0

0
0

文字

分享

0
0
0

多做少想-《信心密碼》

PanSci_96
・2015/08/01 ・2208字 ・閱讀時間約 4 分鐘 ・SR值 535 ・七年級

每天無數個小決定,就是信心的展現

神經科學家克佩克斯(Adam Kepecs)是探索信心的專家,但關注的對象是老鼠。老鼠比人類簡單,不會以複雜的思想與情緒掩蓋天性。人類或許表面自信滿滿,內心卻惶惶不安,或者恰巧相反,一方面自稱不安,另一方面行動大膽。他認為人類不適合做實驗對象。他想從基本的角度檢視信心:他稱為「統計信心」(statistical confidence),直白地說,就是我們對自己選擇的確定程度。他的研究吸引心理學家的關注,因為他指出所有生物都具備信心基因,但誰想過連老鼠也有信心呢?

克佩克斯的研究指出,老鼠的信心程度會影響決定,跟人類十分相似。他要我們想像自己正開車前往一間陌生的餐廳,有人告訴過妳該怎麼去。妳在路口轉彎,開了一公里,再開一公里,但餐廳仍不見蹤影,妳不禁心想:「早該到了啊,我是不是轉錯彎了?」妳是否繼續往前開,取決於妳對自己轉的那個彎多有自信。克佩克斯靠「繼續往前」與否來衡量老鼠的行為,結果發現信心是基本配備。

I'll make the decision on my own到底何謂信心?好像已經跟我們當初的想像截然不同了。信心不只是單純的自我感覺良好,覺得自己優秀完美、什麼都辦得到。畢竟想是一回事,實際又是另一回事吧?光說「我辦得到」不代表內心確實如此相信,也不代表會付諸實行,否則心理治療師早就喝西北風了。另外,聽到別人稱讚「妳好棒」也作用不大。如果我們需要的只是幾句稱讚,或有人拍拍肩膀,那麼我們早就辦事牢效、身材苗條、與夫家處得好,而且當上大主管。原本我們也認為信心是作風與力量的展現,最有信心的人說話最大聲,發言最頻繁,主導每一場會議。這樣的人,難道不就是最有自信的人嗎? 我們期望克佩克斯能指引明路,因此前往他的實驗室,那裡風光明媚,位於長島海濱,離曼哈頓約四十五分鐘的車程。我們順著樓梯盤旋而上,頭頂吊著玻璃工藝家奇胡立(Dale Chihuly)獻給沃森(James Watson)的大型玻璃藝術品。沃森是基因研究先驅,也是讓這裡變成全球頂尖研究中心的最大功臣,那件藝術品則有螺旋狀的黃綠觸手,搭配不同大小形狀的圓珠,讓人看得一頭霧水。克佩克斯看起來很有童心,穿著藍色牛仔裝,留著深棕色捲髮,講話略帶匈牙利口音,他笑著解釋說那件藝術品是模仿神經元的造型。接下來幾個小時,他帶領我們尋找實驗鼠與人類信心密碼的關連。 克佩克斯在我們面前,把一隻老鼠放進大箱子裡,那隻老鼠戴著附有電極的白帽,他說白帽已永久固定,老鼠不會有感覺。箱子的一側裝有三個白色罐子,跟老鼠的鼻子等高,上面有約五公分寬的開口,中間的罐子會釋放兩種混合在一起的氣味,老鼠能把鼻子湊到開口聞嗅,兩種氣味的比例會改變,有時濃度差距明顯,有時難以判斷,老鼠的任務是分辨哪種氣味的濃度較高,然後根據判斷把鼻子湊向左邊或右邊的開口,如果判斷正確,選對開口,會獲得一滴水當作獎勵,但那滴水不會立刻流下來,得花時間等候。 要是牠相信自己的選擇,再久都會等,要是懷疑自己的選擇,則能放棄並重新來過,但放棄不僅代表失去喝水的機會,也浪費先前等候的時間。換言之,老鼠面臨抉擇,而這種兩難許多物種不陌生的。我們眼看那隻老鼠把鼻子湊向左邊的開口,等了彷彿無止無盡的⋯⋯八秒鐘。這對老鼠而言很久,可見牠信心滿滿。不過,牠的選擇能獲得回報嗎? Look Left , Look Right .

太棒了!我們看見水滴流出時,朝對方露出微笑。克佩克斯提醒我們,別以為老鼠有多「聰明」,牠們只是參與過無數次實驗,很清楚某個味道是代表左邊或右邊。克佩克斯的重點不在於老鼠是否做出正確選擇,而是想衡量牠們有多相信自己選擇正確。他關注的是信心,也就是老鼠對自身選擇的相信程度。老鼠肯等待,表示有信心,而信心的多寡則反映於堅持的時間,透露出承受風險的忍耐度。我們赫然發覺老鼠不僅顯然會衡量機會與風險,更重要的是,做完決定之後的堅持。

這是很基本的信心表現。老鼠靠經驗預測,近乎自動執行。人腦有時也會自動地做出反應。我們每天近乎無意識地做出幾百個決定,背後需要基本程度的信心,例如要多快按下鬧鐘,把碗放進洗碗機時腰要彎得多低。克佩克斯發現老鼠是靠前額腦區底部皮質做出這類決定,並認為人類是靠相同腦區處理「統計信心」。

我們造訪克佩克斯後,更認識信心了。首先,根據這項老鼠實驗,信心不只是一種積極行為,或者只是認為自己有多傑出。概括而言,老鼠的信心就是相信牠的行動(等待)能換得好結果(有水喝)。我們從中看到「自我效能」,老鼠的行為環環相扣,牠們會先下意識地評估,而這種評估需要有信心的支撐,才能支持後續行動。

克佩克斯讓我們更深入了解老鼠與人類的信心。他認為信心有截然不同的兩種性質,呈現出「兩種面貌」。其中一面是客觀的,是種評估計算的過程,也就是老鼠所使用的信心工具。另外一面則是主觀的,是我們感受得到的經驗,這是我們較為熟悉的信心,也更常有意識地運用。這種信心關乎情緒,給人希望,也給人錯覺。克佩克斯認為老鼠其實也能感覺信心。

信心不該顯得如此神秘眩人,成了一種執著的願望。我們不妨換上嶄新眼光,把信心當成一個簡單具體的工具:只要我們懂得如何使用,也許會成為超級好用的人生指南針!

信心密碼

 

 

本文摘至《信心密碼》,由先覺出版社出版

文章難易度
PanSci_96
1207 篇文章 ・ 1882 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

3

1
2

文字

分享

3
1
2
「意識」是什麼?人們已經找到答案了嗎?
PanSci_96
・2023/11/26 ・6000字 ・閱讀時間約 12 分鐘

「意識」是什麼?

直到現在,仍是宗教、哲學、心理學、神經科學都還無法解答的難題。

但是今年, 2023 年,一場來自神經學家與哲學家對於「意識」解釋的賭注,在經過長達 25 年的研究後,終於要畫下句點了嗎?到底是誰贏了?對自己頭上頂著的大腦,我們又了解多少了?

25 年前,一場圍繞「意識」之謎的賭局

1998 年,神經科學家克里斯托夫・科赫(Christof Koch)和哲學家戴維・查爾莫斯(David John Chalmers)打賭一箱葡萄酒,如果 25 年後,人們已經能清楚地解釋意識背後的神經機制,那麼就是科赫贏了。反之,如果還是未能解答意識之謎,就是查爾莫斯贏了。

但在揭曉勝者之前,我們要先來談談一個最基本的問題,「意識」到底是什麼?首先我們要先定義清楚,因為在中文中,意識指的可能是一個人的清醒狀態、也可以是對內在自我的一種感知、又或是包含感知、情緒、思考等等的一種總和、又甚至可以是指在精神分析理論中與前意識和潛意識的比較。

若要深入探討意識定義的發展以及不同的哲學論點,那真的不做個三十集做不完,在這集的時間內,就讓我們把重點放在感質(Qualia)的相關概念。感質,指的是個人直接體驗的主觀感受,被認為無法通過客觀描述或第三人稱觀察來完全理解或解釋。我們感知世界的方式、感受事物的質感、觸覺、視覺、聽覺、嗅覺等等都是屬於感質。

感質,指的是個人直接體驗的主觀感受,被認為無法通過客觀描述或第三人稱觀察來完全理解或解釋。圖/wikipedia

舉一個例子。若是把一顆紅蘋果放在大家面前,詢問蘋果這是什麼顏色,相信大家應該都會說這是紅色。然而,雖然科學能解釋紅色是因為有波長約 620 到 750 奈米的光,刺激到視網膜的錐細胞,產生一連串的神經反應,最後形成大腦的表徵,但卻無法解釋我們對紅色的主觀感受是怎麼形成的。

哲學家們也常思考,你看到的紅色,和我看到的紅色究竟是否一樣,是否有可能我眼中的紅其實是你眼中的綠。

舉另一個例子,這件數年前爆紅的衣服,你覺得是藍色與黑色相間,還是白色與金色相間呢?

另外,像是這張圖究竟是兔子還是鴨子?

圖/wikipedia

這張圖究竟是狗還是小女孩?

明明有張客觀的圖片存在,每個人的主觀感受卻有不同的答案。

「困難問題」(Hard problem of consciousness)是找不到答案的問題?

在意識賭局中的哲學家戴維・查爾莫斯,就提出感質以及主觀經驗為什麼(why)存在以及如何(how)產生是所謂的困難問題(Hard problem of consciousness),相較於簡單的問題是討論意識相關的功能和行為,困難問題涉及意識的經驗(現象、主觀),是沒辦法客觀觀察測量。也就是這個問題,是沒有答案的。

舉一個屬於困難問題的例子,明明都只是大腦的神經在放電,為何某些神經放電後會導致飢餓感而不是其他感覺,譬如口渴?他認為即使沒有飢餓這種「感覺」,飢餓衍伸出的行為,例如進食,也可以發生。因此這些產生的感覺,無法單純簡化由大腦等物理系統解釋。

圖/giphy

然而,困難問題的說法其實也存在爭論。根據 2020 年哲學期刊文章的互動式學術資料庫 PhilPapers 的調查, 29.72% 的受訪哲學家認為難題不存在,而 62.42% 的受訪哲學家認為難題是一個真正的問題。

也有一群神經科學家們雖然接受困難問題的存在,卻也認為困難問題未來可以被解決,又或是被證明這不是一個真正的問題。並開啟了他們對於意識相關神經區(neural correlates of consciousness)簡稱 NCC 的研究發展,試圖找到足以產生意識的最小神經集合。

精神科學家開啟對於意識相關神經區(neural correlates of consciousness)簡稱 NCC 的研究發展,試圖找到足以產生意識的最小神經集合。圖/PanSci YouTube

但 NCC 的研究被認為最多只能找到神經反應與意識的相關性,解決的仍然只是簡單問題而非困難問題。為了突破 NCC 本身的限制,人們又開始轉往重視意識理論(theories of consciousness (ToCs))的發展。希望透過意識理論來超越以 NCC 為基礎的方法論,轉向提供更具解釋性見解的意識模型。

在意識模型這邊還在爭論不休,讓我們先把鏡頭換到神經學家這一邊。

研究科技進步,為意識研究帶來哪些幫助?

面對意識這個艱難的大哉問,克里斯托夫・科赫當初怎麼那麼有自信,敢發起這個看起來勝算就不大的挑戰呢?有那麼愛喝嗎?

1998 年,年輕有為的克里斯托夫・科赫已經是加州理工學院的助理教授,並和生命科學領域大咖中的大咖弗朗西斯・克里克,合作研究意識這個主題。沒錯,就是和華生一同發現 DNA 是雙股螺旋結構的克里克。除此之外,克里斯托夫還擁有物理的碩士學位,擁有跨領域的知識,讓他更加相信透過實證的方式,能找到意識的神經機制。

克里斯托夫・科赫合作研究意識的對象便是與華生一同發現 DNA 是雙股螺旋結構的弗朗西斯・克里克。圖/PanSci YouTube

當時有許多大腦研究的技術蓬勃發展,像是功能性磁振造影(fMRI)已經獲得廣泛使用,使得科學家們能在對象進行活動或是受外界刺激時,同步從大腦血氧濃度的變化來推斷神經反應。

此外,光學遺傳學(optogenetics)技術也在那個時期開始萌芽,這讓研究者能用極佳的時間解析度來調控特定的大腦神經元,並藉此解碼大腦的秘密。舉例來說,現在的光學遺傳學能讓科學家們鎖定小鼠的特定神經細胞,並在小鼠頭上裝上 LED 光纖,只要開啟 LED 的光刺激,那些特定神經細胞就會興奮或抑制。藉由觀察小鼠行為的變化,就能了解不同行為表現是由哪些神經元所調控。

現在的光學遺傳學能讓科學家們鎖定小鼠的特定神經細胞。圖/PanSci YouTube

厲害的是,在 1979 年光學遺傳學的技術還未誕生前,克里克就認為如果想要了解大腦的運作,精準控制大腦中一種類型的所有細胞是非常重要的,而若想要有極佳的時間和空間精細度,必須使用光的技術,這與後來光學遺傳學的發明不謀而合。

有了這些科技加持,長達 25 年對於意識的賭注也即將來到結局。

所以,誰贏了賭注?

2023 年 6 月 23 日,在科學意識研究協會的年會上,揭曉了這長達 25 年的賭局。神經科學家克里斯托夫・科赫(Christof Koch)最終承認,目前還不能解釋大腦的神經元是如何產生意識,並買了一箱好葡萄酒(1978 Madeira)給哲學家戴維・查爾莫斯(David John Chalmers)實現諾言。

克里斯托夫・科赫最終承認,目前還不能解釋大腦的神經元是如何產生意識,並買了一箱好葡萄酒給戴維・查爾莫斯。圖/PanSci YouTube

當然,這不是說意識的來源永遠沒有解答,只是當初賭局設下的 25 年時限到了。實際上到了 2018 年,他們兩位根本都忘了這場賭局,直到一位科學記者佩爾・斯納普魯德重新提及這個話題,才讓大家重新想起。

恰巧那個時間點,克里斯托夫・科赫和戴維・查爾莫斯都參與了鄧普頓世界慈善基金會支持加速意識研究的大型項目。該計畫建立一系列意識理論的「對抗性」實驗,希望透過讓兩個或多個持相反觀點的競爭對手共同合作研究,來挑戰各種意識假設。

意識理論的百家爭鳴

而其中包含兩個著名的意識理論,全局工作空間理論(Global Workspace Theory (GWT))和整合資訊理論(Integrated Information Theory (IIT))。

全局工作空間理論(Global Workspace Theory (GWT))。圖/PanSci YouTube

全局工作空間理論(Global Workspace Theory (GWT))的概念,最早是由認知科學家伯納德・巴爾斯和斯坦・富蘭克林在 1980 年代晚期提出。他們認為意識的產生就像是劇場聚光燈一樣,當這個意識劇場透過名為選擇性注意的聚光燈在舞台上照出內容,我們就會產生意識情境。這聚光燈的投射也代表著全局工作空間,只有當感官輸入、記憶或內在表徵受到注意時,它們才有機會整合成為全局工作空間的一部分,被我們主觀意識到。而我們的行為決策,也是透過這個全局工作空間整合訊息,並分配到其他系統所產生。目前認為全局工作是發生於大腦前方的前額葉區域。

整合資訊理論(Integrated Information Theory (IIT))。圖/PanSci YouTube

與全局工作空間理論打對臺的,是整合資訊理論(Integrated Information Theory (IIT)),最早由朱利奧・托諾尼(Giulio Tononi)在 2004 年提出。這理論認為,意識背後是有數學以及物理為基礎的因果關係。應該先肯定意識的存在,再回推尋找其背後的物質基礎,並認為主觀意識是由客觀的感覺經驗產生的。克里斯托夫・科赫就是此理論的擁護者,他進一步認為,意識背後的那個神經機制,就存在於大腦後方後皮質熱區(Posterior cortical hot zone),包括頂葉、顳葉和枕葉的感覺皮質區域。

讓我們稍微總結一下兩者差異:

全局工作空間理論——

  • 意識只能透過訊息投射到一個稱做「全局工作空間」之後才能呈現
  • 訊息本身不會形成意識
  • 訊息要被注意到才會產生意識

整合資訊理論——

  • 意識存在
  • 產生的關鍵是需要將大腦處理感覺的皮質區域訊息整合

然而,經過六個獨立實驗室的研究,雖然有較多的證據支持整合資訊理論,但兩個理論都存在缺陷和質疑,直到目前都尚未有明確解答能解釋意識的神經機制,這也讓克里斯托夫・科赫大方承認自己輸掉了這 25 年的賭局。

隨著科學測量技術的演進以及越來越多的研究進展,有一些神經科學家認為意識理論即將崛起,目前的狀態只不過是一種研究過渡期。科學哲學家托馬斯・庫恩(Thomas Kuhn)將這種過渡期以「前典範式」(preparadigmatic science)來形容,認為一門不成熟的科學在成熟前,會面臨相互競爭的思想流派並各說各話。就像是當初達爾文提出演化論的物競天擇前有拉馬克主義、災變論與均變論來試圖解釋物種起源一樣。

下一場賭約?

雖然這次的打賭由戴維・查爾莫斯獲得一勝,但克里斯托夫・科赫在今年加倍賭注,認為下一個 25 年他一定會贏。到時候克里斯托夫已經 91 歲,戴維 82 歲了。

大家別擔心,這一集是會員共同選出來的題目, 25 年之後,我們也會再為各位泛糰做一集討論賭局的結果。

最後也想問問大家, 25 年之後,你賭這場對決會是誰贏呢?

  1. 我壓在克里斯托夫・科赫身上,我們一定能解開意識之謎
  2. 我賭戴維・查爾莫斯,意識這個問題,可能很難用科學來解釋
  3. 在那之前, AI 可能都已經有意識了,直接問 AI 還比較快

趕快來留言吧,記得 25 年後要回來看啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 3
PanSci_96
1207 篇文章 ・ 1882 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

5
1

文字

分享

0
5
1
人造腦挑戰 AI!培養皿中的腦組織+腦機介面能打敗電腦嗎?
PanSci_96
・2023/05/27 ・3178字 ・閱讀時間約 6 分鐘

2023 年 2 月底, 約翰霍普金斯大學教授 Thomas Hartung 帶領研究團隊,發表了「類器官智慧」(Organoid intelligence , OI)的研究成果,希望利用腦類器官加上腦機介面,打造全新的生物計算技術。

我們終於要製造人工大腦了嗎?OI 和 AI,誰會成為未來主宰?

類器官智慧 OI 是什麼?目標為何?

2023 年的現在,AI 就已展現了不少驚人的實際成果;相較之下, OI 仍只是一個剛起步的計畫,甚至連名稱都與 2018 年美國《自然—物理學》期刊專欄作家、物理學家布坎南以 Organoids of intelligence 作為標題的文章幾乎一樣。

類器官智慧、Organoid intelligence、OI 是個很新的跨領域名詞,同時結合了「腦類器官」和「腦機介面」兩個領域的技術。

簡單來說,腦類器官就是指透過培養或誘導多能幹細胞(iPSCs),在模擬體內環境的旋轉生物反應器中,產生的腦組織。這項聽起來好像只會出現在科幻電影裡的技術,確實已經存在。

最早的腦類器官是在 2007 年,日本 RIKEN 腦研究所的笹井芳樹和渡辺毅一的研究團隊,成功從人類胚胎幹細胞培養出前腦組織。第一個具有不同腦區的 3D 腦類器官則是發表在 2013 年的《Nature》期刊,由奧地利分子技術研究所的尤爾根.科布利希和瑪德琳.蘭開斯特研究團隊成功建立。

腦類器官的出現,在生物與醫學研究中有重大意義,這代表未來科學家們若需要進行大腦相關的研究,再也不用犧牲實驗動物或解剖大體老師來取得人類大腦,只需要在培養皿就製造出我們要的大腦即可。

儘管培養皿上的組織確實是大腦組織,但不論是在大小、功能,以及解剖構造上,至今的結果仍遠遠不及我們自然發育形成的大腦。因此要達到 OI 所需要的「智慧水準」,我們必須擴大現有的腦類器官,讓他成為一個更複雜、更耐久的 3D 結構。

要達到 OI 所需的「智慧水準」,必須擴大現有的腦類器官,成為一個更複雜的 3D 結構。圖/GIPHY

而這個大腦也必須含有與學習有關的細胞和基因,並讓這些細胞和 AI 以及機器學習系統相連接。透過新的模型、演算法以及腦機介面技術,最終我們將能了解腦類器官是如何學習、計算、處理,以及儲存。

OI 是 AI 的一種嗎?

OI 能不能算是 AI 的一種呢?可說是,也不是。

AI 的 A 指的是 Artificial,原則上只要是人為製造的智慧,都可以稱為 AI。OI 是透過人為培養的生物神經細胞所產生的智慧,所以可以說 OI 算是 AI 的一種。

但有一派的人不這麼認為。由於目前 AI 的開發都是透過數位電腦,因此普遍將 AI 看做數位電腦產生的智慧—— AI 和 OI 就好比數位對上生物,電腦對上人腦。

OI 有機會取代 AI ?它的優勢是什麼?

至於為何電腦運算的準確度和運算速度遠遠高於人腦,最主要原因是電腦的設計具有目的性,就是要做快速且準確的線性運算。反之,大腦神經迴路是網狀、活的連結。

人類本身的基因組成以及每天接收的環境刺激,不斷地改變著大腦,每一分每一秒,我們的神經迴路都和之前的狀態不一樣,所以即使就單一的運算速度比不上電腦,但人腦卻有著更高學習的效率、可延展性和能源使用效率。在學習一個相同的新任務時,電腦甚至需要消耗比人類多 100 億倍的能量才能完成。

神經網路接受著不同刺激。圖/GIPHY

這樣看來,至少 OI 在硬體的效率與耗能上有著更高優勢,若能結合 AI 與 OI 優點,把 AI 的軟體搭載到 OI 的硬體上,打造完美的運算系統似乎不是夢想。

但是 OI 的發展已經到達哪裡,我們還離這目標多遠呢?

OI 可能面臨的阻礙及目前的發展

去年底,澳洲腦科學公司 Cortical Labs 的布雷特.卡根(Brett Kagan)帶領研究團隊,做出了會玩古早電子遊戲《乓》(Pong)的培養皿大腦—— DishBrain。這個由 80 萬個細胞組成,與熊蜂腦神經元數量相近的 DishBrain,對比於傳統的 AI 需要花超過 90 分鐘才能學會,它在短短 5 分鐘內就能掌握玩法,能量的消耗也較少。

現階段約翰霍普金斯動物替代中心等機構,其實只能生產出直徑大小約 500 微米,也就是大約一粒鹽巴大小的尺寸的腦類器官。當然,這樣的大小就含有約 10 萬個細胞數目,已經非常驚人。雖然有其他研究團隊已能透過超過 1 年的培養時間做出直徑 3~5 毫米的腦類器官,但離目標細胞數目 1000 萬的腦類器官還有一段距離。

為了實現 OI 的目標,培養更大的 3D 腦類器官是首要任務。

OI 的改良及多方整合

腦類器官畢竟還是個生物組織,卻不像生物大腦有著血管系統,能進行氧氣、養分、生長因子的灌流並移除代謝的廢物,因此還需要有更完善的微流體灌流系統來支持腦類器官樣本的擴展性和長期穩定狀態。

在培養完成腦類器官以及確定能使其長期存活後,最重要的就是進行腦器官訊息輸入以及反應輸出的數據分析,如此我們才能得知腦類器官如何進行生物計算。

受到腦波圖(EEG)紀錄的啟發,研究團隊將研發專屬腦類器官的 3D 微電極陣列(MEA),如此能以類似頭戴腦波電極帽的方式,把整個腦類器官用具彈性且柔軟的外殼包覆,並用高解析度和高信噪比的方式進行大規模表面刺激與紀錄。

研究團隊受腦波圖(EEG)紀錄的啟發。圖/Envato Elements

若想要進一步更透徹地分析腦類器官的訊號,表面紀錄是遠遠不夠的。因此,傷害最小化的的侵入式紀錄來獲取更高解析度的電生理訊號是非常重要的。研究團隊將使用專門為活體實驗動物使用的矽探針Neuropixels,進一步改良成類腦器官專用且能靈活使用的裝置。

正所謂取長補短,欲成就 OI,AI 的使用和貢獻一點也不可少。

下一步,團隊會將進行腦機介面,在這邊植入的腦則不再是人類大腦,而是腦類器官。透過 AI 以及機器學習來找到腦類器官是如何形成學習記憶,產生智慧。過程中由於數據資料將會非常的龐大,大數據的分析也是無可避免。

隨著 AI 快速發展的趨勢,OI 的網路聲量提升不少,或許將有機會獲得更多的關注與研究補助經費,加速研究進度。更有趣的是,不僅有一批人希望讓 AI 更像人腦,也有另一批人想要讓 OI 更像電腦。

生物、機械與 AI 的界線似乎會變得越來越模糊。

OI=創造「生命」?

生物、機械與 AI 的界線越來越模糊。圖/Envato Elements

講到這裡,不免讓人擔心,若有一天 OI 真的產生智慧,我們是否就等於憑空創造出了某種「生命」?這勢必將引發複雜的道德倫理問題。

雖然研究團隊也強調, OI 的目標並不是重新創造人類的意識,而是研究與學習、認知和計算相關的功能,但「意識究竟是什麼」,這個哲學思辨至今都還未有結論。

到底懂得「學習」、「計算」的有機體能算是有意識嗎?如果將視覺腦機介面裝在 OI 上,它是否會發現自己是受困於培養皿上,被科學家們宰割的生物計算機?

不過這些問題不僅僅是 OI 該擔心的問題,隨著人工智慧的發展,GPT、Bing 和其他由矽構成的金屬智慧,隨著通過一個又一個智力、能力測試,也終將面臨相應的哲學與倫理問題。

最後,Neuralink 的執行長馬斯克說過(對,又是他 XD),人類要不被 AI 拋下,或許就得靠生物晶片、生物技術來強化自己。面對現在人工智慧、機械改造、生物晶片各種選擇擺在眼前,未來你想以什麼樣的型態生活呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1207 篇文章 ・ 1882 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
采采蠅與寄生蟲,以及空氣中的油膩愛情
寒波_96
・2023/04/04 ・4059字 ・閱讀時間約 8 分鐘

非洲的采采蠅(tsetse fly)以吸血維生,但是它們也時常是錐蟲的宿主,如果吸食人血,便有機會將錐蟲傳染給人類,引發昏睡病,在非洲導致不少問題。

昆蟲常以費洛蒙作為溝通媒介,采采蠅也不例外。2023 年發表的新研究,找到幾款采采蠅使用的費洛蒙,能促進情慾交流;而且又發現感染錐蟲會改變費洛蒙組成,求偶時還會降低身價。

在非洲體驗大自然,務必注意采采蠅!圖/TripSavvy / Nez Riaz 

昆蟲的氣味語言

舌蠅屬(Glossina)旗下有多個物種統稱「采采蠅」,這項研究著重的是 Glossina morsitans,為求簡便,本文之後直接稱之為「采采蠅」。要注意還有不一樣的其他款采采蠅,本文後面會登場一種。

費洛蒙是生物排放到體外,用於溝通的訊號分子,可謂是昆蟲的化學語言。一如人類的花言巧語或暴言各有巧妙,各種昆蟲使用不同費洛蒙,能達到不同效果。

從前對采采蠅的費洛蒙也不是一無所知,以前知道有一種化學分子 15,19,23-trimethylheptatriacontane,也叫作 morsilure,被采采蠅當作費洛蒙。此分子是主鏈為 37 個碳鍊長,總共有 40 碳的脂肪酸衍生物,而且含量非常多,5 天大的女生超過 4 mg。

有些費洛蒙輕盈,可以揮發;也有的飄不起來,要直接接觸。40 碳的分子體重太胖,只能直接碰觸,可以說是一種接觸式的油膩情慾。

傳宗接代,迅速而持久

新研究的目標是探討:采采蠅是否存在揮發性費洛蒙,又如何作用。比較效果之前,要先了解采采蠅情慾交流的正常狀況。

把沒有性經驗的一男一女擺在一起,20 組幾乎都迅速合體,在 15 秒內開始啪啪啪(請自行腦補音效);而且平均 do 愛 58.5 分鐘之久,持久力一級棒。

讓一女一男共處一室,紀錄它們的交配過程。所有沒有性經驗的采采蠅,都在幾分鐘內合體,延續超過 55 分鐘。圖/參考資料1

拿來對照的對象,是常被當作實驗動物的黃果蠅(Drosophila melanogaster)。黃果蠅和采采蠅雖然都叫蠅,但是親戚關係比人和猩猩之差還要遠,不是最合適的比較對象,不過是最方便取得的材料。

黃果蠅平均要等 22 分鐘才男女合體,維持 20 分鐘左右,明顯不如采采蠅對性的渴望。然而,采采蠅的實驗,假如一方換成交配過的女生,原本興致高昂的男生竟然會完全不想 do 愛,判若兩蠅。

總之,采采蠅情慾交流的正常狀態是,由男生向女生求偶,女生很快接受。過程中吸引男生辨識的「女蠅味」是哪些費洛蒙呢?

空氣中充滿愛情的味道

采采蠅的費洛蒙是脂肪酸衍伸物,和果蠅、螞蟻一樣,能用有機溶劑己烷(hexane)分離。

可是一開始實驗,把接觸采采蠅 10 分鐘的己烷塗在棒棒上,結果不論是有或沒有性經驗的男女,4 類原味樣品對男生都毫無吸引力。

做過實驗都知道,沒反應不能寫論文 💔。所以又把搜集費洛蒙的時間延長到 24 小時,這下就對惹 ❤️!

觀察得知,沒有性經驗的處女原味,能吸引 60% 男生;有性經驗的女生則是 27%;男蠅味對男生依然缺乏吸引力。

把采采蠅身上萃取的氣味,塗在棒棒上,觀察是否會吸引采采蠅。圖/參考資料1

「女蠅味」具體是什麼呢?用氣相層析質譜儀(Gas Chromatography Mass Spectrometry,簡稱 GC-MS)分離可得到 6 種化學物質。

3 種是脂肪酸:16 碳的棕櫚酸、棕櫚油酸,以及 18 碳的油酸。3 種是脂肪酸加上甲基酯(methyl ester)的衍生物:methyl palmitoleate(MPO)、methyl oleate(MO)、methyl palmitate(MP)。

就算是做這一行的,大部分也會覺得那一串名詞彷彿火星文,反正就是好幾種結構略有不同的油。但是以訊號分子來說,重點不是有多油膩,而是這些分子會啟動哪些神經反應,又影響哪些行為。

費洛蒙有時候化學結構只差一點點,意義完全不同,就像人類講話,「我日常生性活潑,想要多交朋友」和「我日常性生活潑,想要多交朋友」意思就很不一樣。

采采蠅身體外,存在感最明顯的 6 種分子,包括 3 種脂肪酸以及 3 種脂肪酸衍生物。圖/參考資料1

饞她身子的味道,油膩的情慾語言

女蠅味 6 種成分逐一測試,女生們完全不為所動。至於男生,3 款脂肪酸都缺乏吸引力,不過 3 款衍生物都有吸引力,尤其是塗抹 MPO 的棒棒,能吸引 87% 男生,效果最強(有人覺得奇怪,比前述實驗 60% 更高嗎?應該是因為濃度更高,效果更強)。

費洛蒙有具體的收訊器,訊號應該是透過觸角(antenna)上的感覺受器傳達,因為如果把觸角切除,男生也不會起反應。

為了進一步認識費洛蒙的效果,研究者又將費洛蒙塗在近親物種 Glossina fuscipes 身上。正常時這次的主角 Glossina morsitans 采采蠅男生,對異種女生不會有性趣;但是近親女 MPO 上身後,有 60% 男生會撲上來。

可見單單 MPO 這種化學分子,便對男生有強烈的誘惑力。可是這只是單方面的喜歡,近親女依然對異種男生毫無感覺,會把他們馬上踢開。

感受情慾的神經元

不一樣的費洛蒙,會激發不同感覺神經元,就像把某個開關打開。采采蠅的觸角上有許多微小的感覺零件(sensilla),各自配備不同的受器神經元。被激發的 sensilla 上存在兩款神經元 A 與 B,對不同物質起反應。

MPO 會刺激 B 神經元,而且分隔一段距離,透過氣流傳送便有效果。由此判斷 MPO 是揮發性作用的費洛蒙。

但是同樣的距離,MO 與 MP 都不起反應。不過縮短到距離 1mm 後,MP 就能刺激 B 神經元,MO 則能同時刺激 A 與 B。這兩款費洛蒙僅管結構類似 MPO,卻要近到快直接接觸才有作用。顯然這種事不能看結構鍵盤辦案,要實測才知道。

測試費洛蒙是否可以透過氣流飄送,只有 MPO 能在比較遠的距離起作用。圖/參考資料1

奇妙的是,這些費洛蒙對近親物種 Glossina fuscipes 的神經元,幾乎都不起作用。因此上述費洛蒙與受器的組合,僅限於 Glossina morsitans 這款采采蠅,和其他物種未必有共通語言,近親即使收到也理解不能。

寄生錐蟲降低身價,采采蠅也是受害者

不少采采蠅體內存在錐蟲,吸血時成為傳播媒介。檢驗發現,錐蟲對采采蠅的影響也非常明顯,會大幅影響求偶選擇。

采采蠅的求偶是男生提出要求,女生決定是否接受。觀察得知,有或沒有感染的兩男,如果和處女共處一室,女生接受兩者的機率差異不多。但是有或沒有感染的兩女,給男生選擇,男生 100% 挑選沒有感染的女生。

這麼看來,有錐蟲寄生的女生,在男生眼中是比較差的對象,但是不知道男生如何分辨。費洛蒙方面,被寄生的采采蠅又會多出 21 種揮發性小分子,也許有所影響,可惜這些氣味的具體作用仍不清楚。

采采蠅感染錐蟲與否,費洛蒙們明顯有別。圖為氣相層析在不同時間點,陸續分離出的分子,感染錐蟲的采采蠅多出許多種分子。圖/參考資料1

上述結果都是實驗室中的測試。采采蠅在野外活動時,或許大部份候選蠅都是感染錐蟲的不理想對象。野生的采采蠅實際上如何擇偶,也許是另一番光景。不過應該能推測,它們也不喜歡錐蟲。

食慾與情慾的開關一同打開,吃飯,順便do愛?

野生的采采蠅,要自己尋找對象。最容易碰到異性的場合是采采蠅餐廳,也就是被吸血的動物周圍。實際觀察到,采采蠅常常在獵物附近順便情慾交流。

動物散發的氣味分子,就像餐廳飄出的香味,吸引采采蠅前來覓食。有趣的是,獵物排放的 4-methylphenol、1-octen-3-ol 兩種揮發性物質,和采采蠅的揮發性費洛蒙 MPO 使用同一套神經受器。

或許采采蠅去吃飯,開啟食慾的同時,也一同釋放情慾的開關。交配和吃飯是兩回事,如果能一次滿足,也很棒。

如果對氣味在各種生物的角色有興趣,可以閱讀科普書你聞到了嗎?:從人類、動植物到機器,看嗅覺與氣味如何影響生物的愛恨、生死與演化》。

延伸閱讀

參考資料

  1. Ebrahim, S. A., Dweck, H. K., Weiss, B. L., & Carlson, J. R. (2023). A volatile sex attractant of tsetse flies. Science, 379(6633), eade1877.
  2. Chemical notes of tsetse fly mating

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 925 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。