Loading [MathJax]/extensions/tex2jax.js

4

0
0

文字

分享

4
0
0

毛得誘人?

陸子鈞
・2011/09/29 ・780字 ・閱讀時間約 1 分鐘 ・SR值 634 ・十年級

在<哈雷小子>(港譯:熱帶雨林的爆笑生活)中,超有男子氣概的村長

男士們,你要刮胸毛嗎?除了潮流,現在又多了一個理由讓你考慮。一項發表在《行為生態學》(Behavior Ecology),針對芬蘭女性的研究指出,正處於適合生育狀態的女性,認為沒有胸毛的男性較具吸引力;而懷孕中或不處於適合生育時期的女性,則偏好有胸毛的男性。

「男子氣概」和男性體內睪固酮濃度有關,反映在陽剛的臉型、低沈的嗓音、高壯的體態及濃密的體毛上。雖然這些特徵能表示男性的健康狀況,也暗示他有優良的基因,能替後代帶來優勢。但睪固酮濃度高的男性,也可能較不會保持穩定的伴侶關係。

過去科學家已經知道,處於不同生育狀況的女性,對男性特徵的偏好不同。芬蘭土爾庫大學(University of Turku)的生物學家馬克斯‧雷塔萊(Markus Rantala)假設,女性在不同生育適合程度,對男性體毛有不同的偏好。

為了測試這項假設,雷塔萊和研究團隊,找來20名男性自願者,年齡介於20到32歲間,拍下他們胸腹面及背面的裸照;接著刮除體毛,再拍一次。這些照片以隨機的順序讓300名,年齡介於15到69歲的女性評分,並記錄女性受訪者的資料。

-----廣告,請繼續往下閱讀-----

結果顯示,正處於月經週期中適合生育時期的女性,只有約30%對胸毛有偏好;處於不適合生育時期以及懷孕的女性,有約40%的偏好;而更年期後的女性,有50%的偏好;生育力和對體毛的偏好呈現清楚的負相關。此外,女性受訪者在受測中偏好的男性體毛樣式,和她當前的伴侶-丈夫或男友的體毛樣式相近。因此,雷塔萊認為,體毛在擇偶的過程中,扮演重要角色。

雷塔萊研究得到的結果,和其他研究團隊在2007年,針對華人女性所作的調查結果相符,但卻和英國及喀麥隆的結果相反。或許這能解釋這些族群的男性胸毛特徵的差異,但無法排除女性對男性特徵的偏好受到文化影響。

資料來源:Markus J. Rantala, Mari Po¨lkki, and Liisa M. Rantala. 2010. Preference for human male body hair changes across the menstrual cycle and menopause. Behavioral Ecology. 21 (2): 419-423.

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 4
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
演化力量下的運動場:男性為什麼在大部分運動中比女性更有優勢?——《運動基因》
行路出版_96
・2024/08/12 ・8527字 ・閱讀時間約 17 分鐘

天擇與性擇:決定人類性別差異的雙重力量

大衛.吉里(David C. Geary)在他大辦公室窗台上一本像電話簿一般厚的字典旁,放著一個女性頭骨,她俯視著密蘇里大學的校園。吉里說:「你可以看出它的顱腔很小。」吉里有張瘦削的臉,青綠色的眼珠,額前一綹灰白鬈髮看上去有點像個問號,為他的臉賦予一股好問的氣息。他開玩笑說:「她的腦大概只有我們的三分之一那麼大,所以她得待在字典旁邊,勤加練習。」吉里指的是他的「露西」頭骨等比縮小模型,而露西(Lucy)正是現代人著名的阿法南猿(Australopithecus afarensis)祖先,她的骨頭是在衣索比亞發現的,年代距今 320 萬年前。

吉里花很多時間思索大腦。他是認知發展心理學家,研究生涯主要投入於理解孩童如何學習數學,而這讓他從 2006 年到 2008 年進入布希總統召集的「全國數學顧問小組」(National Mathematics Advisory Panel)。他在性別差異研究方面也是活的資料庫。

吉里從 1980 年代還在加州大學河濱分校讀研究所時,就對人類性別差異的演化很感興趣,但考慮到生物性別差異(至少是那些超出生殖器以外的差異)的研究,本質上經常引起焦慮,吉里等到獲得終身教職之後,才開始發表人類演化方面的研究結果。接著他就爆發了。他和人合寫出一本厚達千頁的教科書,這僅僅彙集了過去一百年關於性別差異(從出生體重到社會態度)的每一項嚴肅科學研究的結果。

吉里對運動界最有趣的貢獻,是 550 頁的大部頭書《男性、女性:人類性別差異的演化》(Male, Female: The Evolution of Human Sex Differences),雖然他在我出現在他辦公室門口之前,可能還沒有這麼認為。這本書是把針對人類性別差異做過的所有研究納入性擇架構的第一本著述。

-----廣告,請繼續往下閱讀-----

查爾斯.達爾文(Charles Darwin)首先闡明了「性擇」的原則,不過比起他的另一個獨創概念「天擇」,性擇得到的主流大幅報導少了許多。天擇指的是人類 DNA 當中,應自然環境而留存或拔除的改變;而性擇是指由於競爭擇偶,而廣傳或消亡的那些 DNA 的改變。性擇是人類大部分性別差異的源頭,對理解人類運動能力至為重要。

性擇是人類多數性別差異的源頭。 圖/envato

在兩性的身體差異當中,男性通常比較重、比較高,手臂和腿相對於身高來說比較長,心臟和肺也比較大。男性慣用左手的機率是女性的兩倍──這在一些運動項目上是優點。〔3〕男性脂肪較少,骨密度較高,攜氧紅血球較多,骨骼較重而能支撐更多肌肉,而且臀部較窄,因此跑步更有效率,跑跳時受傷的機會減少──譬如前十字韌帶撕裂傷,就很常發生在女運動員身上。凱斯西儲大學(Case Western Reserve University)人類學兼解剖學教授布魯斯.拉提摩(Bruce Latimer)說:「女性骨盆較寬,與膝蓋的角度就比較大,所以會浪費很多力氣去壓縮髖關節,這對前進沒有幫助。……骨盆越寬,浪費的力氣越多。」

兩性在身體方面極明顯的一項差異在於肌肉量。男性身體內任何一塊空間裡堆積的肌纖維比女性多,而且上半身的肌肉量比女性多出 80%,腿部則多 50%。這意味著兩性上半身的肌力相差了三個標準差。也就是說,若從街上拉一千個男性,有 997 人的上半身會比普通女性強壯有力。

吉里說:「上半身的肌力差異,就跟你在大猩猩身上看到的差不多。差異非常大。大猩猩是人類近親當中雌雄差異最大的,雄性的體型大約是雌性的兩倍大,所以體型大小的差異比人類大,但上半身力氣的差異差不多。」

-----廣告,請繼續往下閱讀-----

我們和大猩猩相似的原因,正反映性擇如何塑造出人類(與大猩猩)的運動能力。倘若你想了解某物種的雄性或雌性體型是否比較大、是否比較孔武有力,那麼這個訊息特別有用:哪個性別的潛在繁殖率較高

由於懷孕期和哺乳期很長,雌性大猩猩大約每四年才會產下一隻小猩猩。雄性大猩猩會建立並捍衛自己的妻妾群,所以潛在繁殖率高出許多。但每出現一隻妻妾成群的雄性大猩猩,就會有幾隻雄性大猩猩完全沒有繁殖機會,以致牠們要為多隻雌性激烈競爭,而這種「雄性間競爭」屬於搏鬥,至少是裝作要搏鬥的架勢,於是天擇就會凸顯讓大猩猩看起來比較會打架的表徵。吉里解釋說:「雌性有較高繁殖率的那些物種,情況就反過來了,雌性的體型會比較大,也比較具攻擊性。」負責照顧卵的雄海馬會偏好壯碩的雌海馬,就不令人意外了。

在更難靠體力巡邏保護的競爭區域,如天空,雌性的擇偶眼光就更加重要,這時天擇會凸顯一些像鳥羽顏色鮮豔動人、求偶鳥鳴聲悅耳等雄性表徵。但對於主要在陸地上生活的靈長類動物,如大猩猩和原始人類,肉搏戰可能就很重要,而演化彰顯了蠻力。

這一切都蘊涵了某些與人類有關、關於我們這種地球上的靈長類動物、特別是跟男性有關,而且不太討喜的看法:男性身上選出某些表徵的目的,是讓他們能夠弄傷、殺死或者至少威嚇彼此,而且最有辦法弄傷、殺死或威嚇其他男性的男性,有時會利用這份成就和多位女性成為配偶,生下許多子女。

-----廣告,請繼續往下閱讀-----

證據的分量證實了上述這兩個含意。在狩獵採集社會中,約有 30% 的男子在搏鬥或打劫中死於其他男子之手,而且搏鬥或打劫經常是為了爭奪女人。哈佛大學心理學家史蒂芬.平克(Steven Pinker)的著作《人性中的良善天使》,談的是人類暴力的歷史與暴力在現代社會的減少。他在談到自己這本書時便說:「結果發現(湯瑪斯.)霍布斯是對的。在自然狀態下,人的生命是汙穢、野蠻、短暫的。」

至於第二個含意,即我們的祖先會爭奪多位配偶,從遺傳學證據來看是不容置疑的。由於父親的 Y 染色體 DNA 只會傳遞給兒子,只有母親會傳遞「粒線體 DNA」,所以我們可以分頭上溯母系和父系的祖先。世界各地的研究結果都很清楚:不論科學家朝哪裡看,我們的男性祖先都少於女性祖先。要孕育出目前的世界人口數,需要的亞當比夏娃少了許多。(在某些情況下居然明顯如此:有 1,600 萬個亞洲男性〔即世上男性人口的 0.5%〕有一部分的 Y 染色體幾乎相同,遺傳學家認為這可能來自以后妃上百人著稱的成吉思汗。)

在雄性間有激烈競爭的物種和靈長類身上,看得到另一個模式:對搏鬥很重要的體能,會透過青春期在雄性身上增強。對於迅速發育中的成年動物或成人,青春期凸顯了其在繁殖上很快就會需要的特質。因此,如果揮拳、擲石塊等運動特徵對繁殖很重要,就會在青春期增強。同樣的,男性完全遵循暴力的靈長類模式。女孩發育得比較早又快,男孩的青春期又晚又長,所以有更多時間成長,他們的運動能力也在這段期間爆發。

青春期的劇變:為什麼男孩在體能上後來居上?

男孩和女孩在十歲以前身體很相似,女孩長得比較高,已經有稍多的體脂肪,但一些運動特徵在男女孩身上幾乎無法區分開來。十歲男孩和女孩的最快跑步速度幾乎一致,直到十四歲之前還是相近,而當男孩到十四歲時,就很像服了天然類固醇。

-----廣告,請繼續往下閱讀-----

十四歲時,已經拉開的投擲差距會變成顯著的鴻溝。男孩發育出更強壯的手臂、更寬闊的肩膀;到十八歲時,普通男孩的投擲距離可以達到普通女孩的三倍遠。成年男性還會發展出比男孩和成年女性更難擊倒的特徵:有比較重而可以保護眼睛的眉弓,且下顎增大,讓臉部在承受重擊時更有回復能力。玻璃做的下巴顯然不符合男性祖先的條件。

睪固酮在男性青春期急劇分泌,也會刺激紅血球生成,因此男性可用的氧氣比女性多,這也讓男性對疼痛比女性不敏感〔4〕──就像接受睪固酮注射的動物和人一樣。

在青春期之後,男女的體能差異開始出現。 圖/envato

接近十四歲左右,普通女孩逐漸逼近她生涯中的最快速度了。還未進入青春期的九歲男孩和女孩,短跑項目的分齡世界紀錄幾乎不相上下,這個年紀在運動方面的性別差異沒什麼生物學上的理由。然而過了十四歲,這些紀錄就不再屬於同一個運動世界了。〔5〕

在某些情況下,進入青春期的女性,其某些運動特質會變得更糟。由於雌性素導致脂肪堆積在變寬的臀部,大多數女孩在垂直跳項目上會停滯不前或退步。就連最瘦的馬拉松成年女子選手,努力減掉大約 6% 到 8% 的體脂肪,還是男子選手的兩倍。

-----廣告,請繼續往下閱讀-----

針對奧運選手所做的研究都顯示,女運動員在某些項目的重要特徵,就是她們不像其他女性發育出較寬的臀部。如果女子體操菁英選手的身高或臀部突然明顯增長,她們的運動生涯高峰可以說就結束了。體型大小增加得比肌力快,攸關空中動作的動力體重比(power-to-weight ratio)就會朝錯誤的方向發展,她們在半空中做旋轉的能力也是如此。

據稱,在二十歲時女性體操選手就過了顛峰期,而男性體操選手仍處於生涯初期。國際奧會在確定女子體操選手董芳霄比最低參賽年齡十六歲還小兩歲之後,取消了中國隊在 2000 年雪梨奧運時奪得的女子體操團體銅牌。我們很有把握,在男子體操比賽中絕對不會看到類似的造假醜聞。如此說來,有些女運動員具備的優勢,來自某些更常見於男性身上的特徵,例如低體脂肪、窄臀等。

現在看來,1970 年代和 1980 年代時,女性在田徑運動方面之所以趕上男性的主要原因,以及《自然》期刊上的論文並未說明的原因,在於她們都只是透過注射睪固酮,來彌補所欠缺的 SRY 基因。從 1960 年代開始,冷戰競賽擴及運動場,有計畫地給女孩用禁藥(往往是在她們渾然不知的情況下),在像東德這樣的國家很普遍。

從那個時代起,最需爆發力的比賽項目的頂尖參賽女性情況變得更糟,舉例來說,女子組推鉛球的前八十名紀錄,就有七十五個是在 1970 年代中期到 1990 年創下的,而且多半來自中東歐國家。

-----廣告,請繼續往下閱讀-----
某些女性運動員身上許多優勢,在男性運動員身上更容易出現。圖/envato

第八十個成績是東德選手海蒂.克里格(Heidi Krieger)擲出來的,數十年後她在法庭上作證,說東德有系統地讓女性使用禁藥。那時她的身分已變成安德列斯.克里格(Andreas Krieger),由於使用大量類固醇(睪固酮的結構類似物)以致身體變得男性化,她最終選擇像男性一樣生活。時至今日,幾乎所有女子組短跑和爆發力型項目的世界紀錄,都是在 1980 年代創下的,這證明了男性荷爾蒙對女性選手具有強大效應。

使用禁藥的極端時代一結束,有和沒有 SRY 基因的人之間的成績差距,就重新拉開了。現在我們很清楚,在大部分運動項目中,男性勝過女性的遺傳優勢非常強大,最好的解決之道就是把男女分開來。

西北大學費恩柏格醫學院(Feinberg School of Medicine)臨床醫學人文與生物倫理教授、運動性別檢測史權威愛麗絲.德雷格(Alice Dreger)告訴我:「在運動方面把女性區隔開來,是因為許多項目中最優秀的女子選手,無法跟最優秀的男子選手競爭。大家都心知肚明,但沒有人願意說出來。基於我認為的各種好理由,女性的身體構造就像某類殘疾人士。」

判斷誰能獲准進入該類別,在 2009 年世界田徑錦標賽時是一大難題,當時800公尺賽跑的南非年輕黑馬卡絲特.賽門亞(Caster Semenya),回頭朝肌肉發達的肩膀後方望了一眼,就一路領先到底,奪得世界冠軍。賽門亞的對手在全球媒體上嘲笑她。決賽中名列第五的俄羅斯選手瑪莉亞.薩維諾娃(Mariya Savinova)語帶譏諷說:「你們看看她。」她指的是賽門亞的窄臀和宛如鎧甲般的軀幹。然而,光看著她是看不出答案的。

-----廣告,請繼續往下閱讀-----

世界錦標賽後,有報導指稱賽門亞有隱睪,沒有卵巢或子宮,而且有高濃度的睪固酮。(賽門亞未曾證實該報導或做出回應。)如果屬實,那麼應該把她歸入哪個類別?耶魯大學小兒科學教授麥倫.吉內爾(Myron Genel)表示,若想開始按照特定生物表徵來細分運動類別,「就必須進行像『西敏寺狗展』這樣的國際比賽,每個品種都有專屬的競賽。」西班牙跨欄選手馬丁內茲-帕提尼奧有 Y 染色體也有 SRY 基因,但由於她對睪固酮的作用不敏感,所以最後獲准參加女子組競賽。

2012 倫敦奧運前夕,由於賽門亞一例持續引發爭議,國際田徑總會和國際奧會宣布,將採睪固酮濃度作為性別判斷依據。不單要測分泌的睪固酮量,還要測身體能夠利用的量。

睪固酮濃度值並非連續的。典型女性體內的睪固酮濃度為每公合(deciliter,一公合等於 100 毫升)血液低於 75 毫微克,男性一般是在 240 到 1,200 毫微克之間,因此男性濃度範圍的最低值,仍比女性的最高值高出 200%。2011 年,全美大學體育聯盟經某個贊同全美女同志權益中心(National Center for Lesbian Rights)的智囊團指導,決定凡是接受變性手術成為女性的男性,都必須停賽一年等睪固酮濃度下降,才可以加入女子隊伍。

睪固酮的威力:它如何讓男性在運動中佔據優勢?

由此可以看出,大家已把睪固酮視為男性運動能力優勢的根源。不過,它可能不是唯一的源頭。我訪談研究雄性素不敏感症候群女性患者的內分泌學家時,他們全都認為,像馬丁內茲-帕提尼奧那樣染色體為 XY,卻根本無法利用睪固酮的女性,在體育圈裡的人數超出人口比例,而非低於比例。

1996 年亞特蘭大夏季奧運,即進行口腔擦拭取樣檢測的最後一屆奧運,發現 3,387 名參賽選手中有 7 位女性(大約是 1/480),帶有 SRY 基因且患有雄性素不敏感症候群。據估計,雄性素不敏感症候群的典型發生率,介於 1/20,000 和 1/64,000 之間。

五屆奧運會中,平均每 421 名女性參賽者,就有 1 人經判定有 Y 染色體,因此在世界最大的運動競技舞台上,患有雄性素不敏感症候群的女性人數大幅超出人口比例。如此說來,除了睪固酮,帶來優勢的東西也許和 Y 染色體有關。

患有雄性素不敏感症候群的女性,四肢的比例往往比較像男性,她們的手臂和腿相對於身體的比例比較長,平均身高也比一般女性高個十公分。譬如身高一米八的巴西排球選手、2000 年奧運銅牌得主艾麗卡.寇因布拉(Erika Coimbra),就是少數幾位患有雄性素不敏感症候群,而且名字被公開的運動員。(我訪談過的其中兩位內分泌學家說,在模特兒界,染色體為 XY 的女性也有人數遠多於典型發生率的現象,因為她們除了身高很高又有雙長腿外,外形上往往也非常女性化。在個人醫療資料不幸在媒體上曝光之前,高金髮的寇因布拉有「巴西芭比」的稱號。)

染色體為 XY 且對睪固酮不敏感的女性,身高之所以增高可能是成長期延長所致,因為她們沒有聽從荷爾蒙的停止訊息,也可能是 Y 染色體上會影響身高的基因導致的。多一個 Y 染色體的男性往往長得很高,國際高個子俱樂部(Tall Clubs International)裡身高最高的會員戴夫.拉斯姆森(Dave Rasmussen)有 221公分高,他就是染色體為 XYY 的男性,他父母親的身高分別是 193 公分和 175公分。

《英國運動醫學期刊》曾有篇論文指出,染色體為 XY 的女性人數超過人口比例,這個現象僅僅「觸及體育界雙性人問題的表面」。休士頓的內分泌科醫生傑夫.布朗(Jeff Brown)就在幫助一些最優秀的美國運動員(他的病人總共奪得十五面奧運金牌),他治療過許多患有局部 21-羥化酶缺乏症(partial 21-hydroxylase deficiency)的女性奧運選手,這種疾病會在家族中擴散,導致睪固酮分泌過量。〔6〕據布朗估計,這種病症在女性運動員當中的人數嚴重超出人口比例。布朗說:「問題可能是,那會不會讓她們比沒有此病症的人更有優勢?答案當然是肯定的。但那是老天賜予的。……我在跳躍運動員、短跑及長跑選手當中都看過這種疾病。」

沒有哪位科學家能夠聲稱,自己了解睪固酮對個別運動員有何確切影響,不過 2012 年有一項研究,花了三個月追蹤包括田徑和游泳等多項運動的女運動員,結果發現,菁英級競技者的睪固酮濃度,一直維持在非菁英級的兩倍以上。而且還有具渲染力的趣聞軼事。〔7〕

五十五歲的醫學物理師喬安娜.哈珀(Joanna Harper)生為男兒身,後來轉變成女性,而且恰好也是全美成績優異的分齡賽跑選手,她在 2004 年 8 月開始,用荷爾蒙療法抑制體內的睪固酮,身體轉變成女性之後,她就像任何一位優秀的科學家一樣,開始收集數據。哈珀認為她會逐漸變慢,但意外發現自己在第一個月結束前已經越跑越慢,越變越虛弱無力。

她說:「我在跑步時沒覺得不同,但就是不像以前那麼快。」哈珀在 2012 年奪得全美 55 至 59 歲組越野跑冠軍,不過年齡和性別分級的成績標準卻顯示,哈珀如今身為女性的表現,與過去身為男性的表現具同樣的競爭力。也就是說,女身哈珀相對於女性而言的表現,和轉變前相對於男性的表現一樣好,但是遠比她自己的高睪固酮前身跑得慢。

哈珀在 2003 年以男子的身分,在波特蘭主辦的赫爾維提亞半程馬拉松(Helvetia Half-Marathon)以 1 小時 23 分 11 秒完賽,而於 2005 年以女子的身分在同個比賽中跑出 1 小時 34 分 01 秒的成績,男身哈珀的完賽時間比女身時間每英里快了大約 50 秒。她也收集了其他五名從男變女的賽跑者的數據,發現全都顯示她們的速度大幅減慢。有位跑者連續十五年參加同一個 5K 賽,前八次以男性的身分,後七次是在進行過睪固酮抑制治癒後以女性身分參賽;結果,男性身分的成績始終在 19 分鐘以內,女性身分一直超過 20 分鐘。〔8〕

為何女性在耐力賽中仍然可以勝過男性?

因此,男性典型的荷爾蒙模式(高睪固酮)、骨架(身高較高、肩膀較寬、骨密度較高、手臂較長、臀部較窄)和基因(SRY 及其他基因),能夠賦予某些運動優勢。那麼接下來就有個有趣的演化問題,即:為什麼女性還會擅長運動?

女性在某些運動項目上,仍有其天生優勢。圖/envato

就像男性祖先,我們的女性祖先也需要夠擅長運動,才能長途跋涉、背孩子和木柴、砍樹、挖塊莖。不過,女性不太有機會打鬥、奔跑,或是由爬樹等費力的活動去練就出上半身的肌力。吉里和其他幾位科學家告訴我,女性擅長運動的部分原因,或許是男性也擅長運動。

想一想類似的問題:為什麼男性有乳頭?答案是因為女性有乳頭,所以男性也有。乳頭對於女性成功繁殖是絕對必要的,而在男性身上又沒什麼害處,沒有非捨棄不可的天擇壓力。哈佛大學人類學家丹.李伯曼(Dan Lieberman)研究的,是肌耐力跑(endurance running)在人類狩獵和演化上的作用,他就曾告訴我:「男性和女性不能完全分開來設計,不能像訂紅色或藍色車子那樣訂製我們。我們的基本生理特性大致相同,只有一點點差別。如果女人不需要跑步,你就可以辯稱她們的腿部不需要充當彈簧的跟腱,但這要怎麼辦到?你必須讓某個性別失去跟腱。」相反的,自然界替人類保留了一套系統,讓荷爾蒙能夠選擇性地啟動基因來達成不同效果,而不是讓大量基因產生變化。

男人和女人有幾乎完全相同的基因,但那些很小的基因差異,如 SRY 基因,會引發大量的生理結果,這會導致比賽場上的龐大差距,而不僅僅是影響身高、四肢長度之類的明顯固定特徵。男性的肌肉在舉重時增長得比女性更快,心臟對肌耐力練習的反應也比女性大又快。所以,Y 染色體上有一些小小的 DNA 差異,最後會影響此人的可訓練性(trainability,指目標能力因訓練而進步的幅度)。

而且影響其人是否為可造之才的,不只有這條染色體上的基因。

——本文摘自 大衛・艾普斯坦(David Epstein),《運動基因:頂尖運動表現背後的科學》,2020 年 12 月,行路出版,未經同意請勿轉載。

註解:

  • 慣用左手的人很少,所以對手不常面對左撇子,腦中的對應身體動作資料庫也就很淺陋,套用科學家的話來說,這就給了左撇子「負頻率相依優勢」(negative frequency dependent advantage)。以 1980 年莫斯科奧運花式擊劍賽為例,進入決賽的六個人全是左撇子。法國科學家夏洛特.弗里(Charlotte Faurie)和米榭爾.雷蒙(Michel Raymond)分析了徒手搏鬥較多的土著社會中,左撇子比例較高的情況,他們和其他研究者假設,天擇把左撇子視為一種搏鬥優勢而留下了一些人,特別是男性。
  • 認為女性因為要經歷分娩過程而比男性更能忍受疼痛,這種看法是個迷思,針對該主題做過的每項研究都反駁了這個論調。女性對疼痛比較敏感,成為慢性疼痛病患的機率更大。
    不過,女性在臨近分娩時的確對疼痛變得比較不敏感。
  • 400 公尺短跑紀錄:
    九歲男孩:1:00.87 十四歲男孩:46.96
    九歲女孩:1:00.56 十四歲女孩:52.68
  • 布朗也在男性病患身上看過局部 21- 羥化.缺乏症,但效果沒那麼引人矚目。布朗表示,大體來說,菁英運動員的內分泌系統與大多數成年人明顯不同。他說:「運動員有各種獨特的特徵,就荷爾蒙環境而言,他們就生得跟我不一樣。」
  • 研究運動員和睪固酮的生理學家克里斯提安.庫克(Christian J. Cook)說:「有個正在浮現的模式是,頂尖級的瞬間爆發力型菁英女運動員,睪固酮濃度往往和男性比較相近……那些女性往往很有本事藉由訓練增添爆發力。」庫克在 2013 年所做的小型研究發現,睪固酮濃度較高的女運動員,會比睪固酮濃度較低的夥伴選擇更劇烈的肌力訓練。
  • 我跟哈珀初次進行訪談,是為了 2012 年《運動畫刊》的文章〈跨性別運動員〉,這篇報導是我和帕布羅.托雷(Pablo S. Torre)一起寫的。我和帕布羅還採訪了凱.阿倫斯(Kye Allums),他曾是喬治華盛頓大學女子籃球隊員,也是史上第一位公開跨性別的 NCAA 一級男籃球隊選手。為了變成男性之身,阿倫斯最近開始注射睪固酮。他說他的手腳和頭部已經有所增長,聲音越來越低沉,開始長出少量鬍子,而且能夠跑得更快。醫學研究已經在病患身上發現,睪固酮的施打劑量,與增加的肌肉量和肌力之間有相依關係。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing

0

1
1

文字

分享

0
1
1
家長留意!「胎兒小於妊娠年齡」影響生長發展,從出生到成年都會面臨健康問題
careonline_96
・2024/03/05 ・2446字 ・閱讀時間約 5 分鐘

  • 林口長庚醫院 兒童內分泌科 邱巧凡醫師/新生兒科 江明洲醫師

兒童內分泌生長門診中很常出現的一個族群是「胎兒小於妊娠年齡」的孩子。

這些小朋友在長大的過程中,相較於正常出生體重的孩子,容易出現身材矮小、性早熟、過重、肥胖,甚至到成人時期罹患代謝症候群與心血管疾病的風險也明顯較高,兒童健康守護者應特別留意。

什麼是「胎兒小於妊娠年齡」

胎兒小於妊娠年齡(small for gestational age, SGA)是指「出生體重低於同樣妊娠週數新生兒第十百分位或低於負二個標準差者」。

如何知道我的孩子是否為「胎兒小於妊娠年齡」

大家可以參考以下圖片對照寶寶出生週數與體重,即可得知寶寶出生體重是否符合該週齡。

舉例來說:一個懷孕 39 週出生的足月寶寶,出生體重只有 1800 公克,屬於「胎兒小於妊娠年齡」。

為什麼會「胎兒小於妊娠年齡」

造成「胎兒小於妊娠年齡」的原因包含:母體因素、胎盤因素與胎兒因素。

-----廣告,請繼續往下閱讀-----
  • 母體因素:如高血壓、子癲前症、營養不良、甲狀腺功能低下、感染、抽菸、吸毒、飲酒、高齡妊娠等。
  • 胎盤因素:如胎盤血管異常(如單一臍動脈、雙胞胎輸血症候群)。
  • 胎兒因素:染色體異常、先天性異常、胎兒感染等。

胎兒小於妊娠年齡」孩子成長過程會面臨哪些健康問題

  • 新生兒時期

約有 1/3「胎兒小於妊娠年齡」寶寶,在新生兒時期因為肝醣儲積不足,脂肪量不足,造成「低血糖」的發生。也容易因為體表面積相對較大,皮下脂肪相對不足,而增加「低體溫」的風險。若早產合併胎兒小於妊娠年齡,也明顯「增加新生兒死亡率」。

  • 嬰兒期

「胎兒小於妊娠年齡」的寶寶往往在出生後 3~6 個月開始出現「追趕生長」,且常常體重追趕得比身長來的快。研究發現,此階段的體重快速增加將大幅提升未來長期肥胖、代謝性症候群與心血管疾病的風險。

  • 兒童時期與青春期

生長

大多數「胎兒小於妊娠年齡」的兒童,可在成長過程發生「追趕生長」。即生長速率可高於同齡同性別之平均值,使生長曲線逐漸邁入正常範圍。將近 90%「胎兒小於妊娠年齡」的兒童可在兩歲前完成「自發性追趕生長」;若「早產」合併「胎兒小於妊娠年齡」,則需要更長時間完成追趕生長,大部分可在四歲前追趕達標。

-----廣告,請繼續往下閱讀-----

然而,仍然有 10% 左右的「胎兒小於妊娠年齡」兒童無法完成自發性追趕生長,造成終生持續身材矮小。此族群目前在美國、歐盟與日本皆已列為「生長激素治療」之適應症族群。此族群透過適當的生長激素治療,除了可改善身高預後,還可改善身體組成(減少脂肪量、增加肌肉量)、改善高膽固醇血症,並提升骨質密度。

青春期發育

大多數「胎兒小於妊娠年齡」的青春期發育時間會落在正常時間:女孩 8~13 歲,男孩 9~14 歲。但平均而言,「胎兒小於妊娠年齡」兒童的青春期還是會早於正常出生體重的兒童(初經比正常出生體重兒童提前 5~6 個月),女孩容易發生「早發性陰毛發育」,青春期的進展速度也較快,但青春期階段的生長速率卻較為緩慢,而這樣「偏早又偏快的青春期,以及偏慢的長高速率」,往往不利於理想成人身高的達成。

神經發展與認知

-----廣告,請繼續往下閱讀-----

大部分「胎兒小於妊娠年齡」兒童的腦部發育是正常的。但在極度早產兒,會增加發展遲緩、認知功能障礙、注意力不足過動症與學習障礙的風險。

  • 成人時期

相較於正常出生體重的兒童,「胎兒小於妊娠年齡」兒童在成人階段有較高的機率罹患中樞型肥胖、脂質異常、胰島素阻抗、葡萄糖代謝異常、高血壓等代謝症候群與心血管疾病,特別是兒童時期高熱量飲食、體重快速增加的肥胖兒童。由此可見「小時候胖」幾乎註定成人以後肥胖的趨勢,甚至助長成人肥胖併發症的發生。

「胎兒小於妊娠年齡」的寶寶,從出生一直到長大成人,都有許多健康議題需要特別關注。建議此族群家長,應格外留意以下幾點:

  1. 「胎兒小於妊娠年齡」的寶寶,於兩歲以前的生長曲線未達標請先不要過度擔心,出生後應密切配合新生兒科醫師或兒科醫師的追蹤安排,留意後續的生長發育狀況。
  2. 若 3~4 歲生長曲線仍明顯落後,請就診兒童內分泌科進一步評估診療。
  3. 應留意是否過早出現第二性徵。若女孩 8 歲前胸部、陰毛發育,10 歲前初經來潮;男孩 9 歲前睪丸長大、陰莖明顯變長變粗、長陰毛,請務必就診兒童內分泌科。
  4. 應避免不當餵食導致過度的體重增加,因為這將大幅提升未來代謝症候群與心血管疾病的風險。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。