Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

感官的延伸:物聯網資訊蒐集系統

創新科技專案 X 解密科技寶藏_96
・2015/03/26 ・1528字 ・閱讀時間約 3 分鐘 ・SR值 540 ・八年級

文/劉珈均

各式無線網路通訊漸普及,現代社會充滿了與網路連結的電子感測器,測量各種活動與情境,但這些感測器都只單一「孤立」應用在特定地方。智慧網通系統研究所的團隊打破這現象,將每條孤立的感測連結成一張網,團隊開發了「IOT資訊蒐集系統」,統合各式感測資料的語言,並建置資料儲存平台,以物聯網結合資訊蒐集與雲端平台。

IoT資訊蒐集系統由下而上的架構為感測器、「iGateway」、「iStorage Services」。底層為各式各樣的感測器,如電力計、水表、溫濕度、空氣品質感測器、水質感測器、土壤感測器等等。感測器有「專一性」,不同的感測器各有其對應的通訊方式與儲存系統,團隊寫了一套軟體「Sensing Control Platform」給「iGateway」平台,多種感應器的感測資料無線傳輸、經「iGateway」整合為同一語言,再傳輸至資料儲存平台「iStorage Services」,資料可存於雲端,或存於建置在企業內部的伺服器。

IOT資訊蒐集系統架構示意,感測器經「iGateway」整合,傳輸至資料儲存平台,後端管理介面相當直覺。
IOT資訊蒐集系統架構示意,感測器經「iGateway」整合,傳輸至資料儲存平台,後端管理介面相當直覺。

團隊的技術重點在「iGateway」與「iStorage Services」兩個平台,目前 iGateway 可提供有線、無線、RS486、3G/4G、Wi-Fi、GPS等通訊方式使用。智慧網通系統研究所組長陳彥廷解釋,產業各自發展資訊蒐集系統的話,得重複建置通訊、解讀的裝置,導致資源疊床架屋。團隊便尋思統合「資訊蒐集」這相近而重疊的任務,將不同的感測數值整合顯示於同一個平台。陳彥廷說:「希望能用軟體加值硬體。」產業無需自力從頭打造基礎建設,可專注於服務應用,節省成本。

-----廣告,請繼續往下閱讀-----
智慧網通系統研究所組長陳彥廷解說資訊蒐集系統的架構。
智慧網通系統研究所組長陳彥廷解說資訊蒐集系統的架構。

目前「iGateway」可連接約兩百至三百個感測器,「iStorage Services」管理的資料量則視各硬體容量而定,後端感測資料也可分類儲存於不同空間,供使用者依需求各自提取,「比如說,A需要ABC三種感測資料,B需要CDE這三種,儲存空間可以分開,或寫個APP管理。」陳彥廷解釋。

各產業可視需求,調整基層設置的感測器種類,讓系統延伸運用於能源管理、工業監測、農業與水產養殖業等等。陳彥廷也期待未來能整合血壓、血脂的感測器與資料,將應用觸角伸展至健康照護領域。

此系統的萌發要追溯回三年前,台電需要一套智慧電網系統,系統能自動讀表、蒐集用電資料,將使用者的用電資訊傳到遠方管理端,以便取得即時用電資訊作為發電參考,也解決人工抄表的麻煩。最初此資訊蒐集系統專注於智慧電網、電力監測的用途。現在此系統的延伸運用,原理就是把智慧電網底層的電力感測換成其他種類的感測器。

資通訊研究所所屬的資策會每樓都有電力機房管理該層樓電力,機房中,一個電力計管理12個迴路,如電腦用電、冷氣用電,資通訊所辦公室的七樓機房就設了一台「iGateway」管理電力計,作為能源監測之用。

-----廣告,請繼續往下閱讀-----
此技術前身的智慧電錶系統。
此技術前身的智慧電錶系統。
智慧家電管理系統的人性化介面,點開平板,用電、溫濕度等各式資訊一目瞭然。
智慧家電管理系統的人性化介面,點開平板,用電、溫濕度等各式資訊一目瞭然。

中央大學也已佈建此套系統作電力節能管理;也有廠商如中華紙漿、中壢污水處理場,因應環保法規需求,應用此系統檢測廢水排放的水質。日月光汙染後勁溪的事件過後,也紛紛有廠商找團隊,希望檢測農田、區域地質的水質是否被汙染;此系統也技轉給台灣松下電器發展智慧家電管理系統。

IoT資訊蒐集系統研發團隊。
IoT資訊蒐集系統研發團隊。

更多資訊請參考解密科技寶藏

-----廣告,請繼續往下閱讀-----
文章難易度
創新科技專案 X 解密科技寶藏_96
81 篇文章 ・ 3 位粉絲
由 19 個國家級產業科技研發機構,聯手發表「創新科技專案」超過 80 項研發成果。手法結合狂想與探索,包括高度感官互動的主題式「奇想樂園」區,以及分享科技新知與願景的「解密寶藏」區。驚奇、專業與創新,激發您對未來的想像與憧憬!

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
從販賣機到智慧設備:物聯網的發展歷程
數感實驗室_96
・2024/06/23 ・1135字 ・閱讀時間約 2 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

在這個通信技術普及的年代,我們不斷介紹各式各樣的通信技術。大多數的通信技術都是為人服務的,這似乎是理所當然的。然而,有一種通信技術並非直接為人服務,而是為物體之間的交流提供支持。這種技術不僅存在,而且在現代已經成為最主要的通信形式之一,我們稱之為——物聯網(IoT)。

物聯網,Internet of Things,簡稱 IoT,顧名思義就是物品,機器、設備連上網路。

在我們生活中,如智慧手錶和藍牙耳機這些穿戴式設備,它們各自擁有特定功能,同時又能透過藍牙技術相互連結,這就是物聯網的一種應用。

-----廣告,請繼續往下閱讀-----

你可能會問,手機也算是物聯網的設備嗎?

這取決於你如何定義和使用手機。如果是人們使用 5G 或 4G 技術彼此傳訊息和溝通,那麼這不屬於物聯網的範疇。但當手機與藍牙耳機或智慧手錶連接時,它們之間的互動更符合物聯網的概念。因此,物聯網的基本定義是,不直接涉及人跟人、或是人與設備的互動。基本上都是設備跟設備之間的溝通。

通信是人類最基本的需求,同時也帶來無限商機,就像我們不想跑到別的地方買可樂,卻發現賣光了一樣,科技為能解決這些需求,促使通信技術的持續成長。

如同手機的普及帶動了市場需求,從一家一部的電視和冰箱,到人人一支的手機,並且每隔幾年就更新換代。這種商機吸引了企業的投資,也推動了強大的研發動能。

-----廣告,請繼續往下閱讀-----

而現在,我們正生活在一個設備數量遠超人類數量的時代,從藍牙耳機、智慧手錶,到遍布全球的智慧設備,物聯網的技術已經無處不在。

不妨思考一下,還有哪些需求尚未被滿足,也許它們正是下一個物聯網應用的起點。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

1
0

文字

分享

0
1
0
培育屏東數位能量——屏東縣政府跨域數位爭霸戰頒獎典禮暨成果展
鳥苷三磷酸 (PanSci Promo)_96
・2022/11/24 ・650字 ・閱讀時間約 1 分鐘

「屏東縣跨域數位爭霸戰實戰競賽」頒獎典禮暨成果展於11月19號完美落幕。為培育屏東青年數位能力,屏東縣政府特別推動「跨域數位人才培育計畫」,主題包含「AVR 應用」、「數位光影技術」、「智慧物聯」、「自媒體影音串流」及「數位媒體應用」五大類,以透過學習數位工具提升履歷競爭力。更延伸計畫辦理「屏東縣跨域數位爭霸戰實戰競賽」,參賽隊伍都是在屏東就學或就業之青年報名,提供競賽總獎金30萬元,鼓勵與培育屏東的數位人才發揮創意,將屏東的故事透過數位方式展現出來。

本次參賽作品精采多元,展現屏東青年設計的創意及數位能量。包括影片拍攝屏東美食美景的「屏安米樂」及「做伙憩屏東」,利用線上展覽介紹屏東單車路線的「屏東單車旅遊趣」,以及獲得潛力獎的團隊「Animation Pingtung」、「斯卡羅」及「禁忌之戀」,第三名則是由透過線上迷宮遊戲的模式融入屏東各個區域的特產、美食的「屏藏物語」,第二名則是製作了年底即將啟動的屏東數位青創中心外牆,運用非常吸睛的光雕影像結合屏東元素的「光點屏東∞斑雕共構」,第一名殊榮則由屏東科技大學餐旅管理系的「鐵橋記」獲得,同學們運用實境解謎搭配Line機器人,透過遊戲方式介紹高屏溪的歷史。

每個團隊皆發揮獨特創造力,在課程中從0到1扎根數位技能、從無到有創造屬於自己的成果,屏東青年人才有目共睹,展現屏東縣政府陪伴青年,提供良好的創業環境與資源,有望未來提升屏東競爭力!

-----廣告,請繼續往下閱讀-----