0

0
0

文字

分享

0
0
0

危橋示警 台灣首創「斷橋預警」系統

劉珈均
・2015/10/15 ・1252字 ・閱讀時間約 2 分鐘 ・SR值 544 ・八年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

於名竹大橋系統安裝完成照片
系統於名竹大橋完成安裝時。圖/國研院提供

國家實驗研究院整合六個中心,首創全球第一個斷橋預警系統,「斷橋預警─雲端防災互連網」可全天候監測橋梁安全,特別是颱風洪水時影響橋樑安全甚劇的「沖刷深度」,並可在橋梁發生斷橋危機前,提前六小時預警。國研院目前已在濁水溪與大甲溪共四座橋梁完成實驗,未來可望擴及其他主要橋梁。

此系統可在洪水氾濫時供當局做封橋決策的科學依據,平時則做為橋梁保養維護之用。台灣目前大小橋梁共兩萬多座,過去十年來,有一百多座橋梁被颱風洪水沖斷,嚴重案例如2000年碧利斯颱風高屏大橋斷橋導致22人墜橋受傷;2008年辛樂克颱風時后豐大橋橋墩沖毀造成6死;2009年莫拉克颱風沖垮雙園大橋15橋墩與500公尺斷裂路面,造成6車10死的意外。

橋梁損壞原因統計
全球橋梁損壞原因統計。其中有60%來自沖刷,而台灣降雨強度集中,地形陡峻,河流短促,沖刷問題特別嚴重。圖/國研院提供

目前世界各國封橋的依據都是看水位有多接近橋面(我國標準是1.5公尺),但水位上漲與沖刷深度並非完全相關,橋梁斷裂主因是河水沖刷、掏空橋墩下方沙土。國家地震工程研究中心研究員林詠彬說,2000年高屏大橋是在颱風過後兩天、水退了才斷,單憑水位高度看不出橋有危險。

沖刷感測器封裝在鋼球裡,埋於河床下的沙土中,每50公分深裝設一個,至少安裝至河床下十幾公尺深。當沙土被沖刷、掏空,晶片就會一個個露於水中而發出訊號,即可得知沙土的沖刷情形(想像一下,十幾公尺深的泥土被沖走,相當於掏空五層樓高了!)。

橋梁上並有水位計、流速計、應力感測、橋面振動感測等,所有即時監測的資訊回傳至國網中心的雲端超級電腦分析,搭配電腦模擬上、中、下游雨量空間分布及沖刷情形,再將結果傳給橋梁管理單位,幫助掌握封橋時機。

國研院在濁水溪上中下游的名竹大橋、中沙大橋、自強大橋,以及國道3號大甲溪橋裝設此系統,已實驗了兩三年。林詠彬解釋,濁水溪上游是卵礫石,下游為沙質,中游段則是兩者混雜,台灣四大流域的地質特性皆相同,因此可以類推運用至各地區。中部河流的沖刷強度最大,位於大甲溪、濁水溪、高屏溪等流域的橋梁面臨較大的潛在沖刷危險。

林詠彬表示,一座橋不需要每座橋墩都裝,只要裝設在位於深槽區的兩三座橋墩即可推算整座橋梁的狀況,在一座橋上安裝這些感應器的施工費約新台幣300萬。

此系統為國研院整合儀科中心、颱洪中心、國震中心、國網中心、晶片中心、奈米實驗室六個單位,歷經十多年研發而成,已申請台、日、美、中等各國專利,待技術更加成熟也考慮輸出國外。

經封裝後於名竹大橋安裝之感測晶片
感測晶片就封裝在鋼球裡,埋於橋下沙土。平常橋上感應器一分鐘傳一筆資料,橋下則是10分鐘一筆;發布海上颱風警報後,橋下感應器也增為一分鐘一筆。圖/國研院提供
自強大橋監測管固定施作照片
系統安裝於自強大橋的施工情形。圖/國研院提供
文章難易度
劉珈均
35 篇文章 ・ 0 位粉絲
PanSci 特約記者。大學時期主修新聞,嚮往能上山下海跑採訪,因緣際會接觸科學新聞後就不想離開了。生活總是在熬夜,不是趕稿就是在屋頂看星星,一邊想像是否有外星人也朝著地球方向看過來。

0

2
0

文字

分享

0
2
0
無聲的溺水:溺水的死亡人數可能比你想像中更多?掌握救溺五步驟——叫、叫、伸、拋、划
椀濘_96
・2022/07/21 ・3194字 ・閱讀時間約 6 分鐘

近台灣掀起一股露營的風潮,正逢暑假期間,野外溯溪、戲水活動盛行,然而消暑玩樂之餘別忘了,水域安全的觀念尤為重要。

根據內政部統計近年的各級水域救援數據,平均每年約有 700 多人溺水,死亡人數超過一半,其中又以發生地點為溪河的事故案件最多,而且這個數字正在逐年增加……。

全球溺水死亡的人數,比你想像中更多

2021 年 9 月,一篇發表於專業醫學期刊《刺胳針全球衛生》(The Lancet Public Health)的研究顯示,比起其他重大公共衛生問題,溺水在全球各地造成的死亡人數更多,然而這點卻很常被忽視。

研究中提到,在高收入國家中,溺水為 1~24 歲兒童和青年人的第六大死因;在澳洲、法國、紐西蘭、瑞士和美國,則是 1~4 歲兒童的第二大死因。而在中低收入國家,溺水的死亡率是高收入國家的三倍以上。

在溺水死亡率居高不下的背後,可能包括監督過失與兒童缺乏游泳技能的問題。

溺水與全球各地其他重大公共衛生等問題相比,死亡人數更多。
圖/envato

除了休閒活動之外,無法預測的天災──洪水,也是造成溺水死亡率偏高的原因之一。由於氣候變遷,遭受洪水災害的人數,以及相關的災害嚴重程度都在增加,預估未來還會持續上升。

值得注意的是,氣候變遷也導致海洋變暖,進而影響世界上從事漁業或水產養殖的 6000 萬人,也迫使小規模的家計型漁業(artisanal fishery)需要到更遠的地方捕魚。這意味著船隻需要停泊在不熟悉,甚是不適合的水域中進行長時間的捕魚作業,導致漁民落船溺水的風險也跟著提高。

容易被忽視的危險水域

  • 溪流

台灣溪流多數蜿蜒湍急,河道可能會有高低差或縮減等情形,從事溪流的水上活動時,應謹慎評估該溪谷地形的風險。另外,一條溪流的流速並非均一致,而是呈現分層;水面及靠河床處往往流速較慢,水面下則較快,這點亦被輕忽,還需多加留意。

例如台灣溪域中蠻常出現的「翻滾流」(backwash),溪流經過瞬間落差的地形(如:瀑布、攔沙壩、水壩等)時,在重力作用下,下沖的水流會將落水處侵蝕凹陷,由於撞擊河床後的水流方向改變,以逆流的方式流向上游,而上方的空氣也會被水流捲入,當水流的浮力大於流動的慣性時,上下水流就會來回捲動,就形成一個不停翻滾的迴圈;人會因此卡住,甚至被吸附翻滾而無法脫離,造成嚴重傷亡。

翻滾流的模擬影片。
在水淺時可以很明顯地看到翻滾流,但在水深的時候,除非靠近否則難以被察覺。 影/ YouTube

除翻滾流外,水面下還可能暗藏「渦流」(又稱漩渦)。

渦流由反水流形成,是一種漩渦型水平滾動的水漩;水流經石頭孔隙時會相互推擠,進而形成圓錐狀渦旋(Vortex),渦流會捲入從旁流經的物或人,將其捲沉至水底或石縫間,無法脫離。

除水流外,另一潛在殺手則是石頭。除了長期受水流影響外,其上附著的蘚苔、藻類等也使得石頭表面變得光滑,踩踏行走時若稍有不慎,則可能跌入水深處,情急下便提高了溺水風險。

  • 海邊

於海邊戲水時,「離岸流」(Rip current)容易被忽視但卻隱藏著巨大危機……。

離岸流又稱「裂流」,為一種從海岸帶到海中、向外海方向快速移動的海流,流向幾乎與岸線垂直。離岸流和巨浪並不相同,通常是毫無防備的情況下突然出現,而且在任何天氣條件下都可能發生,持續時間從幾分鐘到幾星期不等,可能突然出現、突然消失。若發現該水域兩側均為海浪,但中間出現相對平靜無浪的區域時,應有所察覺此處有離岸流,盡量遠離。

離岸流示意圖。圖/Wikipedia

強勁的海流能將強壯的人迅速帶離海邊,將人推向外海,若試圖抵抗,則會因體力耗盡而發生溺水事故。若不幸遭遇離岸流時,可試著讓自己漂浮於海面,保留體力揮手向救生員求助。

離岸流宣導影片。影/YouTube

溺水時,比你想像得更難求助

也許你想像中發生溺水時應該是用力揮打四肢拍水、大聲喊叫等大動作來呼救,但其實不然。

當人溺水時會想拼命嘗試把頭伸出水面呼救,若過程中不甚吸入水使聲帶進水,聲帶及上呼吸道因而緊繃,造成無法順利發聲。

等到無力、頭部低於水面時,冰冷的水流入上呼吸道引起咽喉痙攣緊縮、氣管收緊,再後來喉頭放鬆,便會使大量水份灌入呼吸道及肺部,肺泡無法換氣,人體因此無法呼吸而窒息,導致腦部缺氧受損甚至死亡。

整個溺水的過程遠比我們想像中來的無聲無息,這致命的傷害僅短短幾分鐘,即使一旁有人也難以察覺,直到溺水者無意識漂浮於水面時已為時已晚。

而兒童溺水事故,也比想像中更危險,為台灣 5 歲以下幼童的三大死亡原因之一。

夏季從事水上活動時,應選擇有專業救生員、救生裝備的安全水域環境。圖/Pixabay

幼兒處於溺水狀態時,較成人更加難以察覺,家長往往以為有在旁照看就能避免憾事發生。而大部分溺水後的兒童,都會有嚴重的腦缺氧後遺症,影響著日後正常的生活機能。

但有些徵兆可幫助大家判斷,孩子是在游泳還是正在溺水,例如:眼神呆滯無法聚焦、身體呈垂直且腳沒有活動等等。

溺水救法及注意事項

看到有人溺水時,若不是接受過水難救助訓練的專業人員,請不要貿然下水施救!

切記救溺五步驟:叫叫伸拋划。

:大聲呼救。

:撥打 119 求助。

:利用延伸物,如:竹竿、樹枝等,讓溺水者抓住。

:向溺水者拋送漂浮物,如:瓶、球、繩等。

:利用大型浮具,如:救生船、救生圈等,划向溺水者,將之救援。

除此之外,夏季從事水上活動時,暖身需要做確實,避免抽筋、肌肉痙攣等情況,並且選擇有專業救生員、救生裝備的安全水域環境。如果出現身體不適、飲酒後、精神情緒狀態不穩定時,請不要輕易下水!

最有效的預防不外乎就是將基本的水上安全、游泳技能,融入進教育課程,從根本上幫助防止溺水事件的發生。

切記救溺五步驟:叫叫伸拋划。 圖/envato

參考資料

  1. Medd, D. R., Scarr, J., Larson, K., Vaughan, J., & Krug, E. G. (2021). Drowning Prevention: Turning the Tide on a Leading Killer. The Lancet Public Health, 6(9), e692–e695.
  2. 秘境苦花潭溺水事件:如何判斷渦流、翻滾流與渡溪安全
  3. 海邊戲水 先來認識「離岸流」—台灣環境資訊協會-環境資訊中心
  4. 離岸流—維基百科
  5. 溺水的人其實不太會掙扎,乾性溺水也可能致命!(懶人包)—照護線上
  6. 兒童溺水知多少—中國醫藥大學兒童醫院
  7. 發現有人溺水,救溺五步驟—臺北市政府消防局防災科學教育館
  8. 救人五招:「叫叫伸拋划」—中華民國紅十字會
椀濘_96
11 篇文章 ・ 20 位粉絲
喜歡探索浪漫的事物; 比如宇宙、生命、文字, 還有你。(嘿嘿 _ 每天都過著甜甜的小日子♡(*’ー’*)

2

4
3

文字

分享

2
4
3
精準預測氣象的「掩星技術」,讓你知道颱風放不放假!
科技大觀園_96
・2021/11/16 ・2380字 ・閱讀時間約 4 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

新颱風生成後,大家最關心的就是颱風的路徑、帶來的風雨大不大,以及——到底放不放颱風假?要能預測和評估颱風的走向影響,可靠的氣象觀測資料是不可或缺的。這就不得不提,在我們頭頂上認真執行觀測任務的人造衛星,以及它們身懷測知氣象變化的絕技!

每次颱風來襲,大家都關心會不會放颱風假。圖/pixabay

貢獻全球氣象資料,福爾摩沙衛星功不可沒

過去福爾摩沙衛星三號(福三)執勤十年,為全世界多個氣象中心與研究單位提供無以計數的資料,可謂台灣在國際氣象上的外交大使,於減少天氣預報誤差的貢獻度上,更曾被評為全球前五。福三榮退後,接棒的福爾摩沙衛星七號(福七)也在今年二月完成任務軌道的全部部署。福三和福七都不只有一枚衛星,而是由各 6 枚衛星組成的衛星星系(constellation)。每一枚衛星就像在不同位置巡守、收集氣象情報並互相通報的將士,使得觀測範圍可以覆蓋地球各個區域,提供即時而完整的三維觀測數據。

福衛七號結構示意圖。圖/國家太空中心

但福七與行經南北極的「繞極衛星」福三不同的是,它在南北緯 50 度間軌道繞行,主攻台灣、赤道與中低緯度颱風盛行區的觀測。因此福七可以提供密集度更高、更多的溫度、壓力、水氣等氣象資料。國家太空中心推估,它可提升氣象預報準度 10% ——以颱風為例,可以讓 72 小時的路徑誤差改善 10%,協助我們更精準地評估氣象變化與預防災害。

每日可提供 4000 點大氣垂直剖線資料、大幅提升全球氣象預報準確度的福七,究竟是怎麽辦到的?答案就是掩星技術 (Radio Occultation) 。

掩星技術,讓衛星成為太空中最精準的溫度計!

在天文學上,「掩星」指的是一個天體,在另一個天體與觀測者之間通過,產生的遮蔽現象。但英文中的「Occultation」,也可以指前景中的物體,阻擋遮蔽背景中任何物體的情形。而所謂的「掩星技術」,就是利用電磁波訊號在經過大氣層時,會因穿透不同溫度、壓力或濕度的空氣層,被「遮蔽」而產生轉向、變慢、減弱等的特性,來反演出地球上空之溫度、氣壓和濕度。

衛星與衛星之間,本來因為地球的阻隔看不到彼此,但可以接受來自彼此的電磁波訊號。福七的主要酬載儀器——全球衛星導航系統無線電訊號接收儀」(TGRS),可以接受美國全球定位系統(GPS) 和俄羅斯全球導航衛星系統(GLONASS)全球定位衛星通過大氣與電離層的折射訊號。接著,通過計算電波訊號的偏折程度,就可以反演出大氣與電離層中的溫度、水氣、壓力、電子密度等數據。

掩星技術在 1995 年才開始投入應用,而從 2006 年的福三,到如今福七計劃中積累的研究經驗,使台灣成為這項新穎技術領域的佼佼者。掩星技術所得到的資料具備高準確度和解析度,也擁有不需要大量接收訊號的衛星,就可以得到大範圍數據、降低成本的優勢,不僅可以用作氣象預報,更能幫助我們監控和增進對氣候變遷的瞭解。

衛星加上同位素的助攻,可以使天氣預報更精準

另一方面,除了改善觀測一般氣象資料如溫度、濕度、大氣壓力等參數的準確度,在氣象觀測中新增測定不一樣的參數——如大氣水分子的同位素,也可以讓我們的天氣預報更精準!

過去礙於資料的取得有限,同位素分析在氣象觀測與預報中常被忽略。但近年來人造衛星技術的發展,為氣象科學推開新的一扇窗。來自歐洲太空總署、搭載光譜分析儀的衛星 IASI ( Infrared Atmospheric Sounding Interferometer ),讓東京大學的研究團隊,可以利用其所搜集到的大氣水氣資訊,在氣象預報的模型中,第一次嘗試納入同位素資訊的考量來做分析。

我們都知道,擁有相同質子數、不同中子數的氫與氧元素之同位素,會讓個別水分子的重量變得更重或輕一些。水分子同位素對氣相和液相轉換相當敏感,與一般的水分子 H2O 相比,較重的水分子如 H2HO 或H218O 會更傾向於凝結成水珠,或更難蒸發。因此蒸發與降雨過程等大氣運動,便會影響不同同位素水氣分子的分佈。追蹤它們的行跡,能增進我們對氣象系統的瞭解。

研究團隊以 2013 年在日本發生的低壓事件作為參照,發現納入同位素的數據之後,氣象模型能更好地模擬這次事件的整體氣壓情形。而在全球的尺度,尤其是中緯度及北半球地區,融合同位素資訊後,氣象預報如氣溫及濕度預測的準確度,也都有所提高。雖然這只是初步的探究,但科學家期許,未來進一步完善氣象觀測衛星對同位素資料的收集,能使人類更往精準氣象預測的目標邁進。

人造衛星就像是科學家的千里眼,能觀測千里之外的風雲變化。發展衛星技術,不僅能讓我們更精準預測氣象,在全球化的現代,也能在國際上發揮「Taiwan Can Help」及互助的精神;各國對航太技術的投入與數據資源共享,更是科研工作與人類社會的一大福音。

福爾摩沙衛星拍攝的美麗福爾摩沙島。圖/國家太空中心

參考文獻

所有討論 2
科技大觀園_96
82 篇文章 ・ 1109 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

4
3

文字

分享

0
4
3
沒有颱風的七月!颱風為何銷聲匿跡?——《科學月刊》
科學月刊_96
・2020/09/11 ・1882字 ・閱讀時間約 3 分鐘 ・SR值 515 ・六年級

〈本文選自《科學月刊》2020年9月號〉

  • 賈新興/臺灣大學大氣科學系博士,前中央氣象局長期預報課課長,現職為天氣風險管理公司總監。

夏季是颱風出現的季節,往年的 7 月平均會有 3~4 個颱風生成。但今(2020)年 7 月卻罕見地無颱風生成,主要原因是季風槽受太平洋高壓,以及較大的垂直風切所導致。

夏天是颱風的好發季節。圖:Pexels

颱風消失了?生成條件大盤點

每年的 7 月是颱風開始活躍的月份,平均而言,7 月都有 3~4 個颱風生成,從 1951 年以來的颱風生成資料顯示,歷年 7 月最少都有 1 個颱風生成,最多則有 8 個颱風生成,分別是 1971 年 7 月和 2017 年 7 月。

然而今年的 7 月,整個西北太平洋海域卻靜悄悄的,沒有半個颱風生成,到底是發生了什麼事,讓 7 月颱風銷聲匿跡了呢?就讓我們一一檢視颱風生成的條件。

生成條件一:溫暖的洋面

颱風生成在海面上,廣大的洋面能提供足夠水氣,當水氣蒸發釋放潛熱時,就可以讓颱風有足夠的能量成長。

一般來說,當海水溫度超過 26°C 時,才會產生足夠的水氣。而西北太平洋地區,每月氣候平均的海溫都在 27°C 以上,其中 2 月的平均海水溫度也有 27°C(圖一)。

圖為東經120度~160度,與北緯5度~20度之間的區域,即西北太平洋區域平均每月海溫值。通常海水溫度高於26℃時可以產生足夠的水氣,而往年7月的平均海溫都超過27℃,是颱風形成的重要條件之一。

因此,西北太平洋溫暖的海域,時時刻刻都有足夠的水氣提供颱風生成所需的能量。從西北太平洋區域今年 7 月平均的海水溫度分布圖發現,整個西北太平洋的海溫至少都超過 29°C(圖二)。

溫暖的洋面,雖然提供了足夠的能量,但為什麼颱風仍舊長不出來呢?讓我們再檢視其它颱風生成的動力條件!

條件二:活躍的季風槽

颱風是個逆時針旋轉的低壓中心。夏季時,當北半球的西南季風,和太平洋高壓所帶來的東風或東北風相遇,兩者所造成的輻合作用,會使低氣壓的漩渦繼續加深,讓風速增強。

當低氣壓的近地面最大風速到達或超過每小時 62 公里或每秒 17.2 公尺時,我們就將它稱為颱風。這個伴隨西南季風和太平洋高壓南側的東風或東北風相遇的地方,通常稱作季風槽,或是俗稱颱風生長的故鄉。

從 7 月大氣低空風場的氣候平均圖,可以看到西南季風和太平洋高壓南側的東風形成的季風槽,從東經 120 度往東南方向延伸至東經 160 度。比較今年 7 月的大氣低空風場(圖三)可以發現,整個季風槽不見了,原來應該是季風槽所在的區域,一整個都被太平洋高壓的東風所佔據了。

而太平洋高壓是個穩定且下沉的空氣,但颱風是個垂直發展的低氣壓,因此,偏強的太平洋高壓讓今年的西南季風無法深入至西北太平洋區域,剷平了颱風的家,也就讓颱風長不起來了。

條件三:垂直風切不能太大

另外,颱風垂直發展的高度至少可以達到對流層頂的高度,因此當高空風和低空風的風向差異太大時,也就是一般我們所說的垂直風切太大時,就無法讓水氣凝結所釋放出的潛熱更有效地提供颱風發展,造成颱風的垂直發展不好,颱風就不容易生成。

根據7月氣候上的垂直風切分布顯示,在西北太平洋區域的風切平均介於 -10~5之間。但今年 7 月的垂直風切,則介於 -10~10 之間,明顯比氣候平均值高,因此不利於颱風的垂直發展。

都是高壓和垂直風切惹的禍!

從以上颱風的生成條件來看,今年 7 月雖然有足夠的水氣提供的能量來源,但要讓颱風旋轉起來的季風槽,因為太平洋高壓太強,使得季風槽無法向東推進到西北太平洋區域;偏強的太平洋高壓帶來穩定的下沉空氣,連帶的也讓垂直風切太大,颱風更是長不起來!

今年 7 月的太平洋高壓太強,不但讓颱風長不起來,連帶的也是造成臺北創下自 1897 年以來的最高溫紀錄 39.7°C 的原因之一!至於為什麼今年的太平洋高壓如此強大,就是另一篇故事了。

圖二(上):以往的7月氣候平均海溫分布和大氣 850 百帕(hPa)流線圖,圖中粗黑線為季風槽,此在正常的氣候條件下是有利於颱風生成的。圖三(下):今年7月平均海溫分布和大氣850百帕流線圖。讀者可以發現,今年的海溫分布雖較以往高,有利於颱風出現,但原先的季風槽位置卻被太平洋高壓所佔據,造成颱風無法生成。

〈本文選自《科學月刊》2020年9月號〉

科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

科學月刊_96
232 篇文章 ・ 2398 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。