1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
大家最好奇的重點來了!他們平時究竟吃什麼?據學者們先前的觀察,他們主要還是以草本植物或木質植物的莖為主食,但還是「偶爾」會吃一些蟹類屍體、小型無脊椎動物和腐肉補充蛋白質。但是,這些「偶爾」阿,據先前觀察,曾經捕捉到蟹類屍體外殼破碎,並正被一隻亞達伯拉象龜啃食。因此,學者們認為這隻象龜有可能是「無意」踩死這隻蟹,因此也無法判定亞達伯拉象龜是否會進行蓄意地狩獵行為。不過,2020 年 Anna Zora 拍攝到了亞達伯拉象龜正在獵捕燕鷗雛鳥的行為,影片釋出確實嚇壞了不少學者,因為自人類開始記錄象龜行為以來,從未確實記載到象龜有過狩獵的舉動。
針對亞達伯拉象龜狩獵行為, Anna Zora 與劍橋大學彼得學院(Peterhouse, Cambridge)的島嶼生態學家 Justin Gerlach 也開始展開研究,並將此次發現發表在《當代生物學》(Current Biology)期刊,同時他們也在發表中歸納出以下重點。
Anna Zora 在拍攝影片的當下,發現一隻小黑燕鷗(Anous tenuirostris)雛鳥從樹巢中掉落,而小黑燕鷗雛鳥一旦脫離巢中,他們典型的行為就是試圖讓自己高於地面以避開地面上出現的危險。這也是為何影片一開始時,這隻燕鷗雛鳥就死守在一棵橫臥於地面上的樹木上,而他們發現影片中的亞達伯拉雌象龜似乎深知這些燕鷗雛鳥的習性,因此直接爬上樹木,步步逼近這隻不會飛的雛鳥。
更值得注意的是, Anna Zora 等人注意到這頭象龜在獵捕時,會張開下顎,同時將舌頭縮回、眼睛閉上,這是陸龜產生警惕、攻擊性才有的行為(一般而言,當陸龜吃草食時,通常是會伸出舌頭的)。上述刻意靠近樹木上的雛鳥、縮回舌頭的跡象都透露著這隻雌象龜可能是個經驗老道的「獵龜」。對於動作緩慢的象龜來說,他們根本追不上那些動作敏捷、迅速的動物們,因此會成為獵物的動物通常是不會飛,或不會試圖逃跑的小鳥,因此學者們稱此次的狩獵行為為「慢速狩獵」。