0

0
0

文字

分享

0
0
0

數理性思維的七個面向:整理─《喚醒你與生俱來的數學力》

PanSci_96
・2015/06/08 ・2260字 ・閱讀時間約 4 分鐘 ・SR值 508 ・六年級

整理的目的在於獲得新資訊

這裡所謂的整理,並不是單純把東西排列整齊,就稱得上是「數學式」的整理。

「為什麼把東西收拾整齊就算『數學式』呢?」

會這麼想也是理所當然的。不過我也認為,如果僅只是把東西排列整齊的話,並沒有必要非冠上「數學式」的名義不可。說起來,在整理房間這個部分,任何一個整理達人的專業絕對都比我的意見來得可靠多了。

我所強調的「數學式的整理」,並非一般人觀念中的整理,而是一種「把隱藏的資訊推理出來」的行為,也就是透過明確的規則加以分類運用乘法原則加以整理,或是準備檢查表等行為。

-----廣告,請繼續往下閱讀-----

藉由數學式的整理,我們可以把資訊歸納得井然有序,但這並非整理的目的。獲得「新資訊」,才是所謂數學式的整理的最大目的。

透過分類推理出隱藏性質

舉例來說,假設你是一名葡萄酒收藏家,家裡有超過三百支你中意的葡萄酒。請問,以下A 到C 三種整理方法,哪一個最符合「數學式的整理」呢?

在思考這個問題時,請從可以增加葡萄酒資訊、亦即葡萄酒的味道的角度來思考。

  • A  按照釀酒年份(生產年份)排列
  • B  按照產地別排列
  • C  按照葡萄品種別排列

向人們展示自己收藏的葡萄酒時,A 大概是最體面的排列方式了吧。

-----廣告,請繼續往下閱讀-----

一來,當人們看到排列在最前面的葡萄酒時,會很熱絡地讚嘆道:「哇,這些酒好有歷史啊。」

二來,你也可以告訴客人:「這裡也有你出生那一年產的葡萄酒喔。」

這樣他們聽了可能會很感動。不過按照生產年份排列葡萄酒,究竟可以得到什麼新資訊呢?頂多就是:「一九九○年的酒好多喔。啊,不過一九九一年的酒已經沒了。」像這樣掌握葡萄酒庫存的狀況而已。

相對地,B 的整理方式可說是非常地「數學式」。因為這樣的整理方式,可以讓你在開瓶前就預先推測到有關味道的資訊

-----廣告,請繼續往下閱讀-----
wine.7
Photo by Jeff Kubina

在此厚顏無恥地分享一件私事。我是一名經過日本侍酒師協會認證的葡萄酒專家。每次和知道我擁有這個證照的朋友去用餐時,選擇葡萄酒的任務自然而然會落在我頭上。通常我都會先確認眾人的預算和餐點的內容,然後再從葡萄酒單中挑選葡萄酒,但儘管我擁有專業証照,實際經驗並不豐富,因此酒單上的葡萄酒,我喝過的只有極其少數而已。因此我總是挑選得有點隨便。但是每次用完餐後,大家都會對我挑選的葡萄酒讚譽有加:

「哎呀,每次跟永野來吃飯,都能喝到好喝的葡萄酒!」

這是為什麼呢?因為我對各主要產地生產的葡萄品種,和當地的氣候條件,已經有一定程度的瞭解。光靠這一點,我就能夠像這樣做出選擇:「大家點了蒲燒鰻魚嗎?這樣的話,還是選清爽一點的紅酒好了。勃艮第看起來不錯,不過價格有點超出預算了。啊,盧瓦爾地區的黑比諾應該可以噢。就選這個吧。」

順帶一提,黑比諾是釀造勃艮第紅酒的知名品種,我一開始去葡萄酒學校時,還不認識這種品種的葡萄,結果還把老師寫在白板上的文字念成了「非比諾」,現在想起來實在很丟臉……(啊,好像離題了。)

-----廣告,請繼續往下閱讀-----

當然,嚴格說來,決定葡萄酒味道的因素不只有產地、品種和氣候條件,連釀造方法、木桶種類、運送方式等都有影響。說得更深入一點,即使是同年同款的葡萄酒,一般來說只要瓶子不同,味道就會有些許差異。不過如果沒有特殊堅持的話,像我這種選擇方式其實不會造成太大的問題。

我想在此強調的當然不是我挑選葡萄酒的眼光有多好(笑),而是我只要從葡萄酒單上的產地分類,就能大致預期到那些沒喝過的葡萄酒究竟是什麼味道。也就是藉由產地別的分類,成功推理出隱藏在其中的性質

各位已經看出來了吧。如欲取得與葡萄酒味道有關的資訊,比起按照年代順序排列的A ,按照產地別排列的B 絕對是更有效的整理方式。而且就取得有用資訊這一點來看,B 比A 更符合「數學式」的整理。

那麼,C 的「按照葡萄品種別排列」又如何呢?

-----廣告,請繼續往下閱讀-----

確實,葡萄的品種會直接影響到葡萄酒的味道,而且知道品種的話,大概也可以推測到葡萄酒的味道,但就數學式分類的角度而言,我並不建議以葡萄的品種作為分類的標準。

因為「數學式分類」除了著重在增加資訊外,還有一件不得不注意的重點,就是「不遺漏、不重複」。

如欲從分類取得味道的資訊,以葡萄的品種為標準並非不好,只是像波爾多等類型的葡萄酒,釀造時同時混合了不同品種的葡萄。由於一種葡萄酒裡含有複數的品種,因此如果按照品種分類的話,同一瓶酒有可能被分類在不同的類別下。況且,在琳琅滿目的葡萄酒中,有時候也會出現非常稀有的葡萄品種。包括這類型的品種在內,要認識世界上所有的葡萄品種,幾乎是天方夜譚。換言之,假如按照葡萄的品種分類,有可能會出現被分類至多個項目下的葡萄酒,或是完全無法分類的葡萄酒。

最近的商業書籍,經常呼籲讀者「分類時的標準要符合MECE 」。MECE 是Mutually Exclusive and Collectively Exhaustive 的縮寫,直譯成中文就是「相互獨立且完全窮盡」,因此所謂的MECE 分類就是不重複且無遺漏的分類。這也是以數學式思考分析事物時的基本

-----廣告,請繼續往下閱讀-----

此處雖以葡萄酒為例,但無論在生活的哪個層面,整理其實都是不可或缺的一環。你應該也是每天都在進行各式各樣的整理吧。過去你可能只是在無意間試著把事物排列整齊,

但從今天開始,請你在整理時順便想一想:「該怎麼做才能增加資訊呢?

在著手進行整理前先思考這個問題,就是標準的數學式思考

 

臉譜-喚醒你與生俱來的數學力-立體書摘自《喚醒你與生俱來的數學力》第三章。本書由臉譜出版社出版

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1214 篇文章 ・ 2079 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
0

文字

分享

0
4
0
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
193 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

討論功能關閉中。

林澤民_96
37 篇文章 ・ 237 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

2
1

文字

分享

0
2
1
數學無聊是誰的錯?數學家其實很幽默?——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/08 ・2441字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

雖然很少有學生小學畢業後還不懂乘法表,但有很多人確實不會算,如果一個人開車的速度是每小時 56 公里,開了 4 小時之後,他就開了 224 公里。要是每公克花生賣 40 美分,而 1 袋花生賣 2.2 美元,那麼,這袋花生裡就有 5.5 公克花生。假如全世界人口中有 1/4 是中國人,其餘的 1/5 是印度人,那麼,印度人在全世界的人口中就占了 3/20,或說是 15%。當然,要理解這些問題,並不像學會算 35×4=140、(2.2)/(0.4)=5.5、1/5×(1–1/4)=3/20=0.15=15% 這麼簡單。對很多小學生來說,這不是自然而然就會的東西,要靠做很多很實用、或是純屬想像的問題,才能進一步學會。

至於估計,學校裡除了教一些四捨五入之外,通常也沒有別的了。四捨五入和合理的估計與真實人生大有關係,但課堂上很少串起這樣的連結。學校不會帶著小學生估計學校砌一面牆要用掉多少塊磚、班上跑最快的人速度多快、班上同學爸爸是禿頭的比例多高、一個人的頭圍與身高之比是多少、要堆出一座高度和帝國大廈等高的塔需要幾枚 5 美分硬幣,還有他們的教室能否容納這些 5 美分硬幣。

幾乎也沒人教歸納推理,也不會用猜測相關性質和規則的角度,來研究數學現象。在小學數學課裡談到非形式邏輯(informal logic)的機率,就跟講到冰島傳說一樣高。當然,也不會有人提到難題、遊戲和謎語。我相信,這是因為很多時候,聰明的 10 歲小孩輕輕鬆鬆就能打敗老師。

數學科普作家葛登能最不遺餘力探索數學和這些遊戲之間的密切關係。他寫了很多極有吸引力的書,也在《科學美國人》撰寫專欄,而這些都是會讓高中生或大學生感到很刺激的課外讀物(前提是有人指定他們去讀的話)。此外,數學家喬治.波利亞(George Polya)的《怎樣解題》(How to Solve It)和《數學與合情判讀》(Mathematics and Plausible Reasoning),或許也屬於這一類。有一本帶有這些人的文風、但屬於較初階的有趣好書,是瑪瑞琳.伯恩斯(Marilyn Burns)所寫的《我恨數學》(The I Hate Mathematics! Book),書裡有很多啟發性的提示,帶領讀者解題與發想各種奇思異想,是小學數學課本裡罕見的內容。

-----廣告,請繼續往下閱讀-----
圖/envato

有太多教科書仍列出太多人名和術語,就算有說明解析,也很少。比方說,教科書上會說加法是一種結合律運算(associative operation),因為(a + b)+ c=a +(b + c)。但很少人會提到非結合律運算,因此,充其量來說,結合律運算的定義是畫蛇添足。不管是結合律或非結合律,你知道了這些資訊之後要怎麼應用?書上還會介紹到其他術語,但除了用粗體字印在書頁中間的小框框裡,看起來很了不起之外,也沒什麼值得提的理由。這些術語滿足了很多人認為,知識就好比一門普通植物學,每種學問都可以在體系中,找到自己的類別和位置。相比之下,把數學當成有用的工具、思維方式或是獲得樂趣的途徑,在多數小學教育課綱中都是很陌生的概念(即使教科書內容不錯也一樣)。

或許有人會認為,在小學階段,可以用電腦軟體,來幫助學生掌握基本的算數原理及相關應用(應用題、估計等等)。可惜的是,目前可用的程式通常是從教科書上擷取無趣的例行練習,轉化成電腦螢幕版本而已。我不知道有任何軟體可用整合、一致且有效的方法,來教算術與解題應用。

小學階段的數學教學品質普遍不佳,最終必會有人怪罪於老師能力不足,而且對數學沒什麼興趣、或不懂欣賞數學。我認為,這當中有一部分又要歸咎於大專院校的師資培養課程中,很少或根本不強調數學。以我自己的教學經驗來說,我教過的學生中,表現最差的是中學生,而不是大學主修數學的學生。準小學老師的數學背景也很糟,很多時候甚至根本沒有相關的數學教學經歷。

而每所小學聘用一、兩位數學專才,在學校裡每天分別到不同班級輔導(或教授)數學,或許可以解決部分問題。有時我認為,如果大學數學教授和小學老師每年可以交換個幾星期,會是個好方法。同樣的,把主修數學的大學生和研究生交到小學老師手裡,不會造成傷害(事實上,後者或許能從前者身上學到一些東西)。而三、四、五年級的小學生則可以在完全適任的老師教導下,接觸到數學謎題與遊戲,將可大大獲益。

-----廣告,請繼續往下閱讀-----
圖/envato

稍微打個岔,謎題與數學之間很有關係,而且相關性會一直延續到大學與研究階段的數學。當然,把謎題換成幽默也通。我在《數學與幽默》(Mathematics and Humor)書中試著說明,數學和幽默都是某種益智遊戲,與猜謎、解題、遊戲和悖論多有共通之處。

數學和幽默都是把概念組合、拆開再拼回來,然後從中得到樂趣。慣用的手法包括並列、歸納、迭代和倒向(比方說「aixelsyd」就是把「dyslexia」﹝閱讀障礙﹞的字序倒過來)。那麼,如果我放寬這個條件,但緊縮另一個條件會怎樣?某一個領域的概念(像是綁辮子),和另一個看來完全不同領域的概念(如某些幾何圖形的對稱性)有什麼共通點?當然,即便不是數盲,可能也不熟悉數學這個面向,因為你必須要先具備一定程度的數學概念,才可以拿來耍弄。其他像獨創性、不協調感以及精簡的表達,對於數學和幽默來說也都同樣重要。

可能有人說過,因為所受訓練之故,數學家有一種特殊的幽默感。他們往往會接受字面意義,但字面上的解讀又常和標準用法的意義不同,因此很好笑。比方說,哪種運動比賽時要蓋臉?答案是,冰上曲棍球以及痲瘋病人拳擊(按:原文「Which two sports have face-offs」,「face-off」其中一個字面意義為「蓋臉」,而這也是冰上曲棍球常用的術語,意指「爭奪球權」)。他們也很沉溺於歸謬法(reductio ad absurdum),或設定極端前提條件然後做邏輯演練,以及各式各樣的字組遊戲。

如果可以透過小學、中學或大學階段的正式數學教育,或是非正式的數學科普書籍,傳達數學有趣的面向。我認為,數盲就不會像現在這麼普遍。

-----廣告,請繼續往下閱讀-----

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。