發想/製圖:鄭子宇(台大電機系)
延伸閱讀:
【科學史上的今天】06/13—馬克士威爾誕辰(James Clerk Maxwell, 1831-1879)
本文由 建研所 委託,泛科學企劃執行。
當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。
綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。
為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。
說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?
綠建築標章 | 智慧建築標章 | 綠建材標章 |
環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。
關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。
臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。
我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!
位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。
因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。
要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。
這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。
在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。
在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。
在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。
在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。
同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。
等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。
我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。
為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。
樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。
在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。
智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。
綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。
討論功能關閉中。
有些大家慣用的字彙常常會被專業學科借用,專家賦予這些字新的定義,比平常的意思更具體、也更有技術性。物理學有個例子是「功」(work)。如果向一個粒子施加定力,並推動一段距離,你所做的功就定義為施力(沿著粒子運動方向的分量)乘上粒子移動的距離。
這是個很具體的物理量,實際上也是能量的一種形式。做多少功,物體的能量就會增加多少。顯而易見的,這個定義和日常生活中我們對工作(work)的理解有點相關:世人為了完成一些目標(大多是想獲取金錢報酬),而費心費力工作。
不過,物理所講的功有明確的意義,使用的範圍也很清楚;相較之下,平常大家說的工作的意思就有些模糊,泛指很多事情。
動量(momentum)這個字看來不太一樣。物理學的動量是 γmv(相對論的珈瑪符號乘上物體靜止質量、再和物體速度相乘),是一種量化方式,用來描述粒子以已知速率往某個固定方向持續前進的傾向。若粒子的速率遠比光速小,γ會非常接近一, 所以能省略掉。
而更廣義的動力(momentum)用來指稱政治運動,或其他社會變動及政策背後的推力。同樣的,一件事的動力愈大,也暗示它愈難停下。不過,這些領域都沒有明確定義何謂「動力」。
到目前為止,我試著不要太常用一些字,但在之後的章節這些字會很常出現。其中一個就是「場」(-eld)。通常場是一片平坦土地的代稱,上頭種了些植物,可能有農夫在照顧,也許還會有幾頭乳牛。
此外這個字也可以代表特定的研究領域或專業,往前翻你就會知道我已經用過這個意思了。這兩個意思其實也可以合併使用,像在解釋稻草人為什麼可以獲得終生教職的時候,就會用到。
物理學的「場」有個更技術性,但還是和前面意義相關的定義。物理學家說的場是個物理量,在空間中某個區域的每個點上都有特定的對應值。如果你待在一個房間內,就可以用各式各樣的場來描述這個環境。身為一位物理學家,你或許會這麼做:
首先你要想出一個方式來明確指出房間中的每一個點。有個好辦法是先選定房間地面的某個角落為「原點」。
然後選取交於原點的其中一個牆面,沿著地面平行於這面牆的方向走過一段距離(稱為x);接著再順著平行另一面牆的方向走一段(稱為y),你就能碰到地上所有的點。進一步的,只要往上走段距離(叫作z),就可以抵達房間內所有的點了。你需要的只有三個數字:x、y、z。
現在可以來談談幾種有用的場了。舉例來說,溫度就是一種場,房間裡的每一點都有一個溫度值。假設平均來看,我們說房內的溫度是攝氏二十一度;如果房間中每一處的溫度都和平均值一樣,那麼你得到的就是一個常量場(constant field):場的值和點的位置無關,也就是和x、y、z沒有關係。
然而,天花板附近的溫度很有可能比地面的高出一點,因為熱空氣的密度比冷空氣小,會升向天花板。我們可以用某個場來描述溫度與高度的關係,好比T(z),換句話說,溫度T只和高度z有關。
T是z的函數(function。另一個生活常用字「功能」,這次是被數學家借去用了),可能像T(z) =20.5 + 0.5z,這裡的z以公尺為單位、而T以攝氏溫標(℃)為單位,舉例來說。在兩公尺高的房間內,地面的溫度是 20.5 + 0.5×0 = 20.5℃,而天花板的溫度則是 20.5 + 0.5×2 =21.5℃。
至於天花板和地板之間其他每一點的溫度,都可以用這個溫度場的函數計算出來。其他的場可以用來描述不同的事情,好比空氣密度,或甚至是噪音量。
以上所談的場在每個點都只由一個數字代表。這些場有大小,卻沒有方向。因此我們稱它為「純量場」(scalar -eld)。「純量」(scalar)代表只有大小、卻沒有方向的東西。
某些種類的場則擁有方向,我們叫這種場為「向量場」(vector field)。我之前有提到一些向量場的例子,像是大型強子對撞機的磁鐵製造的電場與磁場。這個房間也有重力場這個向量場。重力場在房內的每一點都有個值(力的大小大約是每公斤九.八牛頓),以及方向(指向地面)。
實際上,電場和磁場都是量子場,重力場可能也是,但科學家還不清楚相關理論。在日常用途中這件事常被忽略掉,但如果你在極小的尺度下觀察這些場,就會發現它其實不是個數值連續體,而是底層的量子場中一連串離散(discrete,意思是不連續,如階梯般一級一級,而不是如漸層色彩一樣柔和變化)的量子、或激發(excitation)的總和(疊加)。
這些激發有點像是波又有點像粒子。電磁學的量子理論―量子電動力學擁有兩個場,分別是光子場以及電子場。我們量測到的電磁波,或是獨立的光子及電子,都是這兩個場的激發。這裡我們又看到一個科學家借用日常名詞的例子。很明顯「激發」和平常我們的用法緊密相關,因為量子場論是個扣人心弦(exciting)的理論。
無論是不是量子理論,場的概念都是一樣的。場是個物理量,在你感興趣的空間範圍內的每一點,都擁有對應的值,可能是單純的數值或是很多個量子的總和。
——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。
統一電學、磁學、光學的理論,為相對論與通訊系統奠定基礎的馬克士威;制定絕對溫度,對熱力學與電學都做出重大貢獻的克耳文男爵。這兩位物理巨擘竟然也都和計算機有關係?事實上,正是拜他們之賜,面積儀才能演變為解微分方程的類比計算機。
本文為系列文章,上一篇請見:面積儀無法加減乘除,卻開創出「類比式計算機」新路│《電腦簡史》(二十二)
「把時間拉長,比如說一萬年後回頭看人類的歷史,十九世紀最重要的事件無疑是馬克士威發現了電動力學方程式。」──這是科學頑童費曼對馬克士威的讚譽。
愛因斯坦也推崇馬克士威的成就是「自牛頓以來,最深刻、最豐碩的觀念變革」。1999 年千禧年前夕,BBC 請一百位物理學家列出心目中最偉大的物理學家,結果馬克士威位居第三,僅次於愛因斯坦與牛頓。
許多人不知道,這位物理大師在理論物理之外,也曾投入機械設計,還因而影響了類比計算機的發明。
1855 年元月,二十三歲的馬克士威向蘇格蘭皇家藝術協會 (Royal Scottish Society of Arts) 提交一篇論文。他在這篇論文指出面積儀的缺失,並提出改良設計。原來面積儀的滾輪上下滑動時,位置不可能總是精確到位,以致數值會有誤差。馬克士威改用兩顆圓球取代滾輪與圓錐體,圓球固定在原地轉動,就不會有滑動偏差。
皇家藝術協會不但刊登這篇論文,還特地給予馬克士威 10 英鎊獎金(大約是當時工匠 45 天的工資),鼓勵他將所設計的新型面積儀製造出來。不過馬克士威什麼也沒做。
可能是他原本對製造就沒興趣,也可能是他在當年四月突然發現有個新的面積儀,構造簡單、攜帶方便,又可以適用於任何大小的圖。這當然就是阿姆斯勒於前一年發明的極座標面積儀,馬克士威的設計只改善了精確性,但在其它各方面卻都遠遠不及,或許因此他才打了退堂鼓。不過幸好如此,否則馬克士威如果真的投入面積儀的生產製造,不知道會不會影響到他後來提出改變世界的電磁理論。
雖然馬克士威設計的面積儀沒有成形,但是他的論文還是被大他九歲、同是英國物理學家的詹姆斯.湯姆森 (James Thomson) 注意到了。湯姆森認為極座標面積儀仍然有些許滑動偏差,不夠精確。於是他參考馬克士威的圓球設計,於 1864 年發明由轉盤、圓筒與圓球三者組成的面積儀,沒有滑動問題,構造又比馬克士威的原始設計簡單許多。
不過湯姆森也是紙上談兵,並未實際著手打造,甚至沒有公開發表,就此將面積儀拋諸腦後。沒想到十二年後,他遺忘許久的這個設計竟然再度浮現腦海,而激起他記憶之人是同為物理學家的弟弟威廉.湯姆森 (William Thomson) 。
威廉與詹姆斯相差二歲,但無論在學術理論或工程技術方面的成就,都遠遠超過哥哥,後來還因貢獻卓越而受封為克耳文男爵 (Baron Kelvin) 。絕對溫度的制定便是出自他的倡議,因此就以克耳文作為絕對溫度的單位名稱,記為 K。除此之外,熱力學與電學還有許多現象或定理也以克耳文為名,以表彰他所做出的重大貢獻。在工程技術方面,克耳文參與了大西洋海底電纜的鋪設、設計經由海底電纜發送電報的系統,還發明了許多科學儀器。
1867 年,克耳文開始思考預測潮汐的可能性。
英國四面環海,在當時海權時代,無論是對貿易或國防而言,掌握各個港口的潮汐漲落都至關重要。影響潮汐的主要因素當然是太陽與月球的引力,但是不同經緯位置所受的引力大小與角度都不相同,海底地形也會影響潮水的運動,加上地球本身就在旋轉,種種複雜因素互相作用,根本不可能憑物理公式直接算出漲退潮的時間。
克耳文採取的作法,是將潮汐變化的波形視為許多簡單的基本波形疊加的結果;每個基本波形都可以用三角函數表示,如此便是一個預測潮汐的數學模型。
這個模型的妙處在於不需要計算;不用算出三角函數的值,也不用一一加總。因為基本波形可以用圓周運動來表示,也就可以用輪軸旋轉來模擬(波的週期取決於轉速、振幅取決於半徑大小);適當地讓幾個輪軸連動便能模擬出波形疊加的結果,也就是潮汐的變化。
克耳文於 1873 年展示以此原理打造的潮汐預測機,用了八個連動的輪軸,轉動後會在標有時間軸的紙上,畫出潮汐的高度。
潮汐預測機雖然能自動疊加三角函數,不需人工計算,但這是在機器運轉之後。在機器建造之前,還是得用傅立葉分析 (Fourier analysis),找出組成潮汐變化的基本波形,才能知道輪軸的大小與轉速要設計成怎樣。而這牽涉到微分方程式的計算,相當複雜耗時。
如果是一勞永逸也就罷了,偏偏每個港口的潮汐變化都不同,各有各的傅立葉分析要做,太耗費時間了。難道這不能也用機器代勞嗎?
1876 年,克耳文向哥哥詹姆斯提及這個問題,詹姆斯突然想起自己十幾年前設計的面積儀——既然將微分方程中的項目積分可以解出方程式,或許面積儀可以派上用場。克耳文一聽其中原理,馬上明瞭若將兩台詹姆斯設計的面積儀整合在一起,讓第一台的圓筒連接到第二台的轉盤,相當於將前者的計算結果做為後者的輸入值,就可以解二階線性微分方程式。只要串接更多台面積儀,就能解更高階的微分方程式,做出更吻合潮汐變化的傅立葉分析。
他們兄弟倆很快完成論文,詹姆斯先發表他之前發明的面積儀,並提及克耳文發現的潛在應用。克耳文隨後再發表論文,詳述利用詹姆斯的面積儀解微分方程式的原理,並附上自己設計的「調和分析儀」 (Harmonic Analyser),專門用來做潮汐的傅立葉分析。兩年後,調和分析儀原型機問世,雖然只能做到波形的二次分析,但已經向世人證明機器可以解微分方程。以調和分析儀為基礎,後來又延伸出各種不同用途的類比計算機,分別用於熱力學、氣象學的分析,乃至火炮射擊的調控,都取得相當不錯的成效。
不過克耳文理想中,將很多台面積儀串接起來,組合成一部可解更高階微分方程式的分析儀,其實不可能做得到。因為第一台面積儀轉動所產生的扭力,不足以傳遞到後面的面積儀。這個問題是機械零件無法克服的,必須等到電子零件出現,才能解決扭力不足的問題,也才能打造出真正可解各種微分方程式的計算機。