Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

駕馭未來:自動駕駛汽車——《知識大圖解》

知識大圖解_96
・2015/04/25 ・1395字 ・閱讀時間約 2 分鐘 ・SR值 563 ・九年級

自動駕駛汽車配備許多新科技,徹底顛覆用路人的交通概念。

未來時代的汽車不再需要方向盤、油門和煞車踏板,而且完全自動,不需仰賴真人駕駛。事實上,自動駕駛汽車早已上路:Volvo汽車正進行一項兩年期計畫,100輛無人車的蹤跡早已遍布瑞典哥特堡(Gothenburg)的道路。

自動駕駛汽車之所以能順利上路,端賴車上裝載的各式雷達、感測器、照相機,這些裝置持續解讀車身周遭的環境,藉以建構前方道路的狀況。雷達與感測器負責監控一切,包括與其他車輛的距離,以及腳踏車與行人的位置,面向前方的照相機則負責解讀路標與交通號誌;所有資料都會不斷傳遞到車上的電腦,使其可以在毫秒之間做出判斷,並決定適切的車速與行進軌跡。同時,先進的GPS科技則會導航,指引準確的路線。

自動駕駛汽車的原型看起來與一般汽車相差無幾。遍布車身的內建感測器會發出頻率,遇到物體便會反彈,運作原理與轎車的停車感測器差不多,讓自駕車知道自身與路緣、行人和其他車輛相距多遠。中央處理電腦與GPS系統都藏在車內,所以自動駕駛汽車的外觀與一般車輛唯一不同之處,僅有裝在車頂上的「光達」(LIDAR)。

-----廣告,請繼續往下閱讀-----

光達是會旋轉的照相機,可以射出雷射並利用反射光建構出立體影像,判斷車子在當下環境中的位置。從反射光蒐集到的資訊都會匯入車上主電腦,而車內乘客面前的螢幕則可以看到行進路線;另有個緊急停止按鈕,必要時可使車子立即靠邊停下。

driving future
請點擊看大圖。

雖然科技巨擘Google是研發自動駕駛科技的領頭羊,但BMW、Nissan等汽車製造商也已投注龐大資源研發專用自駕科技。這些測試車都從一般車輛改造而來,只要觸碰腳踏板或方向盤,系統便會立即將控制權交還給司機。

Google自2010年起就開始著手改造Toyota與Lexus的車款,進行自動駕駛汽車的大計,至今也行之有年了。不過,最新版的原型車堪稱曠古絕今,且因兩地往返途中絕對不會受到駕駛疲勞或酒精影響,目前已證實遠比真人駕駛安全許多。

為了進一步提升安全性,Google正著手試驗彈性擋風玻璃與發泡材質製成的前保險桿,萬一真的不幸撞到人時,這些裝置還能提供行人一些保護。目前這個計畫還在開發階段,自動駕駛汽車的時速限制也必須控制在40公里以內。

-----廣告,請繼續往下閱讀-----

自動駕駛的理論看似直接了當:電腦負責發出指令讓機械裝置執行。然而,這項新技術仍然有一個巨大難關須克服,那就是車行途中無法預知危險。自駕車的「訓練」其實與汽車路考前大量練習非常相似,也就是評估上路時每種可能的危險情境,將相關資料輸入車上電腦,以便採取最佳應對方式。

自動駕駛科技還面臨了其他限制。目前Google無人車還無法開上自家地圖系統尚未收錄資料的道路,因此若想要搭乘自動駕駛汽車到新開發的郊區兜兜風、物色新房,很可能阻礙重重,隨時需要手動。此外,如果路面濕滑或滿地白雪,車上的感測器就很難讀取線道標誌,使得自動駕駛更加危險。

各家車廠正嘗試改良缺陷,聘請安全駕駛員每天測試各種不同的道路狀況,同時提供改善建議。Google甚至表示,設計自動駕駛汽車原型時是以學習發展作為考量,而不是奢華,所以目前的車款皆與物質享受沾不上邊;不過,如果自駕車的發展藍圖確實可行,情況可能會大不相同,我們也很快就可以看到公路上擠滿了自動駕駛汽車,而且每位駕駛都悠閒自在地看著電影、收發電子郵件,或是閱讀《知識大圖解》了。

 

本文節錄自《How It Works知識大圖解 國際中文版》第07期(2015年4月號)

-----廣告,請繼續往下閱讀-----

更多精彩內容請上知識大圖解

-----廣告,請繼續往下閱讀-----
文章難易度
知識大圖解_96
76 篇文章 ・ 12 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

22
2

文字

分享

1
22
2
塞車好心煩!自動駕駛能解嗎?——台大資工林忠緯專訪
科技大觀園_96
・2021/02/08 ・4673字 ・閱讀時間約 9 分鐘 ・SR值 526 ・七年級

-----廣告,請繼續往下閱讀-----

每到年節時期,不管返鄉或是出遊,用路人最討厭遇到的就是塞車,漫長的等待、讓人踩剎車踩到腳痛的行車速度,抑或是被汽車廢煙包圍的感覺,本是愉悅心情恐怕都大打折扣。你也是恨不得讓「塞車」這個詞消失在這世界上的人嗎?自動駕駛或許能幫你達成心願喔~感到好奇的話,那就繼續看下去吧!

造成塞車的幕後黑手是誰?

試想,人類與機器人在駕駛汽車時,要維持車與車之間等速前進,誰會 hold 得最好呢?答案很明顯是……機器人!為什麼呢?關鍵就在於「人類的反應速度」,反應速度因人而異:當老(手)司機在開車時,他們能夠對於哪時候該踩剎車、油門的反應速度快,因此不會因誤判與前車之間的距離,而落下一大段「空白車距」;然而菜鳥司機就不一樣了,他們反應速度沒有老(手)司機快,所以在看到前方車輛時,因無法正確判斷哪時候踩剎車最恰當,加上基於安全意識都會先減慢避免 A 到前車為第一反應,「空白車距」自然就出現了~而後方的車輛們會因為這位菜鳥司機(老鼠屎)的行車速度減慢而開始擠成一團,造成塞車。

相信駕駛人們遇到塞車的反應都跟圖片中的人一樣煩悶不堪。圖/GIPHY

相反地,當機器人在行車時,因為他們的動作程序一致,因此能穩穩地維持等速行駛。這也就是為何現今車廠想推出自動駕駛車(以下簡稱「自駕車」)的原因之一。自動駕駛真有那麼神嗎?讓我們來一一剖析它吧!

延伸閱讀:連假無法逃離宿命!為什麼會塞車呢?

自駕車大小事

自動駕駛,顧名思義就是讓車子在無人為操作的情況下,將行車速度與控制車間距離等原本需要手動操控車子行進的動作轉為自動化,以減輕駕駛人的行車負擔。

  • 自動駕駛分級:

自動駕駛可是也有分級制度的!國際汽車工程師協會 (Society of Automotive Engineers, SAE) 依據汽車的自動化程度分為以下級別:

-----廣告,請繼續往下閱讀-----
參考資料:SAE International

時至 2020 年末,汽車業的自動駕駛即將發展至第四級,第五級則是各企業競相達成的最終目標。

  • 自駕車的配備主要有哪些?
    • 感測器:相當於人類的眼睛,能辨識障礙物的種類及位置。而感測器又可分為攝影機(Camera)、光達(LiDAR)、雷達(Radar)、超音波這四種,不同種的感測器對於環境辨識及障礙物解析力也會有差異。
    • 動態定位:相當於 Google 地圖功能,當接收來自感測器的環境資訊後,自駕車能協同 GPS、IMU 與高精準地圖資訊等定位工具自動辨識車輛所在位置及設定目的地。
    • 智慧決策:相當於人腦的決斷力,透過整合電子地圖 (RNDF/OpenStreetMap)、感知融合(Perception)、靜態軌跡規劃(Mission Planning)、行為規劃(Behavior Planning)以決定自駕車整體需執行哪些動作及規劃。
    • 電控底盤:負責車子的轉向、剎車及油門。

參考資料:自駕車發展趨勢與關鍵技術

自駕車能透過感測器偵測車距以維持車與車之間最佳距離。圖/GIPHY

自動駕駛真的能解決塞車嗎?

自駕車本身雖能達到自動辨識路口標誌及安全煞停系統,但它就像一個好的食材,需要透過精湛的廚藝及調料的輔助才能發揮它最完美的風味,而輔助自駕車的便是「車聯網」。究竟什麼是「車聯網」?自駕車與車聯網的搭配真的能解決塞車嗎?就讓台大資工系的林忠緯教授來幫大家解惑吧!

林忠緯教授熟知自駕車與車聯網的研究。圖/轉自科技大觀園。

林忠緯教授小檔案:
林忠緯教授在博班時期的研究題目即是關於 Cyber-Physical System(CPS)的研究,而 CPS 簡單來說是指能夠執行物理層面上動作的電子產品,例如車子(能在路上行走)、心律調節器(能放電控制心律)都屬於 CPS。林教授在博班的研究即是關於車子的 CPS,也曾在美國通用汽車(General Motors)實習,畢業後持續拓展自己所長,進入加州矽谷的豐田汽車(Toyota InfoTechnology Center)擔任研究員。林教授熟知自駕車與車聯網的研究,自身也致力於自駕車、車聯網與資安問題的研究,並開心表示對於未來 28 年後自駕車的展望懷抱深深的期許。

  1. 車聯網是什麼?
    車聯網(Internet of Vehicles,IoV)是指車與車之間(vehicle-to-vehicle,V2V),或車與道路狀況(Vehicle-to-everything, V2X)之間利用網路互相交換、接收感測器所會彙整出的訊息,以達到更完善、迅速的交通網絡資訊交流,讓用路人能即時獲得路況的整體資訊。
車聯網就是車子版本的物聯網。圖/Pixabay
  1. 自駕車結合車聯網真能解決塞車嗎?
    若要剖析塞車問題,其實可以分成以下幾種狀況,自駕車必須面對各種塞車情況作出相對應的解決方案。
    1. 選擇路徑:假如過年走春行程是去宜蘭玩,大家通常會想到要走雪隧,然而當大家都走雪隧的話,勢必會造成大塞車。而車聯網能即時追蹤到已經開始塞車的道路,並通知自駕車可以改走較為不塞車的路段(例如北宜),這時候就達到了疏散車流量的效果。
    2. 路口與路口間的交通號誌:假如今天車子走在路上,一路都是綠燈當然令人心情愉悅,反之,則會導致後面開始塞車,因此在車聯網當中也可以整合總體交通號誌的順暢運行。
    3. 單一路口的車輛運行:通常遇到駕駛人遇到路口,都需先放慢行駛速度,觀察轉角方向是否有來車,再行通過;當一個路口車多時,塞車肯定逃不掉~而車聯網能達成上述第二點的升級版——便是不用交通號誌!車聯網就像是開上帝視角,可以同時獲得路口的各道路資訊,而這些資訊是單一自駕車無法自行偵測的,自駕車針對這些資訊做出相對應的動作,而自駕車對於這些動作的控制能比駕駛人更加精準,因此車聯網與自駕車能夠相輔相成增加路口的運行效率。
    4. 單一車輛的運行:車聯網與自駕車亦能互相搭配在安全的前提下縮短跟車距離並減少過度保守的煞車,如此道路的使用率能夠提升,也能減少塞車的機率。
自駕車結合車聯網能達成無須紅綠燈,路口間也能順暢行駛。圖/GIPHY

林教授認為自駕車結合車聯網勢必能解決部分層面的塞車問題,也能避免酒駕、恍神、視線死角等人為意外肇事的發生比率,但在現實生活要自駕車能實際放在道路上跑,現階段仍面臨重重難關。

  1. 自駕車的發展現階段會遇到哪些瓶頸?
    讓我們想像一下,當自駕車、車聯網已完全取代所有的交通系統,實際上最有可能會發生以下幾種瓶頸:
    • 瓶頸一:自駕車的整合系統尚未完善
      林教授個人認為目前自駕車的整合系統會是一大問題,即便供應商提供再好的車組配件,配件與配件之間的整合系統不佳還是會造成車子載運行時效率不佳甚至還可能會釀成車禍,或是遭駭客入侵自駕車系統。所以教授認為設計一個具縝密規畫的整合系統,不僅可以讓車子運行順暢,也能保障駕駛人的安全。
    • 瓶頸二:法規訂定的難題
      當自駕車發生車禍了,那誰該跳出來負責任呢?該怪自駕車內部的機器學習沒有收納進這些意外狀況的數據嗎?還是都是工程師的錯?其實這也是自駕車衍伸出的頭疼題,而林教授針對這個問題也提出相關建議,例如在購買自駕車時,售價的一部分可以作為保險補償,當發生意外時,便能獲得補償金。
    • 瓶頸三:消費者的接受程度
      消費者在購買商品時常會考慮價格及使用感受,而自駕車雖然目前製造成本高昂,但相信未來隨著自駕車的研發技術逐漸成熟,成本也會隨之下降,但成本要降到多低才能達到量產,以及售價普遍是消費者能接受的範圍仍是個問題。另外,感受度的部分,當我們坐進自駕車裡面,由於自駕車可以精準縮小車距,因此當對向來車很近地迎面衝過來,真的不會嚇到嗎?因為自駕車有別於以往的行車感受,所以也不見得能被所有消費者接受。
      另外,有部分消費者享受自己駕馭車子的樂趣,所以他們也不會想使用自駕車,當道路上並非統一是自駕車的情形,要達成車聯網更是難上加難哪~
    • 瓶頸四:資安問題
      自駕車結合車聯網運行時極需網路,而有網路的地方,駭客便如影隨形,當駭客像電影情節一樣駭入車聯網時,不但會構成駕駛人的性命威脅,甚至還會造成全面性的交通世紀大癱瘓!水能載舟亦能覆舟,車聯網雖能讓交通運行更順暢,也可能會釀成一場可怕的災難,因此林教授強調維護資安也是設計車聯網的重點項目。

解決塞車問題的理想藍圖

當我們檢視塞車問題的視野再拉遠一點,除了自駕車及車聯網以外,教授也慷慨地分享了以下管道解決塞車問題:

-----廣告,請繼續往下閱讀-----
  • 共享汽車:當大家都選擇搭乘共享自駕車,便能減低車流量與車子的總量(大家更傾向不買車),路上的車子少了,便能減低塞車的發生率。(傳染病盛行的時代不太適用)
  • 道路擴大:當車子的總量下降,停車需求減少,空間使用更有彈性。當道路新增了好幾條線,便能分散車流,避免全部車子堵在同一條路上。
  • 網路通訊:現在網路科技發達,人們在家也能透過網路完成視訊會議、參與活動,減少出門的必要性,也就無須駕車。

結語

雖然現階段自駕車要完全解決塞車問題仍需經時間歷練,但相信透過林忠緯教授及眾多研發單位的辛勤貢獻,大家在春節期間能夠利用自駕車與車聯網享受更加順暢、迅速的行車體驗,而不再受塞車之苦的日子指日可待!新春期間,也祝大家行車平安,旅途別塞!

塞車問題仍需大家共同努力解決,才能營造良好的交通網絡。圖/GIPHY
  1. 「自駕車受騙上當和辨識盲點」之專家回應
  2. 為何美國交通部選用SAE的自動駕駛分級,而棄NHTSA丨汽車商業評論
  3. 自動駕駛車發展現況與未來趨勢
  4. 何謂自動駕駛?
  5. 關於自動駕駛:內行人才會懂的有話直說
  6. 對於塞車問題,智慧交通提供的四大解決方案
  7. 塞車讓駕駛踩煞車踩到抽筋,汽車新科技解決這困擾!(內有影片)
  8. 2020 最新自動駕駛技術報告出爐!以特斯拉、Volvo 為例,全面涵蓋智駕技術
  9. 網宇實體系統與製造應用- 熱門焦點- 經濟部技術處
  10. Wevolver: Knowledge for engineers
  11. 一起來用十分鐘略懂自駕車吧!GoGoGo!
  12. 無人駕駛車/自駕車技術探索
  13. SAE International
  14. 科學月刊:不需駕駛也能輕鬆上路-淺談自駕車與高精地圖
-----廣告,請繼續往下閱讀-----
所有討論 1
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
0

文字

分享

0
1
0
在電腦時代,學會當「人」更重要——《打開演算法黑箱》書評
臉譜出版_96
・2019/05/07 ・2549字 ・閱讀時間約 5 分鐘 ・SR值 527 ・七年級

-----廣告,請繼續往下閱讀-----

  • 文/張智皓

「在演算法的年代,人類從未如此刻這般的重要。」——弗萊(Hannah Fry)

圖靈(Alan Turing)在 1936 年提出圖靈機(Turing Machine)的基本構想,人類文明揭開了電腦時代的序幕,並在很短時間內為人類生活帶來了劇烈的變化。上一次有這樣的景況,大概是 17 世紀末蒸汽機的發明,帶領人類文明進入工業時代。

進入工業時代,給人帶來便利同時製造難題。圖/pixabay

這兩個時代有類似之處。蒸汽機讓人開始擔心自己被機械取代:生產模式改變,人力不再重要,生產機器和失業人口大量出現。然而,這種困境並沒有維持太久。新技術讓人失業,也拓展了人的想像力,讓各種新興行業與技術應運而生。這些行業和技術促進產業轉型,反而提高了人力需求,讓人類文明變得更加繁盛。此時,我們知道人類變得比以前更重要。

電腦,或者我們說,演算法,就像是現代的蒸氣機,同樣大幅地改變人類生活模式。在本書中,倫敦大學學院(UCL)先進空間分析中心(CASA)的數學家漢娜弗萊從權力、資料、司法、醫療、車輛、犯罪與藝術這七個面向出發,告訴我們演算法已經如何深入我們日常生活中,為我們帶來前所未見的巨大貢獻,並展現出取代人類的企圖心。

-----廣告,請繼續往下閱讀-----

科技帶來便利,但人類始終更了解人類。圖/pixabay

更重要的是,弗萊也透過她細膩的觀察,提醒我們:就如同蒸汽機時代的人類沒有被取代一樣,在演算法時代,人類也只會比以前更重要。

人機合作,讓人類的棋藝再創高峰

讓我們從書中一個輕鬆的例子開始。弗萊告訴我們,在 1997 年,西洋棋世界冠軍卡斯帕洛夫(Gary Kasporov)被 IBM 設計的「深藍」擊敗後,他並沒有因此排斥電腦,反之,他創辦了人類與電腦合作的棋賽。卡斯帕洛夫相信,有了電腦的輔助,人類不再需要花時間在棋盤細節的計算上,而是將心思放在整體戰略上,人機合作,能讓人類的棋藝再創高峰。

這樣的劇情非常類似於 DeepMind 的圍棋軟體 AlphaGo 在 2016 年的創舉。在 AlphaGo 相繼打敗世界冠軍李世乭以及柯潔後,AlphaGo 以及其繼任 AlphaGo Zero 的棋譜變成職業選手們爭相學習的目標。DeepMind 甚至推出 AlphaGo 圍棋教學工具,讓大家學習它的佈局,並進而開發出新的佈局形式。AlphaGo 沒有取代人類棋手,反之,它為圍棋世界注入了新的生命。

兩方交流為圍棋注入新的氛圍。圖/pixabay

-----廣告,請繼續往下閱讀-----

演算法無法回答的問題:隱私與安全該如何平衡

接著讓我們談談一個較嚴肅的例子。在本書「犯罪」這一章節中,弗萊提到「臉孔辨識系統」如何對人類產生顯而易見的貢獻。在 2015 年,紐約警察局透過臉孔辨識系統「成功指認了 1700 名嫌犯,並且發動了 900 次逮捕行動。」另外,她也提到從 2010 年以來,紐約州「僅僅針對詐欺和身分盜用就發動了超過四千次逮捕行動。」有了臉孔辨識系統,各大交通運輸管道也可藉恐怖份子資料庫來預防恐怖襲擊(而事實證明這很有用)。

你想要偏向安全,還是隱私?圖/pixabay

作為預防手段,臉孔辨識系統可以有效增進人們生命與財產之安全。但這些好處有其代價。弗萊指出,就連目前全世界最先進的臉孔辨識系統(來自於中國的「騰訊優圖實驗室」),在一百萬張臉孔資料庫的測試中,也只有 83.29% 的辨識率。這在技術上已經令人佩服,但在現實中卻可能釀成大禍。

比方說,2014 年,一位住在丹佛的居民被錯誤辨識為銀行搶匪,並在警察的逮捕過程中「遭受神經損傷、血栓及陰莖折斷。」或許有人會主張,只要技術更好,辨識率更高,問題就解決了。但情況可能沒這麼簡單,辨識率提高的代價是隱私度的下降。試問,我們願意讓「老大哥」看著大家嗎?

-----廣告,請繼續往下閱讀-----

臉孔辨識系統有其好處,有其代價。我們願意讓此系統做到甚麼程度?為了安全,我們願意犧牲多大的隱私?而為了隱私,我們又願意犧牲多少安全?這些問題是演算法無法回答的,只有人類可以,因此,人類只會更重要。

演算法兩難:自駕車該拯救駕駛還是行人?

另外一個嚴肅例子,我想談談「車輛」這一章節中的自動駕駛技術。一旦自動駕駛技術普及,將可以大幅減少人為車禍的發生。而我們知道,現代大多數車禍都源於人為。然而,將駕駛工作交給演算法,也意味著將決策的任務交給演算法。當失控的自駕車面臨的選項是「拯救駕駛,還是拯救行人」時,演算法應該如何行動?

當自動駕駛遭遇電車難題,我們又希望它做出什麼選擇?圖/WIKI

弗萊提到,在 2016 年發表於《科學》期刊(Science)的一篇文章指出,多數人主張應該盡可能的拯救更多人命。然而,當詢問他們自身較願意購買哪一款自駕車時,我們可以從賓士汽車發言人胡苟(Christoph von Hugo)的回應(當被問到賓士車會如何設計時),理解他們的猶豫:「保護駕駛。」

-----廣告,請繼續往下閱讀-----

這衝突看起來不可調和,我們一方面希望盡可能拯救人命,另一方面又希望可以保障駕駛的安全(否則我幹嘛買它呢?)。在這樣的衝突中,弗萊指出另外一個可能選項:放棄全自動駕駛,將演算法的目標放在輔佐駕駛人上(比方說,現在已有的「自動緊急煞車」或「自動與前車保持距離」等設計)。換言之,演算法不扮演「司機」,而是扮演「守護者」。我們該做的,是讓演算法配合人類,主動性依然在人類手上,因此,人類只會更重要。

自動駕駛的衝突難題。圖/pixabay

在《打開演算法黑箱》中,弗萊透過大量有趣的案例,說明演算法如何深入日常的同時,也提醒我們人類的重要性,這是我認為本書最大的優點。新技術的提出值得受到肯定,然而,在肯定其貢獻的同時,背後所付出代價卻往往會被忽略。本書在闡述新技術的同時,也很平衡地展示這些技術背後的代價。

就如同作者一再強調的,她肯定技術所帶來的好處,但我們必須思考如何在新技術所帶來的進步中,保有人類的主動性,或者說,如何在機器年代中當個人。

 

《打開演算法黑箱》書封

本文為《打開演算法黑箱:反噬的AI、走鐘的運算,當演算法出了錯,人類還能控制它嗎?》書評

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。