的材料介面,先降到較低的 ZIS 束縛區,受到第二次光子的激發,再次變成自由電子,跑到光催化材料的表面,和二氧化碳發生還原反應,將二氧化碳變成可再利用的乙醛和甲醇。

-----廣告,請繼續往下閱讀-----

看看電子走過的路,如果向左歪著頭看,是不是就是一個 Z 字呢?科學家把這個過程稱為「直接 Z 方案」(Direct Z-scheme)。「直接」的意思是,電子從 ZnS 跑到 ZIS 的過程,不需要再經過一個中間地帶,降低電子和電洞復合的機會。

為了將二氧化碳轉換成可用化學原料,電子在材料內部能階走 Z 字路徑,過程中受到光的二次激發,最後到達材料表面。電子參與還原反應,將二氧化碳變成乙醛和甲醇。電洞參與氧化反應,將水變成氧氣。
圖|研之有物(資料來源|Nano Energy

為什麼陳貴賢團隊設計的「直接 Z 方案」光催化材料,電子可以不需要中間的「轉接站」,直接轉移到另一個材料上呢?這裡也有一個巧思:不同材料之間的「微應變」

不同材料的晶體排列規律是不一樣的,當兩種材料接在一起時,接面處會發生「晶格不匹配」,也就是兩種材料的原子會互相卡到、晶格微微變形。但是,如果我們可以控制微應變(Strain)的程度,就可以控制兩種材料「能量階梯」的相對位置,微應變可以讓材料接面自動帶有「轉接站」的功能,進而形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。

總之,陳貴賢團隊開發的這套材料組合,是有微應變誘導的直接 Z 方案光催化材料,可做為未來量產光催化材料的研發設計參考,同時也是減碳的解方之一。

-----廣告,請繼續往下閱讀-----
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy

綠能趨勢——光催化材料未來可期

陳貴賢表示,目前表面科學和材料是中研院原分所的主要研究領域,他的實驗室選擇能源材料作為研究主軸,有太陽能電池和熱電材料,同時團隊也專注研究可還原二氧化碳的光催化材料,以及與燃料電池相關的催化劑。

陳貴賢看好將來能源材料的發展,因為在 2050 淨零排放之前,有愈來愈多企業紛紛加入「RE100 倡議」的行列,企業必須承諾最晚於 2030 年前使用 100% 再生能源。最著名案例是科技巨頭蘋果Google 和微軟等公司都已宣布其全球供應鏈將符合 RE100 的要求。其中,台積電為蘋果主要供應商,2020 年也加入 RE100,目前為臺灣再生能源的主要買家

可以預見,將來風能、太陽能與燃料電池的相關材料有其市場需求,而能夠減少二氧化碳的光催化材料,也將成為全球減碳的利器。陳貴賢提到,當前光催化材料還在基礎研究階段,目前的人工光合作用效率約 1%,接近大自然效率,而團隊希望提升到至少 5% 到 10% 以上,方能有其實用價值。

陳貴賢進一步強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值,不僅轉化後的燃料可以賣錢,處置二氧化碳原料亦可以收取負碳費用,是一種前所未有的概念。

陳貴賢強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值。
圖|研之有物

註解

  1. 根據 IPCC 的資料,如果要將全球暖化幅度控制在 +1.5 °C 以內,必須在 2050 年左右達到二氧化碳的淨零排放目標,同時也要大幅度降低非二氧化碳的溫室氣體排放,特別是甲烷。
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3663 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

3
0

文字

分享

0
3
0
黏得住還是黏不住?如何找出最適合的接著劑?
鳥苷三磷酸 (PanSci Promo)_96
・2023/06/20 ・3791字 ・閱讀時間約 7 分鐘

本文由 LOCTITE® 樂泰 委託,泛科學企劃執行。

「結構接合」這個詞雖然很陌生,卻存在於我們四周!

只要能將兩塊材料黏在一起,拿起來不會散掉,都能被稱作「結構接合」,像是傢俱或電器產品上,就有許多螺絲把兩塊零件固定起來,另外,工業上「複合材料」的製作,也是一種「結構接合」,像是自行車、飛機,或手機殼所使用的「碳纖維」,就是將碳纖維纏繞在塑膠上,再用接著劑固定所形成的複合材料。

簡而言之,這就是結構工程師的活兒!

結構接合的三種方法

一般來說,結構接合可以粗分為三種方法。

1. 螺栓(bolting):也就是傢俱家電上的螺絲釘,用額外零件來把兩塊材料鎖緊,這種作法是最方便的,鑽個洞、鎖進去、大功告成,但最大的問題是受到的應力,會全集中在螺絲的洞口上,就像是你撕開用釘書機釘起來的文件,輕輕一扯,訂書針附近就會裂開,文件就會脫落。

-----廣告,請繼續往下閱讀-----

2. 焊接(welding):兩片金屬或熱塑性塑膠,可以局部加熱使材料熔化再冷卻後固定,或是用熔點較低的「焊料」加熱後直接接合,另外也有不需要加熱到熔點,透過外力敲打來接合的「鍛焊」,日本刀的刀身,是由「刀心」、「刃金」與兩塊「鐵皮」,藉由鍛焊的方式接合在一起。焊接雖然不會像螺栓一樣應力集中在洞口,但也會讓應力集中在焊接線上,此外,也不是所有材料都能用焊接加工。

日本刀的刀身結構。圖/wikipedia

3. 黏接(Bonding):用膠水、三秒膠……等「接著劑」塗在兩塊材料的表面,形成「膠體」後黏在一起,好處是不會有上面提到的應力問題,但必須考慮接著劑的適用範圍,因此接著劑有非常多的不同型號,來應對不同材料或使用情境。由於黏接的應力問題最少且使用方便,因此在工業上被大量使用,除了取代原有螺栓與焊接,在「碳纖維」等複合材料製作上,接著劑可說是唯一的解決方案。

怎麼測量接著劑的效果?

測量接著劑的效果,相當於測量膠體什麼時候會斷裂。在材料力學上,通常會討論「拉伸(Tensile)」、「擠壓(Compression)」、「剪切(Shear)」這三種行為,對材料造成的影響。

要測量上述三種情況,我們可以用機器以特定方式,對受測物整體均勻緩慢施力,直到兩片材料分離,就能得到「理論上」膠體能承受的最大力量大小。這種均勻緩慢施力的測量方式,稱為「靜態分析」。

為什麼「靜態分析」得到的結果是「理論上」呢?這是因為真實世界的受力狀況,大多都不是均勻緩慢的。像是撞車就是「非均勻且快速」的衝擊,車子受力會集中在某個點上,且作用時間很短。

-----廣告,請繼續往下閱讀-----

而針對接著劑的真實效果,通常會著重討論「膠體被撕開」的狀況,這包含了「劈裂(Cleavage)」與「剝離(Peel)」兩種情況,「劈裂」是撕開較為堅硬的材料時遇到的狀況,而「剝離」則是較有彈性的材料,基於接著材料的彈性差異,膠體斷裂的方式會不一樣。

上圖是劈裂與剝離的示意圖,會發現無論是劈裂還是剝離,膠體的受力都不是均勻的,會全部集中在裂縫邊緣上,我們無法用「靜態分析」來評估膠體的真實狀況,因此必須使用「動態分析」來確認。

經典動態分析—夏比衝擊試驗(Charpy impact test)

動態分析就是更接近真實狀況的分析(廢話),其精隨主要是在分析方法上,靜態分析是做「力」分析,而動態分析則改做「能量」分析,那為什麼改成「能量」分析就能更容易解決真實問題呢?

我們先想一個情況,當你用槌子把釘子釘到木板上時,突然想知道自己對釘子施了多少力。這時,你有兩個方法可以得到答案:

  1. 用「力」分析:錄下槌子撞到釘子的過程,分析撞擊過程的受力狀況,包含槌子的運動軌跡、落下的角度、速度改變的過程。
  2. 用「能量」分析:透過木板的阻力係數與釘子釘進木板的長度,回推撞擊的力量大小。

大家應該都會選第二種方法來算答案吧?因為比第一種來得簡單!這就是用「能量」的好處,我們可以不用考慮施力方向或運動變化,以更簡單的方式來得到相同的結果。

在動態分析中,最經典的分析方式就是「衝擊試驗」,大家直覺想到的可能是汽車的衝擊試驗,看安全氣囊會不會正常運作或是車體結構的受損狀況,這的確也是動態分析的一種,但今天,我們會從更基礎的夏比衝擊試驗(Charpy impact test)來說起。

-----廣告,請繼續往下閱讀-----
夏比衝擊試驗的器材。圖/wikipedia

夏比衝擊試驗會把左邊的擺錘當作衝擊力的來源,當擺錘拉高到一定高度後(h’),我們就能透過重力位能公式(Eg = mgh),知道他初始的能量是多少(Wh’),而樣本會擺在下方,之後釋放擺錘衝擊樣本。

結構圖。圖/wikipedia)

當樣本被擊破了之後,擺錘會繞到另一邊並有一定的高度(h),透過這個高度我們能知道擺錘殘餘的能量有多少 (Wh),這時只要 Wh’ – Wh,就能得到作用在樣本上的能量有多少了!

衝擊試驗的好處是,我們可以在同樣能量的情況下,透過改變樣本的形狀與撞擊點等條件,模擬出更接近真實的狀況。

LOCTITE® 樂泰:眼見為憑 – Seeing is Believing!

LOCTITE® 樂泰是全球接著劑的龍頭,自開業初期,就秉持著「眼見為憑(Seeing is Believeing)」的理念,不僅在客戶面前直接實驗演示產品效果,更創建了「移動實驗室」,巡迴各地協助客戶分析與排除接著劑的使用問題。

-----廣告,請繼續往下閱讀-----

自 1964 年以來 LOCTITE® 樂泰的移動實驗室一直有效地指導客戶和培訓銷售人員 – 拍攝於 Newington, Connecticut (美國康乃狄克州的紐因頓)。

如今 60 年過去,LOCTITE® 樂泰仍秉持著「眼見為憑」的精神,為客戶解決問題。

LOCTITE® 樂泰出品的接著劑,除了有做「膠合收縮測試」,也輔以其他「動態分析」來測試產品特性,幫助客戶快速取得不同材料接合的有效數據,以下是漢高 LOCTITE 樂泰實驗室在  PIDC 塑膠中心發表複合材料的部分實驗結果。

第一部分:碳纖維複合材料的動態測試報告

實驗材料大小為 2.5 x 114.3 x 1.6 mm,材料上下表面貼上「3K 碳纖維製成的 45° 單向布」,每一層碳纖維重(FAW)為 175 g/m2,材料表面粗糙度以算術平均數(Ra)取得的數值為 50 ~ 60 𝜇m。兩片材料以水平的方式上下堆疊,並用 5 種不同的接著劑,接合上下表面。

-----廣告,請繼續往下閱讀-----

實驗方法為試驗衝擊,使用擺錘撞擊受測物體的接合處直到材料分開,來測試接著劑的抗衝擊性能,為了數據呈現的易讀性,我們將衝擊能量(Impact Energy)的大小,化約為衝擊參數(Impact index)。

實驗結果分為上接著劑後壓緊接著,中間沒有膠體空隙(Gap 0mm)的藍色數據;以及使用 Spacer 控制,有 0.17mm 的膠體空隙的紅色數據,我們可以發現在 3 號接著劑上,有著最好的抗衝擊性能。

第二部分:可回收熱塑型複合材料的動態測試

實驗材料為長興材料的可回收熱塑型複合材料 —— TP032C – U52。

材料大小為 2.5 x 100 x 1.6 mm,複合材料外部包覆的碳纖維是台麗朗的 TC36P,包覆的碳纖維重(FAW)為 110 g/m2,共包覆 8 層,材料表面粗糙度以算術平均數(Ra)取得的數值為 50 ~ 60 𝜇m。

-----廣告,請繼續往下閱讀-----

實驗方法為垂直撞擊,透過改變高度與負重,來控制衝擊能量大小。

實驗結果為 4 號接著劑對可回收熱塑型複合材料的效果最好,但如果我們回頭看接著劑本身的特性,會發現 4 號也許沒有那麼適合,因為 4 號接著劑的固化溫度很高,已經超過熱塑形複材的熱穩定溫度上限,這樣的溫度很可能會讓熱塑型複合材料變形,因此固化溫度較低又有一定強度的 3 號或 1 號接著劑,才會是熱塑型複合材料的首選。

最後,LOCTITE® 樂泰也做了生動有趣的影片,來演示接著劑在不同狀況下的效果。

在影片中,LOCTITE® 樂泰先是用接著劑黏接兩個治具——S45C中碳鋼的單邊,並對有接著劑的單邊進行正向力測試,發現直到 6298 公斤重,都還不會分開,但只要從沒有接著劑的部分拉扯,只要 1124 公斤重,膠體就會剝離破壞。而這也正反映到前面所說的,必須對各種使用情境去做動態分析,才能知道接著劑的真正能耐!

-----廣告,請繼續往下閱讀-----

延伸閱讀

LOCTITE®樂泰品牌官網

歡迎加入 LOCTITE®樂泰 Fanclub 工業用接著劑交流社團 交流專業接著知識!

-----廣告,請繼續往下閱讀-----