Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

你想用「大腦觀測器」窺看誰的心?-《為什麼我們經常誤解人心?》

PanSci_96
・2015/04/20 ・3099字 ・閱讀時間約 6 分鐘 ・SR值 520 ・七年級
相關標籤:

為什麼我們經常誤解人心

要得知你實際的能力如何,且讓我們從一種極為常見也非常重要的心智判讀行為談起:也就是猜想別人對你的印象。

日常生活中,我們有一大部分的心力都投注於了解自己如何受到別人的評價,以便藉此營造出適當的形象。你的上司是否認為你才智過人?同事喜不喜歡你?部屬聽得懂你的指示嗎?鄰居是否覺得你可以信賴?配偶真的愛你嗎?如果你年輕又單身,那麼更重要的問題也許是:別人是否覺得你充滿魅力?

實際上,知道別人對你有什麼觀感,似乎是一般人最想讀懂人心的原因。

在一項調查裡,史黛佛和我從網路上隨機抽樣五百位美國網友,要求他們想像我們發明了一種「大腦觀測器」,可看見別人的心思。我們要求作答者想像這種儀器能讓他們精確知道別人的想法與感受,然後再詢問他們,想把大腦觀測器用在什麼人身上,以及他們想要藉此得知什麼事情。令我們略感意外的是,那些作答者並沒有想要了解富豪、名人或者權勢人物的心思,絕大多數人想要窺探心思的對象,都是自己身邊最親近的人,尤其是配偶與情人,也包括了上司、家人與鄰居。

-----廣告,請繼續往下閱讀-----

值得注意的是,他們想要窺探心思的對象,都是他們理當最了解的人。此外,作答者最想得知的事情,則是那些人「怎麼看待他們」。大多數人都把大腦觀測器當成魔鏡使用,宛如自戀狂。

這種想法其實不錯。想知道自己在別人眼中的形象,其實是困難到會讓你嚇一跳的事情。有個以不同群體為單位的實驗,實驗對象必須針對一系列特徵項目,預測群體中的其他成員對他們會有什麼評價。接著,研究人員再把預測結果和其他成員實際上提出的評價拿來比對。每一項實驗裡使用的特徵各自不同,包括了聰明度、幽默感、體貼程度、防衛心、友善態度以及領導能力。群體成員的親近程度也各自不同,有些實驗對象的群體成員互不熟悉(例如只在工作面試中見過一次),有些則是非常熟悉(例如長時間共同生活的室友)。

人如果能夠精確知道別人心中的想法,那麼預測結果與實際上的評價就會彼此相符。如果對別人心中的想法一無所知,那麼這兩者就不會有任何相符之處。就統計學上而言,這樣的相符關係可由相關係數衡量,完全相符的相關係數是一,完全不相符的相關係數是0。相關係數越接近一,相符的程度就越高。

先說好消息。實驗結果顯示,一般人整體而言相當善於猜測群體中其他人對自己的評價。在這些實驗當中,預測結果與實際評價之間的整體相關程度相當高(讀者如果有興趣知道的話,相關係數是0.五五)。客觀來看,這樣的相關程度與父親和兒子的身高相關性(相關係數約為0.五)強度相當,可見我們雖然無法精確掌握自己在別人心目中的形象,卻也絕對不算是一無所知。換句話說,你平均上大概頗為清楚別人對你的觀感。

-----廣告,請繼續往下閱讀-----

接下來是壞消息。實驗中也評估人推測群體中個別成員如何評價自己的預測能力。例如你也許知道同事普遍認為你還算聰明,但他們每個人卻其實各有各的印象。有些人認為你犀利敏銳,有些人則認為你不甚機靈。你知道自己的形象在每個人心目中的差別嗎?

答案很明顯是否定的,準確率並不比盲目猜測好上多少(預測結果與實際評價的整體相關係數為○.一三,只比完全不相關略高一點)。你雖然多少感覺得到同事認為你有多聰明,但到底哪些同事認為你才智出眾,哪些同事又不這麼認為,你卻似乎毫無概念。誠如這份研究報告的作者之一所寫的:「人對於特定的旁人如何看待自己,似乎只擁有極其有限的理解。」

不過,這麼說會不會對你的人心判讀能力太嚴苛了?畢竟,才智與可靠性等特質很難精確界定,所以在這些模稜兩可的特質上難以猜測出別人對我們的評價,也許並不令人意外。要是預測其他比較簡單的事情呢?例如別人有多麼喜歡你?你無疑比較擅長這一點。經過一段時間的學習之後,你懂得待在那些對你面露微笑的人身邊,並且避開那些對你吐口水的人。你一定比較知道群體裡的哪些人喜歡你,哪些人討厭你,對不對?

恐怕不對。前述實驗發現,人對於群體中哪些人喜歡或不喜歡自己,預測的結果比起隨機猜測好不了多少(這方面的平均相關係數僅有0.一八)。你的同事當中有些人喜歡你,有些人不喜歡,但我不認為你會知道他們分別是哪些人。另外,實驗中還探究了其他面向的推測行為,包括快速交友活動參與者能否評估出哪些人想要和自己進一步認識、工作應徵者能否判斷哪些面試官對自己懷有良好印象,乃至教師能否預測自己的教學滿意度,結果都顯示,準確率同樣不比隨機猜測高出多少。當然,你對別人對你的評價很少會一無所知,在實驗中的準確率是比隨機猜測來得高,但不必然高出許多。

-----廣告,請繼續往下閱讀-----

不過,要求你全面而廣泛地做到精準判斷,也許還是對你的第六感期待太高。要是嘗試另一種更簡單的東西呢?

例如一件具體明確的事物,而且你可能已經在那上面花過不少時間思考與學習?你能不能準確預測一名異性看到你某張照片之後,會認為你有多麼迷人?畢竟,你這輩子無時無刻都與自己相處,每天早上都會看著鏡中的自己,判斷著別人會不會覺得你的外表迷人。在人生中的某些時期(也許你目前正處於這樣的時期),你甚至可能滿腦子想的都是這件事。儘管如此,在伊亞爾和我做的一系列實驗中,我們為實驗對象拍攝照片,拿給一名異性看,再要求實驗對象預測那名異性會認為他們有多麼迷人,結果發現一般人的預測並不比隨機猜測來得準確。在兩項不同的實驗裡,預測結果與實際評價之間的整體相關係數乃是「0」。並不是說所有實驗對象都一致高估自己的迷人程度,只是他們針對自己的照片能夠對別人產生多大的吸引力所提出的預測,與那張照片實際上受到的評價毫無關係。一般常說愛情是盲目的,但這些實驗對象卻根本談不上被愛情遮蔽,而且還沒開始就已經盲目了。

第六感所面對的主要挑戰,在於別人的內心思緒只會透過表面上的表情、姿態及言語透露出來。人類不但演化出藉由表面線索推測實際狀況的能力—判讀人心,也發展出利用外表誤導別人的技能—瞞騙、詐欺。

只要是被人問過:「我穿這條褲子,屁股看起來會不會很大?」這個問題的人,都知道你對別人說的話並不一定反映你真心的感受。儘管如此,研究人員卻一再發現,我們對於別人是否說了實話的猜測,實實在在就只是猜測而已。小布希與普丁初次會面的時候,他覺得自己彷彿藉著判讀這位前國安會特工的言行舉止,而得以對他內在的「心靈」獲得了相當多的了解。這我可不相信。一群研究人員評估了數十年來的研究與幾百個實驗—那些研究與實驗的目的,都在於衡量人有多麼善於分辨實話與假話—結果發現人察覺欺瞞的能力,僅比隨機拋擲硬幣好上幾個百分點:一般人察覺欺瞞的整體準確度只有百分之五十四,而隨機猜測的準確度則是百分之五十。

-----廣告,請繼續往下閱讀-----

這種錯誤可不是開玩笑。有時候,這樣的錯誤可能導致嚴重後果。英國首相張伯倫在任期間,相信了希特勒在一九三八年保證捷克斯洛伐克能夠維持和平的說法,於是建議捷克人不必動員軍隊。張伯倫表示:「儘管我覺得他的臉上流露出冷酷無情的個性,卻在他做出承諾的時候認為這是一個說話可靠的人。」他錯了。希特勒其實騙了他,因為當時希特勒已經動員軍隊準備攻打捷克斯洛伐克,只需多爭取一點時間,以確保能夠一舉徹底打垮對方。將近七十年後,美國官員學到了不能相信壞蛋,因此,儘管海珊一再聲稱自己沒有大規模毀滅性武器,他們卻認定他一定是在說謊。不過,那些官員再次犯了錯,就像當時絕大多數的美國民眾一樣。在海珊說了實話的情況下,美國人卻因為誤以為他說謊而發動了戰爭。由此可以輕易看出,你一旦無法分辨別人什麼時候試圖誤導你,什麼時候說的又是實話,那麼了解別人就會是一件極為困難的事情。

本文節錄自《為什麼我們經常誤解人心?》,究竟出版社

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2475 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
環境共生的牆:冠軍磁磚如何幫建築降溫
鳥苷三磷酸 (PanSci Promo)_96
・2025/08/29 ・4556字 ・閱讀時間約 9 分鐘

本文與 冠軍磁磚 合作,泛科學企劃執行

夏天早已不是可以輕忽的季節巨獸,就連位於中高緯度的歐洲也深受其威脅。然而,在德國漢堡,有一棟建築不僅不用付電費,還能自行發電,同時維持室內恆溫。它的秘密武器,不是屋頂上的太陽能板,而是長在牆壁上的「太陽能葉片」(SolarLeaf)

這面牆不是冰冷的水泥,而是一片片富有生命力的綠色面板,正式名稱是「光合生物反應器」。它由四層玻璃製成,僅 2 公分寬的玻璃空腔內,充填著 24 公升的微藻培養液。為了讓藻類保持活力,系統會定時從底部打入回收自鄰近設施的二氧化碳。產生的大量氣泡不僅提供光合作用所需的原料,還產生「氣舉效應」(airlift effect):向上浮力會帶動周圍的液體一起向上運動,產生液體流動、持續攪動培養液,就像為藻類進行 SPA 按摩,確保每顆藻都能均勻曬到陽光。

產生的大量氣泡不僅提供光合作用所需的原料,還產生「氣舉效應」(airlift effect)/ 照片:© Colt International、Arup Deutschland、SSC GmbH

在這過程中,微藻吸收日光,提供了動態的遮陽效果,並透過光合作用將能量轉化為可儲存的生物質。與僅能吸熱的水泥牆不同,這片牆真正「存住」了太陽能,同時避免城市熱島效應。更重要的是,這些反應器還能蒐集住家與周邊建築燃燒或煮菜所排放的二氧化碳,將其迅速封存於藻類體內。

-----廣告,請繼續往下閱讀-----

聽起來像科幻小說?別急,這才只是今天要介紹的第一種前衛建築。接下來,還有用真菌「種」出來的隔熱磚、會隨太陽軌跡跳舞的窗花,以及在台灣就能落實的降溫磁磚設計。在這些千變萬化的創新方法中,總有一款會讓你眼睛一亮。它們不僅節能省錢,更代表一種與環境共生的全新可能。

不只種藻,還能「種磚」

要讓建築自我降溫,科學家的靈感往往向自然界取經。前面提到的 SolarLeaf 是極致案例,但如果不想大動工程,也可以從「建材本身」著手。最常見的方法是鋪設隔熱磚,而有些科學家則做出更環保的版本,不是培養微藻,而是「種真菌」。

作法是先將稻殼、稻草、鋸末或紙漿廢料滅菌,去除雜菌後再將這些基材混入菌種,灌入特定形狀的模具。接著在攝氏 20~25 度、濕度控制良好的條件下,菌絲體便會自行生長,像一種有生命的「超級膠水」,分泌酵素分解廢料當作養分。並將它細長的纖維網絡穿透、包裹、纏繞所有廢棄物顆粒,把所有廢棄物緊緊地固化成一塊緻密的隔熱板 。整個過程約需 5 至 21 天。

這種材料的熱傳導係數介於 0.03~0.07 W/m·K之間,性能已能與常見的保麗龍板或礦棉相媲美。原因在於菌絲體本身是由真菌生長出的細長纖維所構成,纖維之間會自動交織形成一個三維網絡。當它「吃掉」農業廢料並填滿模具後,就會生成密實卻輕盈的纖維結構,材質類似「天然泡棉」,但更為堅固。

-----廣告,請繼續往下閱讀-----

想像一座由菌絲長出的「無限城」:熱能被困在層層彎曲的通道裡,難以迅速穿過。熱走得越慢,隔熱效果就越好。這種材料最大的優勢在於生命週期完整,它以廢棄物為食、生產過程低耗能,最後還能完全被生物分解,回歸大地。

菌絲體本身是由真菌生長出的細長纖維所構成,纖維之間會自動交織形成一個三維網絡/ 照片:©https://ecovative.com/

目前這項技術最成熟的應用來自美國 Ecovative Design 公司,他們利用大麻稈或玉米莖等農業廢棄物培養菌絲。2024 年,該公司啟動「鳳凰計劃」(The Phoenix),在加州奧克蘭打造一個含有三百間住宅的社區,外牆便採用這種菌絲材料。由於原料取得容易,只要有農業廢棄物與菌種,就能培養出建材,應用範圍從建築延伸到日常使用的包裝材料,潛力無窮。

生物混凝土:讓苔蘚在牆上自然降溫

藻類、真菌還不夠?那就再「種」苔蘚。

西班牙加泰隆尼亞理工大學的研究團隊開發出一種名為 「生物混凝土」 的創新材料,其設計宗旨在於支持苔蘚、地衣等微生物的生長。

這種材料是一個多層系統:第一層是結構層,也就是標準混凝土,負責承重;第二層是防水層,保護內部結構不受水分侵蝕;第三層則是最外面的生物層,經特殊處理的外層,其孔隙率和表面粗糙度經過調整,利於捕捉和保持雨水,為微生物的定殖提供一個理想的生活環境。 

-----廣告,請繼續往下閱讀-----

這個「活的」表面帶來多重效益:植被層本身形成了一層隔熱層,更關鍵的是,其保水能力使其可以透過蒸發冷卻(evaporative cooling)來主動降低牆體表面溫度,從而顯著減少建築的熱增益 。   

不過,從藻類到真菌,再到苔蘚,這樣住個房子還要考慮陽光、空氣、水,難道沒有更方便的方法嗎?

外牆乾掛系統:利用空氣與模組化磁磚實現隔熱

如果不想「種生物」,也可以透過工程手法和巧妙設計來降溫,那就是第四種方法「外牆乾掛系統」

它的原理,其實就是用了最便宜的隔熱材料:空氣。傳統牆壁中,磁磚是用水泥直接黏死,但乾掛系統透過金屬骨架,將外層飾面板「掛」在建築結構外,中間刻意留出一個連續的空氣腔。

-----廣告,請繼續往下閱讀-----
傳統牆壁中,磁磚是用水泥直接黏死,但乾掛系統透過金屬骨架,將外層飾面板「掛」在建築結構外,中間刻意留出一個連續的空氣腔 / 圖片來源:冠軍建材

為什麼有效?普通水泥的導熱係數約在 1.5–2.0 W/(m·K),而靜止空氣在標準條件下約 0.025 W/m·K,兩者相差了 70 倍。也就是說,傳統水泥建築在太陽照射下,熱量會直接傳入室內;而使用外牆乾掛系統的建築,就像多了一層隔熱盾,從一開始就將大部分熱量隔絕在外。這種方法的最大優勢,是不需研發複雜的新材料或製程,關鍵在於將瓷磚模組化,只要能安裝到外牆乾掛系統上,磁磚的樣式、顏色和種類也可以一樣多元。

在台灣,磁磚龍頭「冠軍建材」便推出了應用這原理的系統。該公司委託成功大學實驗室進行隔熱試驗,結果顯示:2 公分厚磚搭配特定乾掛工法,熱傳透率(U 值)可達 1.66 W/m²K,符合高性能綠建材 U 值需低於 1.8 的標準。這不僅能讓室內降溫約 4°C,空調用電還可減少 24–36%

屋頂同樣是最曬重災區。全球建築師常用屋頂綠化或太陽能板降低陽光的熱吸收,而冠軍建材提供更簡單的方法:將屋頂磁磚架高。他們的架高節能工法,採用義大利 ETERNOIVICA 架高器,將磁磚架高 15 公分。別小看這 15 公分,就能阻絕 90% 的熱傳導,並讓樓板降溫 15°C

這種降溫方式不影響美觀與安全性。冠軍建材推出了大理石、石紋等多種質感的磁磚,價格約為天然石材的 3 到 5 成。同時,其外牆乾掛節能工法也通過了17級風雨試驗、50 公斤多次撞擊測試,即便在地震、颱風頻繁的台灣,也能安心使用。產品具高抗折強度、低吸水率,可抵抗酸雨、風化等問題引起的剝落風險,並兼具耐火、防水、耐磨、防滑及易保養等優點。

-----廣告,請繼續往下閱讀-----
冠軍建材推出了大理石、石紋等多種質感的磁磚,其外牆乾掛節能工法也通過了17級風雨試驗、50 公斤多次撞擊測試。/ 圖片來源:冠軍建材

雖然不是生物建材,但冠軍製造的建材仍符合廢棄物減量(Reduce)、再利用(Reuse)及再循環(Recycle)的3R原則。他們在生產中使用廢陶瓷粒料、無機污泥及非有害廢集塵灰等回收料,並與大型建設公司合作回收工地廢磚。產品運至工地後,切割產生的邊角料亦會回收再利用。冠軍建材將永續理念融入生產,產品使用了50%的生產循環回收料、6.5%的廢陶瓷粒料與43.5%的天然原料,有效減少了廢棄物並降低碳排。

顛覆想像:三大建築降溫策略

到這裡,我們介紹的都是利用被動方式將熱量隔絕在外的方法。接下來,來看看幾種由工程師顛覆傳統想像、腦洞大開的「讓建築主動降溫的策略」。

1. 水源熱泵:讓水域成為建築的低耗電恆溫空調

第一個方法,是用更大尺度的環境系統來調節建築溫度—水源熱泵(Water‑Source Heat Pump, WSHP)。

-----廣告,請繼續往下閱讀-----

想像一台超大的冷氣機,冷媒在密閉管路裡吸收室內的熱量後蒸發,再進入壓縮機被壓縮後凝結,並釋放熱量。依照熱力學定律,熱總是從高溫流向低溫,如果想要讓熱量逆向流動,就需要消耗能量。也就是說,當室外空氣溫度越高,要再把熱量搬到空氣中,就需要耗費更多電力。

工程師們想到,比起氣溫會隨季節劇烈起伏,水體的溫度相對穩定,冬暖夏涼。像河川、湖泊,甚至城市污水系統,都能當作一個大型的「散熱水冷排」。如果熱量不是排進空氣中,而是排進溫度較低的水中,需要消耗的電力就可以下降。

研究顯示,空氣源熱泵的性能係數(COP)約為 2.33,每消耗 1 焦耳的電力,可搬運 2.33 焦耳的熱能;而使用水作為冷卻源的水源熱泵的平均 COP 可穩定在 3.9左右,比空氣源熱泵高出 67%。更棒的是,水源熱泵不只在夏天吹冷氣省電,只要反過來運作,讓熱泵把熱量從室外搬到室內,也能在冬天開暖氣時幫你省電。等於整個水域都是我家的低耗電恆溫空調。

2. 動態遮陽外牆:讓建築自己追著太陽動

-----廣告,請繼續往下閱讀-----

第二個方法,是讓建築的外牆自己能動起來。位於阿布達比的 Al Bahar Towers,它的整個外牆被超過1000個獨立的、傘狀的六角形遮陽單元所覆蓋,這些單元的設計靈感來自傳統伊斯蘭窗花「Mashrabiya」。

位於阿布達比的 Al Bahar Towers,它的整個外牆被超過1000個獨立的、傘狀的六角形遮陽單元所覆蓋 / 圖片來源:shutterstock

每個單元由 PTFE(聚四氟乙烯)面板構成,並由線性致動器驅動,整個系統由電腦集中控制,程式會追蹤太陽軌跡,在東、南、西向立面上,於最需要遮陽的時刻與位置提供蔭蔽。系統還配備感測器,在強風或陰天時自動收回遮陽單元以保護結構。

這套動態系統可減少超過 50% 的太陽熱增益,顯著降低空調負荷,使整體空調設備規模減少 20%,資本成本降低 15%,冷氣負載下降 15%,每年更能減少超過1750公噸的二氧化碳排放。

3. 電致變色智慧玻璃:光與熱量隨心控制

最後,概念相同但更簡潔的方法,那就是「電致變色智慧玻璃」(EC Glass)。這種內部,有一層由氧化鎢製成的電致變色層 。只需施加 3–5 伏特微弱電壓,玻璃中的鋰離子就會開始移動,改變材料的光學特性,讓玻璃從透明變成深色,進而阻擋陽光與熱量 。

它最大的優點,就是只有在「切換顏色」的那一瞬間才耗電,一旦固定在透明或深色狀態,耗電量就是零 。研究顯示,在炎熱氣候下,這種玻璃可以節省10%-58%的空調耗能 。

結語

從會呼吸的藻類牆、運用大地熱能的水源熱泵,到巧妙駕馭空氣流動的通風帷幕,以及能追蹤太陽軌跡的智慧窗花,我們可以看到,未來建築的趨勢已不再只是「遮風避雨」,而是一個個高度整合、能與環境互動的複雜系統。

展望未來,建築不太可能依賴單一技術主宰,而更可能透過多種技術的智慧整合,創造出更高效、可持續且環境友善的建築方案。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
通向未來的原子薄膜:二維材料
顯微觀點_96
・2025/09/02 ・4123字 ・閱讀時間約 8 分鐘

本文轉載自顯微觀點

在古典科學觀念中,材料在物理學上的內含性質(intensive property)就如同它們的指紋,足以辨識材料成分的身分、本質,不會因材料大小、形狀而改變。但是 21 世紀的科學家卻發現,將材料剝離分解到無法更薄、僅剩 1 層原子厚的二維平面,竟會出現超導體、超流體、活躍強健的激子等奇特現象,與原本的物理性質大異其趣。

這種新興的「二維材料(2-dimensional materials)」物理不僅召喚著科學家的濃厚好奇心,也具備科技創新的潛力。要探究二維材料這些超越既有材料科學認知的神祕特性,就要從量子世界中的電子行為「能帶理論」談起。

決定材料性質的電子能帶

能帶理論(Energy Band Theory)是以高低不同的「能量帶」空間觀念,對晶體中的電子行為進行解讀:電子平時處於能量較低的價電子帶(亦稱價帶,covalence band)。此能帶的電子受到原子核束縛,不能自由運動,且許多電子塞滿其中,沒有流動空間,因此價帶中的電子不能導電。

-----廣告,請繼續往下閱讀-----

若從外來光子獲得足夠能量,電子會躍升到傳導帶(亦稱導帶, conduction band),在此空間充沛的能帶,電子能夠自由移動,在外部電場的作用下形成電流、展現出導電性。

電子能帶中的「能隙」大小,左右著電子躍升導帶的難易,也決定了材料的導電性。

導帶、價帶之間的能量帶稱為「能隙(band gap)」,是電子無法停留的能帶位階,不同種類晶體的能隙大小不同,電子由價帶升往導帶的難易度因此相異。若價帶電子得到的外來能量並未超過能隙大小,就沒辦法升往導帶。

金屬晶體具有極小的能隙,某些金屬的導帶與價帶甚至重疊,因此電子可以輕易進入導帶,展現出良好導電性。而絕緣體的能隙極大,電子難以躍升到導帶,因此困在價帶,無法導電。半導體介於金屬與絕緣體之間,在適當的能量激發或能隙調整下,就能展現導電性,人類得以調控電訊號。

備受眾望的石墨烯,終究因為其沒有電子能隙、導電性過佳,難以成為實用的半導體材料。但是另一種二維材料:過渡金屬二硫族化物(Transition Metal Dichalcogenides, TMD)卻展現出了可調控的導電性,讓半導體產業界的希望之火繼續燃燒,也為物理學界展開寬闊的未知境地。

-----廣告,請繼續往下閱讀-----

未來的超級材料:TMD

TMD二維材料的大型原子之間具有原子核、電子的相互作用,產生一般材料罕見的超導特性與巨磁阻,成為具備高潛力的半導體材料。從上方觀察,TMD如石墨烯一般形成六角形晶格平面,但從側面看,會發現上下兩層硫族原子將金屬原子夾在中央,猶如一個原子三明治。

單層的 TMD 結構,從側面看到三層原子面(a),從上方看則有類似石墨烯的六角形晶體(b)。Source: Wikipedia

在TMD的原子三明治菜單上,二碲化鎢(WTe2)、二硫化鉬(MoS2)、二硫化鎢(WS2)、二硒化鉬(MoSe2)、二硒化鎢(WSe2)等,都是極具潛力的二維層狀半導體材料。

這些潛力TMD與石墨烯相似的不僅是晶格排列模式,同時它們也具有強力的層內共價鍵與薄弱的層間凡德瓦力,這種力量分配讓它們更容易剝離成單層結構。相較之下,其他材料(例如純金屬)通常具備延伸共價鍵或金屬鍵,材料塊不容易層層剝落、難以形成單層二維材料。

TMD 單層分子平面成形之後,電子能帶結構會從原本的間接能隙轉變為直接能隙,使互相吸引的導帶電子與價帶電洞(即為激子)結合時直接放出光子。在間接能隙結構中,激子結合的能量會轉換為熱能,不利於能量或訊號傳輸。單層 TMD 的直接能隙則讓它們在光照之下,可以透過電子活動而激發出螢光,成為光致發光(photoluminescene)的良好材料。

-----廣告,請繼續往下閱讀-----
硒化鍺(GeSe)與硒化錫(SnSe)的二維材料形成異質結構,並以石墨烯為基板,展現出不同的物理特性。電子便在此有限的空間架構中,展現出異於常態的行為。

矽或鍺等等電子元件常見材料,在二維狀態下依然保持間接能隙,能量會化為熱能,不會轉換為光。因此 TMD 二維材料取代傳統材料,成為產業界創新光電材料的希望所在。

透過顯微操作,科學家更利用 TMD 的層間凡德瓦力,將不同的 TMD 二維材料疊合、錯位,形成異質結構(Heterostructures),透過材料堆疊位置調整電子能帶,產生如超導體或莫特絕緣體等特殊物理現象。就像在玩奈米尺度的樂高積木,只是成果比樂高更令人驚奇。電子在異質結構中產生的新奇行動模式,有機會應用在量子計算、奈米元件等領域。

此外,TMD 二維材料本質上比石墨烯更加特殊之處,是其中的金屬原子質量較重,導致更強的電子自旋-軌道耦合(Spin-Orbit Coupling, SOC)效應,於是 TMD 在 2 個電子能谷(Energy Valleys)中表現不同的電子特性,使科學家能夠操縱電子的「谷自由度」來進行訊號傳輸(類似1與0的二進位訊號)。

透過不同於傳統半導體的超導、絕緣、谷電子學性質,TMD 二維材料可以提供極快速、低耗能的訊號調控與傳導,在小於奈米的空間中,也能保持訊號精確。此外,由於激子的活動現象,二維材料也更有機會實現利用光子傳輸訊號的計算機元件。

-----廣告,請繼續往下閱讀-----

在家裡研究量子物理

提及激子的研究方法,台灣大學人工低維量子材料物理實驗室(Quantum Physics of Artificial Low-dimensional Materials Lab, 又稱 QPALM 實驗室)主持人陳劭宇解釋,雖然量子力學被多數人視為難以捉摸的神秘領域,但製作二維材料的方法卻可以非常貼近日常生活。

陳劭宇副研究員除了專精於二維材料的實驗設計與操作,也積極推廣二維材料物理的知識與重要性。攝影:楊雅棠

陳劭宇說,「我們實驗室最常用來製作二維材料的工具,你一定也用過,就是有名的 Scotch Tape 法。」

Scotch Tape 法又稱機械剝離法(exfoliation):使用膠帶黏住小塊材料,材塊對面再以膠帶黏貼,接著將兩側膠帶撕開,就會將材料一分為二。如此反覆黏撕,最後出現極為單薄的單層二維材料。這也是當年海姆(A. Geim)與諾沃蕭洛夫(S. Novoselov)將石墨塊製作成單層石墨烯、邁向 2010 年諾貝爾物理學獎的方法。陳劭宇團隊則更進一步,對各種材料塊採用不同的膠帶,以得到最佳的剝離效果。

若你在生活百貨結帳時遇見購買各式膠帶的顧客,除了封箱收納,他也可能是位準備動手研究量子物理的科學家。

得到單層材料之後,科學家透過顯微操作將其放上六方氮硼(h-BN)等基材,再加熱使膠帶與二維材料分離。材料與操作方法相當平易近人,卻可以結合顯微觀察、拉曼光譜等方法從中測得奇妙的量子物理現象。

-----廣告,請繼續往下閱讀-----
QPALM 實驗室的研究生正在利用膠帶製造二維材料。攝影:楊雅棠

陳劭宇回憶道,「這是可以自己『在家動手做』的物理研究,在 COVID-19 疫情嚴峻隔離的時候,我們輪班工作、不能持續待在實驗室。只好自己組裝一台顯微鏡,用不同的光線觀察二維材料,竟因此發現某些材料在特定顏色光照射下,才有辦法清晰觀測。」

這個發現雖然尚未發表,但也成為他的實驗秘技之一。而當時「在家動手做量子物理」的研究過程也錄製成影片,作為疫情期間透過網路推廣科學的素材。

在二維材料研究中,材料層數是最重要的數字,而光學顯微鏡就在材料層被剝離後,擔任檢驗的工具。陳劭宇說,不同的材料有各自適合的顯微觀察方式,從常見的穿透光、反射到微分干涉(DIC)顯微術都是他會採用的方法。

確認材料層數之後,便能以光、電與材料互動,或是疊合異質材料,並以顯微鏡或拉曼光譜儀觀測,針對觀測結果進行運算,實驗人員可以得知二維材料的激子束縛能、能量轉換、導電性等物理特質。

-----廣告,請繼續往下閱讀-----

例如,因為二維材料的層間空間極小,因此受到激發的電子可能移動到相鄰的異質材料層,而其相應的電洞還停留在原本材料層,電子與電洞在不同材料層互相吸引,形成奇妙的跨層激子(interlayer excitons),產生新穎的電學、光學、磁學現象。

陳邵宇舉例,暗激子的超流體狀態就是其中一種神奇現象。他說,「超導體的節能來自於傳輸電荷時不耗能,而超流體則是粒子移動時不耗能。若能控制超流體狀態的激子,我們就能得到超級節能的元件。」

陳劭宇闡明,超流激子在理論上已被預測,但還沒有人在實驗中成功操縱這項性質。他表示,控制超流激子是物理學界共有的、也是他個人追求的遠大目標之一。二維材料中包含超流體、高效率光電轉換等特質,為未來科技開創了廣大的可能。在陳劭宇等物理學家的持續投入下,我們有機會親眼見到他們利用輕於鴻毛的二維材料,實現宏大的未來科技。

(更多深入淺出的二維材料知識,請看降維展開新宇宙:陳劭宇和激子物理

-----廣告,請繼續往下閱讀-----

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
36 篇文章 ・ 8 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
0

文字

分享

0
0
0
USB Type-C 正快速崛起為全球通用的供電介面,你準備好了嗎?
宜特科技_96
・2025/08/30 ・4071字 ・閱讀時間約 8 分鐘

本文轉載自宜特小學堂〈USB Type-C 將強制一統天下 如何確保產品符合歐盟最新規範?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

USB Type-C,正快速從「傳輸孔」變身為全球通用的供電標準。從手機、筆電到咖啡加熱器,越來越多裝置全面轉向 Type-C 接口。歐盟雖已在 2024 年底立法強制 12 類電子產品統一使用 Type-C,但事實上 Apple、Samsung、Google、Huawei 等國際大廠早已領先導入。如今 Type-C 不只是趨勢,而是世界共識。那你的產品,準備好通過 USB-IF 最新的 IEC 62680 規範了嗎?

曾經是資料傳輸的標配介面,USB Type-C 如今正搖身一變,成為全球電子設備的通用供電標準。根據 Mordor Intelligence 預測,USB Type-C 市場規模將從 2025 年突破 400 億美元,2030 年更將成長至近 820 億美元,應用場景涵蓋手機、筆電、耳機、電動工具,甚至咖啡加熱器與家用電器。

這波趨勢早已不限於歐盟。雖然歐盟已自 2024 年底強制 12 類電子產品統一採用 USB Type-C 充電介面,並要求符合 IEC 62680 系列規範,但全球主流品牌如 Apple、Samsung、Google、Huawei 等早已率先導入 Type-C,顯示這已是業界自發採用的進行式。連 USB-IF(USB 開發協會)也坦言,原本沒預期 Type-C 會成為世界級的供電標準,但市場需求推動下,這場革命已無法擋。

一、為什麼全世界都在用 USB Type-C?三大族群一次看懂

✅ 對消費者來說,改用USB Type-C後出門不再需要帶一堆充電器,一條線即可搞定所有裝置:手機、平板、耳機、筆電、遊戲機共用一種接頭高度相容,插頭還可正反插,使用更簡單。亦無需擔心電壓差異,USB Type-C還支援 PD 快充,最高功率可達 240W(USB PD 3.2)。

-----廣告,請繼續往下閱讀-----

✅ 對製造商來說:Type-C 標準連接器「幾乎免費」,不再需要客製化開模生產商品接口,只要從市場遍布的Type C供應商大規模採購,成本大幅降低之外,裝置統一設計,免去針對不同市場開發多種充電規格,國際規範也可以一次搞定。

✅ 對地球環境來說:統一使用USB Type-C且廠商「不附充電器」的銷售模式,不但可減少電子垃圾,亦可減少重複購買與浪費。

二、USB Type-C 普及化,USB-IF 最新動態為何?

為協助廠商快速因應歐盟與各地市場需求,USB-IF (USB Implementers Forum,簡稱USB-IF) 協會於 2024 年 8 月正式推出「USB-IF Conformity to IEC 62680」測試計畫,協助廠商確保裝置符合:

  • (一) IEC 62680-1-3:Type-C 線材與連接器規範
  • (二)IEC 62680-1-2:支援 USB Power Delivery(PD)快速充電標準

根據這一指令,所有相關設備需配備符合 IEC 62680-1-3:2021 (USB Type-C® Cable and Connector Specification) 標準的 Type-C 電線進行充電。此外,對於充電電壓超過5伏特、電流超過3安培或功率超過15瓦的設備,則須符合 IEC 62680-1-2:2021 (USB Power Delivery specification) 標準,以確保這些設備能夠快速充電,並能在各種充電環境中保持高效運行。

-----廣告,請繼續往下閱讀-----

本篇文章同步收錄由 iST 宜特科技訊號實驗室執行的真實驗證案例,透過高速訊號模擬與電性測試,協助客戶符合最新 USB-IF / IEC 標準。從設計建議、測試平台建置到初期 debug 與驗證服務,幫助您從開發初期就為全球市場做好準備。

三、Conformity to IEC 62680測試規範解讀

歐盟Directive (EU) 2022/2380 指令的宣告,意在補充 RED ( Radio Equipment Directive) 2014/53/EU 的 3.3(a) 條款中針對通用充電接口的具體要求,確保13類可充電無線設備統一採用 USB Type-C 充電接口。宜特訊號測試實驗室為您解讀以下符合 Conformity to IEC 62680 規範的三大測試項目。

(一)USB Type-C 功能測試規範(USB Type-C Functional Test Specification):

此測試項目主要是檢查 USB Type-C 裝置是否符合 USB Type-C 規範要求。測試內容涵蓋多種不同的 USB Type-C 操作模式,包括:

-----廣告,請繼續往下閱讀-----
  1. UPF/DFP(Upstream Facing Port / Downstream Facing Port):測試設備在擔任 Host 或 Device 角色時的功能和相容性。
  2. DRP(Dual Role Port):檢查設備是否能在 Host 或 Device 角色間切換。
  3. USB Power Delivery (PD):確保設備能夠正確支持 USB Power Delivery SPR (Standard Power Range/標準功率範圍,簡稱SPR) 或 EPR (Extended Power Range/擴展功率範圍,簡稱EPR),管理電力交換和通信。

這些測試的目標是確保 USB Type-C 裝置能在不同設備間正確運作,並且符合電氣和計時要求,以建立穩定的功能連接。

(二)USB 電力傳送合規性測試規範(Power Delivery Compliance Test Specification:

這部分的測試是確保 USB Type-C 裝置符合 USB Power Delivery 3.1 的規範要求,如果產品支援 Power Delivery,就需要執行這項測試,具體包括:

  1. 電壓、電流、電力的要求:檢查設備是否符合 USB Power Delivery (PD) 規範中定義的不同電壓與電流的要求。
  2. 不同模式下的功能測試:特別是在 PD2 Mode 和 PD3 Mode 下,測試設備的功能和向下相容性,確保設備能夠在不同的 PD 模式中正確運作。

這些測試旨在確保 USB Type-C 裝置在提供電力時,能夠滿足規範要求,從而確保設備在實際使用中的安全性和穩定性。

-----廣告,請繼續往下閱讀-----

(三)USB 電源測試規範(Source Power Test Specification):

這些測試是用來驗證 USB Type-C 接口作為電源供應端時的各項功能。如果產品具備Source Power能力,就需要執行以下測試,測試內容包括:

  1. 負載測試 (Load Test):檢查設備在不同負載下的電壓和電流變化。USB Power Delivery 電壓和電流轉換:確保設備能夠根據不同需求進行電壓和電流的轉換,並符合 USB PD 規範。
  2. 過電流保護 (Over Current Protection,簡稱OCP):檢查設備在過電流情況下是否能夠啟動保護機制,防止損壞。
  3. Multi-Port 裝置的電力分配和管理:對於具有多個 Type-C Port 的設備,測試其在多個 Port 同時使用時的電力分配和管理功能。
  4. PPS電壓與限電流測試PPS(Programmable Power Supply/可編程電源供應,簡稱PPS)的測試目的主要是評估裝置在動態調整充電電壓和電流時,是否符合USB Power Delivery(PD)規範。具體來說,這些測試會檢驗裝置是否能夠根據PD協議中定義的功率配置,正確地逐步調整電壓並限制電流,如果產品支援PPS,就需要執行這項測試。

這些測試的目的是確保 USB Type-C 電源在實際使用中能夠安全、穩定、可靠地提供所需的電力,並且在多 Port 裝置的情況下,各個 Port 之間的電力分配和管理也符合規範要求。

四、實際案例分享

宜特訊號測試實驗室透過符合 USB-IF 規範的測試儀器進行測試,並擷取過程中未通過的資訊,提供給客戶進行除錯(debug),幫助客戶最終取得相關證書。以下將分享兩個案例: 

-----廣告,請繼續往下閱讀-----

(一)案例一 : 合規測試規範變動導致測試誤判的問題排查

在產品測試過程中,可能因為合規測試規範(Compliance Test Specification,簡稱CTS)更動或是尚未定義,造成測試儀器誤判而未能通過測試。透過側錄的資訊 (Trace or Log) 檢查未通過的結果與 CTS 似乎有衝突,宜特訊號測試實驗室將此現象反應給儀器商進行討論,確認出真正的問題之外,亦會在每週和 USB-IF 協會的線上會議確認是否有類似問題已被提出工程變更請求(Engineering Change Request,簡稱ECR),未來是否有機會修正為工程變更通知 (Engineering Change Notice,簡稱ECN),並進而修訂CTS,減少客戶 debug 時間。

(二)案例二 : 負載測試中 Vbus 電壓過低問題的分析與解決

進行負載測試時 (Load Test),Vbus 過低且未在規範要求的時間內恢復到合適的電壓範圍,如圖一,若 Vbus 低於 4.75V (VSrcNew(min)) 且未能在 tSrcTransient 內拉回至 4.75V 以上。儀器就會判定產品未能通過負載測試,這種情況可能導致裝置無法正常工作。遇到這樣的情形,宜特訊號測試工程師會說明規範,讓客戶了解未通過的原因,協助客戶對症下藥,縮短 debug 時間。

-----廣告,請繼續往下閱讀-----
圖一:tSrcReady 後,Vbus 可以在 vSrcNew 和 vSrcValid 之間存在的時間不應超過 tSrcTransient 所定義的時間限制。(資料來源:USB-IF官網)

當負載(load)高於或低於 60mA 時,Source 輸出電壓在應對負載瞬態變化時必須遵守以下規範(表一):

  1. 負載高於或等於60mA的情況:Source 輸出電壓必須在負載瞬態變化後的5毫秒內,回到介於 vSrcNew 和 vSrcValid 之間的範圍內。
  2. 負載低於60mA的情況:Source 輸出電壓必須在負載瞬態變化後的150毫秒內,回到介於 vSrcNew 和vSrcValid 之間的範圍內。
表一:當負載(load)高於或低於60mA時,Source輸出電壓在應對負載瞬態變化時的規範 (資料來源:USB-IF官網)
圖二:因Vbus過低且未在規範要求的時間內恢復到合適的電壓範圍,因此儀器判定未能通過測試。紅線代表未通過的區段 (資料來源:宜特科技)

五、如何進行USB-IF Conformity to IEC62680? 

USB-IF 為了有效管理和追蹤 USB 產品設備,將審查所有提交的測試結果並提供正式的批准。OEM/ODM 廠商可將其 USB Type-C 產品提交至 USB-IF 授權的獨立測試實驗室 (Independent Test Labs,簡稱 ITLs) 進行正式測試。廠商需要先取得 Vendor ID(VID),VID 可以透過成為 USB-IF 會員或購買取得。有了 VID 後就能進入 USB-IF 網站中登錄產品,USB-IF 會分配給該產品一個 Test ID (TID) 識別碼,用於追蹤該產品的測試和認證記錄,接著就能開始進行 Conformity 測試。通過測試的產品會被公開登錄在 USB-IF 網頁上的 IEC 62680 Conformity 名單中,並收到來自 USB-IF 證明產品符合 IEC 62680 (USB) 規範的通知信 (圖三)。

圖三:產品通過IEC62680的測試後,USB-IF寄給廠商的正式通知(資料來源:USB-IF)

結語

Type-C 已成為全球共識,不只是「歐盟法規」。宜特科技已取得USB-IF最新的Power Delivery 3.1技術,並為USB Power Delivery(PD)正式認證測試實驗室(ITL),可協助廠商驗證上述13類產品的Type-C可充電無線裝置符合 IEC 62680規定,順利取得USB-IF Conformity to IEC 62680。如果廠商希望獲得 USB-IF Logo 認證,宜特也能提供完整的USB Compliance Test,確保產品具有更全面的保障。

此外,宜特亦可提供USB / DisplayPort / HDMI / VESA DisplayHDR 等多項標準測試及官方認證服務。針對各式各樣不同的客戶產品功能,宜特能客製化制定相關測試項目,並依循著使用者角度,設計出專業詳細的測試步驟,找出產品問題點,協助客戶解決棘手問題。

-----廣告,請繼續往下閱讀-----

本文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
17 篇文章 ・ 5 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室