發想/製圖:鄭子宇(台大電機系)
延伸閱讀:
【科學史上的今天】06/13—馬克士威爾誕辰(James Clerk Maxwell, 1831-1879)
本文與 威力暘電子 合作,泛科學企劃執行。
想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。
今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?
時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。
如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!
工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。
從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。
第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。
然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?
為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。
更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。
另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。
到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。
可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。
而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。
乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。
這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。
然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:
既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低
有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。
然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。
未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。
不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。
威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。
毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!
討論功能關閉中。
有些大家慣用的字彙常常會被專業學科借用,專家賦予這些字新的定義,比平常的意思更具體、也更有技術性。物理學有個例子是「功」(work)。如果向一個粒子施加定力,並推動一段距離,你所做的功就定義為施力(沿著粒子運動方向的分量)乘上粒子移動的距離。
這是個很具體的物理量,實際上也是能量的一種形式。做多少功,物體的能量就會增加多少。顯而易見的,這個定義和日常生活中我們對工作(work)的理解有點相關:世人為了完成一些目標(大多是想獲取金錢報酬),而費心費力工作。
不過,物理所講的功有明確的意義,使用的範圍也很清楚;相較之下,平常大家說的工作的意思就有些模糊,泛指很多事情。
動量(momentum)這個字看來不太一樣。物理學的動量是 γmv(相對論的珈瑪符號乘上物體靜止質量、再和物體速度相乘),是一種量化方式,用來描述粒子以已知速率往某個固定方向持續前進的傾向。若粒子的速率遠比光速小,γ會非常接近一, 所以能省略掉。
而更廣義的動力(momentum)用來指稱政治運動,或其他社會變動及政策背後的推力。同樣的,一件事的動力愈大,也暗示它愈難停下。不過,這些領域都沒有明確定義何謂「動力」。
到目前為止,我試著不要太常用一些字,但在之後的章節這些字會很常出現。其中一個就是「場」(-eld)。通常場是一片平坦土地的代稱,上頭種了些植物,可能有農夫在照顧,也許還會有幾頭乳牛。
此外這個字也可以代表特定的研究領域或專業,往前翻你就會知道我已經用過這個意思了。這兩個意思其實也可以合併使用,像在解釋稻草人為什麼可以獲得終生教職的時候,就會用到。
物理學的「場」有個更技術性,但還是和前面意義相關的定義。物理學家說的場是個物理量,在空間中某個區域的每個點上都有特定的對應值。如果你待在一個房間內,就可以用各式各樣的場來描述這個環境。身為一位物理學家,你或許會這麼做:
首先你要想出一個方式來明確指出房間中的每一個點。有個好辦法是先選定房間地面的某個角落為「原點」。
然後選取交於原點的其中一個牆面,沿著地面平行於這面牆的方向走過一段距離(稱為x);接著再順著平行另一面牆的方向走一段(稱為y),你就能碰到地上所有的點。進一步的,只要往上走段距離(叫作z),就可以抵達房間內所有的點了。你需要的只有三個數字:x、y、z。
現在可以來談談幾種有用的場了。舉例來說,溫度就是一種場,房間裡的每一點都有一個溫度值。假設平均來看,我們說房內的溫度是攝氏二十一度;如果房間中每一處的溫度都和平均值一樣,那麼你得到的就是一個常量場(constant field):場的值和點的位置無關,也就是和x、y、z沒有關係。
然而,天花板附近的溫度很有可能比地面的高出一點,因為熱空氣的密度比冷空氣小,會升向天花板。我們可以用某個場來描述溫度與高度的關係,好比T(z),換句話說,溫度T只和高度z有關。
T是z的函數(function。另一個生活常用字「功能」,這次是被數學家借去用了),可能像T(z) =20.5 + 0.5z,這裡的z以公尺為單位、而T以攝氏溫標(℃)為單位,舉例來說。在兩公尺高的房間內,地面的溫度是 20.5 + 0.5×0 = 20.5℃,而天花板的溫度則是 20.5 + 0.5×2 =21.5℃。
至於天花板和地板之間其他每一點的溫度,都可以用這個溫度場的函數計算出來。其他的場可以用來描述不同的事情,好比空氣密度,或甚至是噪音量。
以上所談的場在每個點都只由一個數字代表。這些場有大小,卻沒有方向。因此我們稱它為「純量場」(scalar -eld)。「純量」(scalar)代表只有大小、卻沒有方向的東西。
某些種類的場則擁有方向,我們叫這種場為「向量場」(vector field)。我之前有提到一些向量場的例子,像是大型強子對撞機的磁鐵製造的電場與磁場。這個房間也有重力場這個向量場。重力場在房內的每一點都有個值(力的大小大約是每公斤九.八牛頓),以及方向(指向地面)。
實際上,電場和磁場都是量子場,重力場可能也是,但科學家還不清楚相關理論。在日常用途中這件事常被忽略掉,但如果你在極小的尺度下觀察這些場,就會發現它其實不是個數值連續體,而是底層的量子場中一連串離散(discrete,意思是不連續,如階梯般一級一級,而不是如漸層色彩一樣柔和變化)的量子、或激發(excitation)的總和(疊加)。
這些激發有點像是波又有點像粒子。電磁學的量子理論―量子電動力學擁有兩個場,分別是光子場以及電子場。我們量測到的電磁波,或是獨立的光子及電子,都是這兩個場的激發。這裡我們又看到一個科學家借用日常名詞的例子。很明顯「激發」和平常我們的用法緊密相關,因為量子場論是個扣人心弦(exciting)的理論。
無論是不是量子理論,場的概念都是一樣的。場是個物理量,在你感興趣的空間範圍內的每一點,都擁有對應的值,可能是單純的數值或是很多個量子的總和。
——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。
統一電學、磁學、光學的理論,為相對論與通訊系統奠定基礎的馬克士威;制定絕對溫度,對熱力學與電學都做出重大貢獻的克耳文男爵。這兩位物理巨擘竟然也都和計算機有關係?事實上,正是拜他們之賜,面積儀才能演變為解微分方程的類比計算機。
本文為系列文章,上一篇請見:面積儀無法加減乘除,卻開創出「類比式計算機」新路│《電腦簡史》(二十二)
「把時間拉長,比如說一萬年後回頭看人類的歷史,十九世紀最重要的事件無疑是馬克士威發現了電動力學方程式。」──這是科學頑童費曼對馬克士威的讚譽。
愛因斯坦也推崇馬克士威的成就是「自牛頓以來,最深刻、最豐碩的觀念變革」。1999 年千禧年前夕,BBC 請一百位物理學家列出心目中最偉大的物理學家,結果馬克士威位居第三,僅次於愛因斯坦與牛頓。
許多人不知道,這位物理大師在理論物理之外,也曾投入機械設計,還因而影響了類比計算機的發明。
1855 年元月,二十三歲的馬克士威向蘇格蘭皇家藝術協會 (Royal Scottish Society of Arts) 提交一篇論文。他在這篇論文指出面積儀的缺失,並提出改良設計。原來面積儀的滾輪上下滑動時,位置不可能總是精確到位,以致數值會有誤差。馬克士威改用兩顆圓球取代滾輪與圓錐體,圓球固定在原地轉動,就不會有滑動偏差。
皇家藝術協會不但刊登這篇論文,還特地給予馬克士威 10 英鎊獎金(大約是當時工匠 45 天的工資),鼓勵他將所設計的新型面積儀製造出來。不過馬克士威什麼也沒做。
可能是他原本對製造就沒興趣,也可能是他在當年四月突然發現有個新的面積儀,構造簡單、攜帶方便,又可以適用於任何大小的圖。這當然就是阿姆斯勒於前一年發明的極座標面積儀,馬克士威的設計只改善了精確性,但在其它各方面卻都遠遠不及,或許因此他才打了退堂鼓。不過幸好如此,否則馬克士威如果真的投入面積儀的生產製造,不知道會不會影響到他後來提出改變世界的電磁理論。
雖然馬克士威設計的面積儀沒有成形,但是他的論文還是被大他九歲、同是英國物理學家的詹姆斯.湯姆森 (James Thomson) 注意到了。湯姆森認為極座標面積儀仍然有些許滑動偏差,不夠精確。於是他參考馬克士威的圓球設計,於 1864 年發明由轉盤、圓筒與圓球三者組成的面積儀,沒有滑動問題,構造又比馬克士威的原始設計簡單許多。
不過湯姆森也是紙上談兵,並未實際著手打造,甚至沒有公開發表,就此將面積儀拋諸腦後。沒想到十二年後,他遺忘許久的這個設計竟然再度浮現腦海,而激起他記憶之人是同為物理學家的弟弟威廉.湯姆森 (William Thomson) 。
威廉與詹姆斯相差二歲,但無論在學術理論或工程技術方面的成就,都遠遠超過哥哥,後來還因貢獻卓越而受封為克耳文男爵 (Baron Kelvin) 。絕對溫度的制定便是出自他的倡議,因此就以克耳文作為絕對溫度的單位名稱,記為 K。除此之外,熱力學與電學還有許多現象或定理也以克耳文為名,以表彰他所做出的重大貢獻。在工程技術方面,克耳文參與了大西洋海底電纜的鋪設、設計經由海底電纜發送電報的系統,還發明了許多科學儀器。
1867 年,克耳文開始思考預測潮汐的可能性。
英國四面環海,在當時海權時代,無論是對貿易或國防而言,掌握各個港口的潮汐漲落都至關重要。影響潮汐的主要因素當然是太陽與月球的引力,但是不同經緯位置所受的引力大小與角度都不相同,海底地形也會影響潮水的運動,加上地球本身就在旋轉,種種複雜因素互相作用,根本不可能憑物理公式直接算出漲退潮的時間。
克耳文採取的作法,是將潮汐變化的波形視為許多簡單的基本波形疊加的結果;每個基本波形都可以用三角函數表示,如此便是一個預測潮汐的數學模型。
這個模型的妙處在於不需要計算;不用算出三角函數的值,也不用一一加總。因為基本波形可以用圓周運動來表示,也就可以用輪軸旋轉來模擬(波的週期取決於轉速、振幅取決於半徑大小);適當地讓幾個輪軸連動便能模擬出波形疊加的結果,也就是潮汐的變化。
克耳文於 1873 年展示以此原理打造的潮汐預測機,用了八個連動的輪軸,轉動後會在標有時間軸的紙上,畫出潮汐的高度。
潮汐預測機雖然能自動疊加三角函數,不需人工計算,但這是在機器運轉之後。在機器建造之前,還是得用傅立葉分析 (Fourier analysis),找出組成潮汐變化的基本波形,才能知道輪軸的大小與轉速要設計成怎樣。而這牽涉到微分方程式的計算,相當複雜耗時。
如果是一勞永逸也就罷了,偏偏每個港口的潮汐變化都不同,各有各的傅立葉分析要做,太耗費時間了。難道這不能也用機器代勞嗎?
1876 年,克耳文向哥哥詹姆斯提及這個問題,詹姆斯突然想起自己十幾年前設計的面積儀——既然將微分方程中的項目積分可以解出方程式,或許面積儀可以派上用場。克耳文一聽其中原理,馬上明瞭若將兩台詹姆斯設計的面積儀整合在一起,讓第一台的圓筒連接到第二台的轉盤,相當於將前者的計算結果做為後者的輸入值,就可以解二階線性微分方程式。只要串接更多台面積儀,就能解更高階的微分方程式,做出更吻合潮汐變化的傅立葉分析。
他們兄弟倆很快完成論文,詹姆斯先發表他之前發明的面積儀,並提及克耳文發現的潛在應用。克耳文隨後再發表論文,詳述利用詹姆斯的面積儀解微分方程式的原理,並附上自己設計的「調和分析儀」 (Harmonic Analyser),專門用來做潮汐的傅立葉分析。兩年後,調和分析儀原型機問世,雖然只能做到波形的二次分析,但已經向世人證明機器可以解微分方程。以調和分析儀為基礎,後來又延伸出各種不同用途的類比計算機,分別用於熱力學、氣象學的分析,乃至火炮射擊的調控,都取得相當不錯的成效。
不過克耳文理想中,將很多台面積儀串接起來,組合成一部可解更高階微分方程式的分析儀,其實不可能做得到。因為第一台面積儀轉動所產生的扭力,不足以傳遞到後面的面積儀。這個問題是機械零件無法克服的,必須等到電子零件出現,才能解決扭力不足的問題,也才能打造出真正可解各種微分方程式的計算機。