Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

分子馬達與氫離子的生物發電瀑布 ATP synthase!

Scimage
・2011/09/30 ・459字 ・閱讀時間少於 1 分鐘 ・SR值 527 ・七年級

-----廣告,請繼續往下閱讀-----

生物使用ATP做為能量的貨幣,所以任何需要推動的生物化學反應幾乎都有ATP的參與。但是這樣的分子是怎麼樣源源不絕在生物體裡產生?

這問題很久以來一直困擾著科學家,一直要對最近完整的蛋白結晶與分子的動態量測才漸漸都完成。科學家才發現,原來大自然一直以一種非常精密又節能的分子耦合運動來完成ATP的合成。

下面的影片就是介紹這樣的過程,在細胞裡的葉綠素或是粒線體的內膜上都有跨膜所謂的ATP合成脢分子 (ATP synthase),這些分子的作用跟巨觀水力發電機非常像,都是藉著讓某種物質由高能往低能流的時候來擷取能量轉換成其他形式。 

在生物體體,因為照光(葉綠體)或是氧化有機物質(粒腺體)會產生高能的電子,這些電子經由膜上的一連串電子傳遞鍊,一個一個把電子往更低能的分子丟,然後利用丟電子所產生的能量差把氫離子打到膜的一邊,這樣一來內膜的兩端就是氫離子的濃度差異。然後只要這些氫離子經由流過ATPase,通過設計好的管道(像是旋轉門) 就可以讓ATPase發生轉動。因為轉動會讓蛋白質變形,所以就像用捏的方式把一個個ATP分子給捏出來了。

-----廣告,請繼續往下閱讀-----

http://www.youtube.com/watch?v=sBABGB8HTGo

轉載自 科學影像 scimage

-----廣告,請繼續往下閱讀-----
文章難易度
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

2
0

文字

分享

0
2
0
想要減肥或控制體重?先散步評估一下吧!——《大自然就是要你胖!》
天下文化_96
・2024/07/02 ・1877字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

恢復初始體重與延長健康壽命

身體的能量大多由細胞裡的能量工廠產生,也就是粒線體。這種能量以 ATP 的形式存在,用來驅動體內種種的生物過程,維持新陳代謝。攝取果糖後,身體會產生尿酸,對能量工廠造成氧化壓力,導致 ATP 產量減少,最後果糖所含的熱量會以脂肪和肝醣的形式儲存在體內。這個過程能幫助我們儲備能量,以因應食物不足的狀況。

生存開關活化所產生的氧化壓力,可能對細胞內的能量工廠和身體其他部位造成損害。在自然界中,這種氧化壓力通常為時短暫,能量工廠很快就會恢復正常運作。相對之下,現代人體內的生存開關卻是全年無休、火力全開。原本是為了生存而暫時抑制粒線體的能量產生,沒想到卻變成一種永久的枷鎖,並帶來嚴重的後果。

長期暴露在慢性氧化壓力中,會使能量工廠的結構發生變化。粒線體會變小,功能下降。即使在生存開關並未活化的狀況下,粒線體產生的能量也不復以往。這等於重新設定了新陳代謝的基礎值,降低能量的產生和使用,隨之而來的便是體重增加。因為身體現在認定減重前的體重才是正常,所以將體重減輕視為生存威脅,於是調整新陳代謝速率做為因應。這時,你的新陳代謝就成為你的敵人!

長期暴露在慢性氧化壓力中,粒線體會變小,降低能量的產生和使用,隨之而來的便是體重增加。因為身體現在認定減重前的體重才是正常,所以將體重減輕視為生存威脅,於是調整新陳代謝速率做為因應。圖/envato

生存開關長期處於活化狀態,不只會影響體重和能量。現在更有證據指出,慢性或反覆出現氧化壓力,也會導致人體老化,於是皮膚出現皺紋,內臟器官緩慢磨損。所有的食物攝取,多少都會對能量工廠造成氧化壓力(第一章曾說過,減少熱量攝取可能延長壽命,原因可能正是在此)。然而,與其他營養相比,攝取果糖對粒線體造成的氧化壓力要大得多。

-----廣告,請繼續往下閱讀-----

在我看來,若能在粒線體受到永久損傷之前,及早對肥胖症展開治療,效果最好。的確,我個人的經驗是,兒童和青少年的肥胖症比較容易治療,只需要改變飲食,減少攝取會活化生存開關的食物,因為年輕人仍然擁有大量功能正常的粒線體。相較之下,要治療肥胖症的長期患者挑戰就高得多,因為他們的能量工廠長期承受慢性的氧化壓力。然而,任務仍然可能達成,關鍵在於恢復粒線體。

要治療肥胖症,就得增加粒線體的產能

我們被「鎖定」在高體重和低能量的狀態,這聽來真是令人沮喪,但這種狀態並非不能改變,能量工廠是可復原的。基本上有兩大方法,首先,盡量減少對能量工廠的損害,讓它們有時間自然恢復。這種方法主要著重在中止生存開關持續活化。其次是積極修復能量工廠,甚或是增加生產粒線體,以彌補失去的數量。

評估粒線體的健康,你可以從散步開始!圖/envato

在討論如何達成這兩項目標之前,我想先提供簡單的方法,讓你評估自己能量工廠的健康狀況:觀察自己的自然步態,也就是平時的行走速度。你可以記錄自己繞行附近一個街區的時間,同時佩戴計步器計算步數,然後算出每秒行走的步數和距離。另一種方法更簡單,只要記錄繞行街區的時間,將現在的時間與之後的時間進行比較,就能判斷粒線體的健康狀況是否改變。重點在於測量時要採行自然步態;換句話說,行走時請勿故意加快腳步。正常的步行速度約為每秒 1.2 公尺,但每秒 0.6 至 1.8 公尺都算正常範圍。我建議把目標設定為每秒 1.2 公尺以上。長期超重的人步行速度通常較慢,平均約為每秒 0.9 公尺。

研究顯示,自然步行速度與粒線體的品質呈現正相關,步行速度較快的人壽命較長,整體健康狀況也較好。步行速度減慢可能是因為骨骼肌疲勞增加,或 ATP 濃度低。值得注意的是,年輕超重者的步行速度往往與其他年輕人相似,但隨著年齡增長,超重者和正常體重者之間的步行速度差異會愈來愈大。

-----廣告,請繼續往下閱讀-----

我鼓勵你去散步,評估你的自然步行節奏。這可幫助你深入了解減肥和維持體重的難易程度,不僅如此,長期監控自己的自然步行速度,還有助於評估體重控制的整體進展。

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
0

文字

分享

0
0
0
紅紅的葉子要怎麼行光合作用?紅葉和黃葉裡也有葉綠素嗎?——《樹葉物語》
時報出版_96
・2023/10/29 ・2029字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

顏色會依照我們觀看的對象吸收和反射的光而有所不同。樹葉因為會吸收所有藍色和紅色系光譜,只反射綠色,因此看起來是綠色的,而讓樹葉顯現綠色的東西,便是負責養育生命的葉綠素。

需要光合作用時也只會紅通通的日本紅楓

當然,也有葉子不是綠色的。樹木一生中雖然會變換顏色,但也有一開始長葉就不是綠色的。關於這類樹木,首先想到的便是日本紅楓(Acer palmatum ‘Shojo-Nomura’)。

日本紅楓連剛冒出葉子時也不泛綠色,和它的名字一模一樣,打一開始就很紅。那麼,日本紅楓紅色的葉子裡沒有葉綠素嗎?如果缺少葉綠素,樹木無法行光合作用;若不行光合作用,將無法製造生存所需的養分,那究竟該如何生存呢?

所有樹葉裡都有葉綠素,但是除了葉綠素,還有類胡蘿蔔素、花青素和單寧等各種成分,我們需要從這裡找出頭緒。類胡蘿蔔素、花青素和單寧等成分分別呈現黃色、紅色和褐色,葉子雖然從一開始就具備多種顏色的成分,但在更需要光合作用的時候,葉綠素會上來表面;待過了秋季,逐漸接近無法行光合作用的冬季,其他顏色的成分才會開始活躍,秋楓便是如此。然而,日本紅楓即使在需要光合作用的時期,葉子也只會紅通通的,非常奇妙。

-----廣告,請繼續往下閱讀-----

淺綠色顯露出來的瞬間

圖/wikimedia

日本紅楓是人們培育出來的品種,以做為造景用的觀賞樹木。換言之,日本紅楓並不是在自然狀態下生長的樹木,而是人們為了更長時間觀賞楓樹的紅色葉子所培育的品種,讓它一年四季都能呈現紅色。雖說紅色葉子裡頭同時含有泛綠色的葉綠素,但不管再怎麼看,都看不到綠色。

我再次重申,觀察樹木需要長時間、仔細地觀察。日本紅楓葉子上的紅色氣息轉淡的現象一年大概會發生兩次,分別是開花與果實逐漸成熟時,也就是樹木最需要養分的時刻。這時的日本紅楓葉子會發生非常細微的變化,乍看之下無法得知其差異:仍然泛著紅色,仔細觀察卻能在葉子某些部分感覺到綠色的氣息。

雖然葉子顯現紅色,但葉綠素若不進行光合作用,樹木就無法存活,在開花和結果等需要大量養分的關頭更是如此,這種時候只要仔細確認日本紅楓的葉子,將能感覺到葉綠素行光合作用活動的跡象。葉子上面延展的葉脈或葉柄端的紅色會轉淡,非常顯眼。果實結果和逐漸成熟時也一樣,可以在變淡的紅色之間突然看見綠色。即便葉子是紅色的,葉綠素還是會在它非常迫切需要養分時活躍起來,無怪乎顯現了綠色。

黃金松的樹葉只有黃色嗎?

日本紅楓是人工選育的品種,但自然狀態下也有樹木不是發綠色的芽,好比名為黃金松(Pinus densiflora ‘Aurea’)的樹木。雖然松樹的葉子一年四季都是綠色,黃金松的葉子卻呈金黃色。黃金松是松樹的品種之一,是相當稀有的樹木,它只有下方呈綠色,整體看來葉子是金黃色的。據說從以前開始,只要天氣乾旱,黃金松的金黃色葉子就會變成褐色,梅雨季則變成綠色,對於觀察氣候十分必要,不過這種說法並無科學根據。儘管如此,據說以前農夫們乾脆叫黃金松「天氣木」。

-----廣告,請繼續往下閱讀-----
非常稀有的黃金松是在自然狀態下也會發金黃色、而不是綠色的芽。

韓國曾經發現幾棵自然狀態下的黃金松,特別是慶尚北道蔚珍郡周仁里的黃金松就被指定為地方紀念物,是一株受到保護的珍貴樹木。這棵黃金松曾是預測氣候的標準,村裡亦相傳若發生戰爭,它的葉子會泛紅。

蔚珍郡周仁里的黃金松和旁邊其他樹木的葉子顏色不同,一眼就能清楚看出來。這棵佇立在斜坡上的樹木已有五十歲左右,由於被指定為文化財,四周圍上了柵欄、被確實地保護著。雖然遠處就見得到它神祕的模樣,但務必近距離觀察。必須仔細觀察葉子,才能得知樹木的祕密,知道樹木如何用金黃色的葉子製造養分、使自己生長。

即便植物圖鑑裡記載「除了葉子的基部,其他都是黃色」,實際上再怎麼觀察,仍然很難說是黃色,非要講的話,比較接近綠色和黃色混合在一起的淡綠色。當然,顏色以針葉來說算特別,但不能說是黃色或金黃色。與其說黃金松的葉子是金黃色的,不如說是以綠色為底,黃色顯現得稍微強一點。

無法丟掉綠色的原因

我們談日本紅楓和黃金松,但擁有紅葉或黃葉的樹木不只這些,尤其是觀賞用的培育品種中,還有不少葉子的顏色相當五彩繽紛。然而,不管是哪種樹木,都無法完全丟掉綠色,因為綠色是葉綠素的顏色,而葉綠素是樹木的生命之窗。

-----廣告,請繼續往下閱讀-----

——本文摘自《樹葉物語》,2023 年 5 月,時報出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

0
0

文字

分享

0
0
0
分子馬達與氫離子的生物發電瀑布 ATP synthase!
Scimage
・2011/09/30 ・459字 ・閱讀時間少於 1 分鐘 ・SR值 527 ・七年級

-----廣告,請繼續往下閱讀-----

生物使用ATP做為能量的貨幣,所以任何需要推動的生物化學反應幾乎都有ATP的參與。但是這樣的分子是怎麼樣源源不絕在生物體裡產生?

這問題很久以來一直困擾著科學家,一直要對最近完整的蛋白結晶與分子的動態量測才漸漸都完成。科學家才發現,原來大自然一直以一種非常精密又節能的分子耦合運動來完成ATP的合成。

下面的影片就是介紹這樣的過程,在細胞裡的葉綠素或是粒線體的內膜上都有跨膜所謂的ATP合成脢分子 (ATP synthase),這些分子的作用跟巨觀水力發電機非常像,都是藉著讓某種物質由高能往低能流的時候來擷取能量轉換成其他形式。 

在生物體體,因為照光(葉綠體)或是氧化有機物質(粒腺體)會產生高能的電子,這些電子經由膜上的一連串電子傳遞鍊,一個一個把電子往更低能的分子丟,然後利用丟電子所產生的能量差把氫離子打到膜的一邊,這樣一來內膜的兩端就是氫離子的濃度差異。然後只要這些氫離子經由流過ATPase,通過設計好的管道(像是旋轉門) 就可以讓ATPase發生轉動。因為轉動會讓蛋白質變形,所以就像用捏的方式把一個個ATP分子給捏出來了。

-----廣告,請繼續往下閱讀-----

http://www.youtube.com/watch?v=sBABGB8HTGo

轉載自 科學影像 scimage

-----廣告,請繼續往下閱讀-----
文章難易度
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

5
0

文字

分享

0
5
0
現代智人的祖先到底是誰?全人類「共同的母親」——《真的假的!奇怪知識又增加了》
晴好出版_96
・2023/08/01 ・2140字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

約在 3,000 萬年前,地球上出現了人猿總科,我們和其他猿類共同的老老老老老祖宗,從此與猴子們踏上了不同的道路。

又過了 1,000 多萬年,那些在樹梢中討生活的表祖宗逐漸演化成了如今的長臂猿,而我們的老老老祖宗,儘管還距離我們現在的樣子甚遠,但終於開始沾上了「人」字,在分類上進入了「人科」的範圍。

然而從人科到「人」還有著漫漫長路,1,600 萬年前,我們的老老老祖宗和紅毛猩猩的老老老祖宗形成了兩條不同的分支;又過了 600 萬年到 800 萬年,大猩猩的祖先進入了另一個車道。

至此,我們的老祖宗「人」的成分進一步增加,終於在分類上進入了「人族」。

-----廣告,請繼續往下閱讀-----

現代智人的祖先——露西

500 萬年前,我們的老祖宗與黑猩猩的祖先終於分離,開啟了屬於「現代人」的傳奇。

1974 年 11 月 24 日,美國古人類學家唐納德.喬納森(Donald Johanson)和他的同事在衣索比亞的阿瓦什河谷進行調查時,發現了一根暴露在沙土表面的人骨殘段。經過搜尋,他們又在周圍發現了其他骨骼碎片,還包括一塊下頜骨碎片。最終,他們花了三週時間搜尋到了 100 多件骨骼標本,在進行分析研究之後,他們得出結論,這些骨骼屬於同一個個體,他們給予了這個個體一個編號「AL288-1」。

這是一個足以震驚古人類學界的發現,喬納森和同事們為此在營地舉辦了慶祝晚宴。在晚宴的背景音樂,披頭四〈Lucy in the sky with diamonds〉的歌聲中,他們又為「AL288-1」取了一個更為大家所熟知的名字——露西。

經過進一步的研究,喬納森披露了更多關於露西的細節:

露西是生活在 320 萬年前,20 歲左右的女性南方古猿,屬於南方古猿阿爾法種(Australopithecus afarensis)。

她的腦容量不大,只有現代人類的 1/3 到 1/2。但是她已經出現了與黑猩猩明顯不同的特徵:露西已經習慣直立行走了。直立行走,一直被看作「猿向人類進化」過程中的重大事件。也正因此,露西所屬的南方古猿阿爾法種以前經常被稱為人屬物種的祖先,也就是我們現代人智人的祖先。

-----廣告,請繼續往下閱讀-----
南方古猿——露西。圖/《真的假的!奇怪知識又增加了:自說自話的總裁顛覆認知的科學奇想

不過基於化石證據進行的古人類研究經常會因為新發現的化石而顛覆。2011 年 5 月,美國克里夫蘭大學的古人類學教授約翰尼斯.海爾—塞拉西(Yohannes Haile-Selassie)在南方古猿阿爾法的分布區,又發現了一個生活在距今 330 萬年到 350 萬年的南方古猿近親種(Australopithecus deyiremeda)。這個新種類的原始人挑戰了「露西是人類的祖先」以及「在這個時期這個區域僅有一種人」的觀點。

這樣一來,曾被稱為「人類的非洲老祖母」的露西可能要地位不保,不過科學家為我們找來的那位「共同的母親」——「線粒體夏娃」的證據倒是愈發明確了。

媽媽的媽媽的媽媽⋯⋯ 粒線體的母系遺傳

每個人的細胞中都有來自母親和父親的 46 條 DNA。除此之外,我們的線粒體中還攜帶著線粒體 DNA,線粒體是為細胞提供能量的細胞器。與父母雙方各提供 23 條染色體不同,精子中沒有線粒體,因此受精卵中的線粒體全部來自卵細胞的細胞質,也就是線粒體 DNA 全部是由媽媽傳給孩子的

媽媽生了女兒,女兒再生孩子的時候,會繼續將母親的線粒體 DNA 傳遞下去;但是如果某位女性的所有後代都是男孩,因為男性不能傳遞線粒體DNA,她的線粒體 DNA 就丟失了。

-----廣告,請繼續往下閱讀-----
我們的線粒體(圖中編號 9)中還攜帶著線粒體 DNA,由於精子中沒有粒線體,因此線粒體 DNA 全部是由媽媽傳給孩子的。圖/wikipedia

粒線體夏娃 共同的母親

1987 年美國加州大學的瑞貝卡·卡恩(Rebecca Cann)艾倫·威爾遜(Allan Wilson)帶領研究小組做了全球性的實驗。他們提取了不同人種 148 個胎盤中的線粒體 DNA,並對其進行研究。

結果顯示,這些線粒體 DNA 有高度的相似性。經由計算,他們得出了一個令人震驚的結論:現代人類應該有一位共同的母親,她是生活在約 15 萬年至 20 萬年前的一位非洲女性。對此進行報導的記者羅傑·勒溫(Roger Lewin)為這位「共同的母親」取了個眾所皆知的名字——「線粒體夏娃」。

其實「夏娃」這個稱謂並不準確,「她」應該不是一個人,而是這個遺傳位點的共同祖先。牛津大學的人類遺傳學教授布萊恩·賽克斯(Bryan Sykes)是世界上第一個證明可以從古人類的遺骸中提取 DNA 的學者。1999 年,他帶領小組,在研究分析了 6,000 多份歐洲人的線粒體 DNA 後,將他們分類歸屬於七個「母系氏族」,也就是七個「夏娃」。

她們是所有歐洲人的先祖,每個歐洲人的 DNA 都可以追溯到這七位「夏娃」的身上。他為她們取了名字,並根據考古學、地質學等知識,構築出了她們的生活,寫出了一本像小說一樣的科普書《夏娃和她的七個女兒》。

-----廣告,請繼續往下閱讀-----

——本文摘自《真的假的!奇怪知識又增加了:自說自話的總裁顛覆認知的科學奇想》,2023 年 7 月,好出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
晴好出版_96
3 篇文章 ・ 2 位粉絲
晴方好,雨亦奇,換個角度都是「晴好」